
Package ‘BGData’
January 25, 2019

Version 2.1.0

License MIT + file LICENSE

Title A Suite of Packages for Analysis of Big Genomic Data

Description An umbrella package providing a phenotype/genotype data structure
and scalable and efficient computational methods for large genomic datasets
in combination with several other packages: 'BEDMatrix', 'LinkedMatrix',
and 'symDMatrix'.

URL https://github.com/QuantGen/BGData

BugReports https://github.com/QuantGen/BGData/issues

Depends R (>= 3.0.2), BEDMatrix (>= 1.4.0), LinkedMatrix (>= 1.3.0),
symDMatrix (>= 2.0.0)

Imports methods, parallel, crochet (>= 2.1.0), bigmemory,
synchronicity, ff, bit

Suggests data.table (>= 1.9.6), lme4, SKAT, testthat, covr

RoxygenNote 6.1.1

Encoding UTF-8

NeedsCompilation yes

Author Gustavo de los Campos [aut],
Alexander Grueneberg [aut, cre],
Paulino Perez [ctb],
Ana Vazquez [ctb]

Maintainer Alexander Grueneberg <alexander.grueneberg@googlemail.com>

Repository CRAN

Date/Publication 2019-01-25 19:40:06 UTC

R topics documented:
BGData-package . 2
as.BGData . 3
BGData-class . 5

1

https://github.com/QuantGen/BGData
https://github.com/QuantGen/BGData/issues

2 BGData-package

chunkedApply . 6
chunkedMap . 8
findRelated . 9
geno-class . 10
getG . 11
getG_symDMatrix . 13
GWAS . 15
initialize,BGData-method . 17
load.BGData . 18
orderedMerge . 18
readRAW . 19
summarize . 21

Index 24

BGData-package A Suite of Packages for Analysis of Big Genomic Data.

Description

Modern genomic datasets are big (large n), high-dimensional (large p), and multi-layered. The
challenges that need to be addressed are memory requirements and computational demands. Our
goal is to develop software that will enable researchers to carry out analyses with big genomic data
within the R environment.

Details

We have identified several approaches to tackle those challenges within R:

• File-backed matrices: The data is stored in on the hard drive and users can read in smaller
chunks when they are needed.

• Linked arrays: For very large datasets a single file-backed array may not be enough or conve-
nient. A linked array is an array whose content is distributed over multiple file-backed nodes.

• Multiple dispatch: Methods are presented to users so that they can treat these arrays pretty
much as if they were RAM arrays.

• Multi-level parallelism: Exploit multi-core and multi-node computing.

• Inputs: Users can create these arrays from standard formats (e.g., PLINK .bed).

The BGData package is an umbrella package that comprises several packages: BEDMatrix, Linked-
Matrix, and symDMatrix. It features scalable and efficient computational methods for large ge-
nomic datasets such as genome-wide association studies (GWAS) or genomic relationship matrices
(G matrix). It also contains a data structure called BGData that holds genotypes in the @geno slot,
phenotypes in the @pheno slot, and additional information in the @map slot.

as.BGData 3

File-backed matrices

Functions with the chunkSize parameter work best with file-backed matrices such as BEDMa-
trix::BEDMatrix objects. To avoid loading the whole, potentially very large matrix into memory,
these functions will load chunks of the file-backed matrix into memory and perform the operations
on one chunk at a time. The size of the chunks is determined by the chunkSize parameter. Care
must be taken to not set chunkSize too high to avoid memory shortage, particularly when combined
with parallel computing.

Multi-level parallelism

Functions with the nCores, i, and j parameters provide capabilities for both parallel and distributed
computing.

For parallel computing, nCores determines the number of cores the code is run on. Memory usage
can be an issue for higher values of nCores as R is not particularly memory-efficient. As a rule
of thumb, at least around (nCores * object_size(chunk)) + object_size(result) MB of
total memory will be needed for operations on file-backed matrices, not including potential copies
of your data that might be created (for example stats::lsfit() runs cbind(1, X)). i and j can
be used to include or exclude certain rows or columns. Internally, the parallel::mclapply()
function is used and therefore parallel computing will not work on Windows machines.

For distributed computing, i and j determine the subset of the input matrix that the code runs on.
In an HPC environment, this can be used not just to include or exclude certain rows or columns, but
also to partition the task among many nodes rather than cores. Scheduler-specific code and code to
aggregate the results need to be written by the user. It is recommended to set nCores to 1 as nodes
are often cheaper than cores.

Example dataset

The extdata folder contains example files that were generated from the 250k SNP and phenotype
data in Atwell et al. (2010). Only the first 300 SNPs of chromosome 1, 2, and 3 were included to
keep the size of the example dataset small. PLINK was used to convert the data to .bed and .raw
files. FT10 has been chosen as a phenotype and is provided as an alternate phenotype file. The file
is intentionally shuffled to demonstrate that the additional phenotypes are put in the same order as
the rest of the phenotypes.

See Also

BEDMatrix::BEDMatrix-package, LinkedMatrix::LinkedMatrix-package, and symDMatrix::symDMatrix-
package for an introduction to the respective packages.

as.BGData Convert Other Objects to BGData Objects.

Description

Converts other objects to BGData objects by loading supplementary phenotypes and map files ref-
erenced by the object to be used for the @pheno and @map slot, respectively. Currently supported are
BEDMatrix::BEDMatrix objects, plain or nested in LinkedMatrix::ColumnLinkedMatrix objects.

http://www.nature.com/nature/journal/v465/n7298/full/nature08800.html
https://www.cog-genomics.org/plink2
https://www.cog-genomics.org/plink2/input#bed
https://www.cog-genomics.org/plink2/input#raw
https://www.cog-genomics.org/plink2/input#pheno

4 as.BGData

Usage

as.BGData(x, alternatePhenotypeFile = NULL, ...)

S3 method for class 'BEDMatrix'
as.BGData(x, alternatePhenotypeFile = NULL, ...)

S3 method for class 'ColumnLinkedMatrix'
as.BGData(x, alternatePhenotypeFile = NULL,
...)

S3 method for class 'RowLinkedMatrix'
as.BGData(x, alternatePhenotypeFile = NULL,
...)

Arguments

x An object. Currently supported are BEDMatrix::BEDMatrix objects, plain or
nested in LinkedMatrix::ColumnLinkedMatrix objects.

alternatePhenotypeFile

Path to an alternate phenotype file.

... Additional arguments to the utils::read.table() or data.table::fread()
call (if data.table package is installed) call to parse the alternate pheno file.

Details

The .ped and .raw formats only allows for a single phenotype. If more phenotypes are required
it is possible to store them in an alternate phenotype file. The path to such a file can be provided
with alternatePhenotypeFile and will be merged with the data in the @pheno slot. The first and
second columns of that file must contain family and within-family IDs, respectively.

For BEDMatrix::BEDMatrix objects: If a .fam file (which corresponds to the first six columns of
a .ped or .raw file) of the same name and in the same directory as the BED file exists, the @pheno
slot will be populated with the data stored in that file. Otherwise a stub that only contains an IID
column populated with the rownames of @geno will be generated. The same will happen for a .bim
file for the @map slot.

For LinkedMatrix::ColumnLinkedMatrix objects: See the case for BEDMatrix::BEDMatrix ob-
jects, but only the .fam file of the first node of the LinkedMatrix::LinkedMatrix will be read and
used for the @pheno slot, and the .bim files of all nodes will be combined and used for the @map slot.

Value

A BGData object.

See Also

readRAW() to convert text files to BGData objects.

https://www.cog-genomics.org/plink2/input#pheno
https://www.cog-genomics.org/plink2/input#pheno

BGData-class 5

Examples

Path to example data
path <- system.file("extdata", package = "BGData")

Convert a single BEDMatrix object to a BGData object
chr1 <- BEDMatrix::BEDMatrix(paste0(path, "/chr1.bed"))
bg1 <- as.BGData(chr1)

Convert multiple BEDMatrix objects in a ColumnLinkedMatrix to a BGData object
chr2 <- BEDMatrix::BEDMatrix(paste0(path, "/chr2.bed"))
chr3 <- BEDMatrix::BEDMatrix(paste0(path, "/chr3.bed"))
clm <- ColumnLinkedMatrix(chr1, chr2, chr3)
bg2 <- as.BGData(clm)

Load additional (alternate) phenotypes
bg3 <- as.BGData(clm, alternatePhenotypeFile = paste0(path, "/pheno.txt"))

BGData-class An S4 Class to Represent Phenotype and Genotype Data.

Description

This class is inspired by the phenotype/genotype file format .raw and its binary companion (also
known as .bed) of PLINK. It is used by several functions of this package such as GWAS() for
performing a Genome Wide Association Study or getG() for calculating a genomic relationship
matrix.

Details

There are several ways to create an instance of this class:

• from arbitrary phenotype/genotype data using one of the constructors [BGData(...)][initialize,BGData-method]
or [new("BGData", ...)][initialize,BGData-method].

• from a BED file using as.BGData().

• from a previously saved BGData object using load.BGData().

• from multiple files (even a mixture of different file types) using LinkedMatrix::LinkedMatrix.

• from a .raw file (or a .ped-like file) using readRAW(), readRAW_matrix(), or readRAW_big.matrix().

A .ped file can be recoded to a .raw file in PLINK using plink --file myfile --recodeA, or
converted to a BED file using plink --file myfile --make-bed. Conversely, a BED file can
be transformed back to a .ped file using plink --bfile myfile --recode or to a .raw file using
plink --bfile myfile --recodeA without losing information.

https://www.cog-genomics.org/plink2
https://www.cog-genomics.org/plink2

6 chunkedApply

Slots

geno A geno object that contains genotypes. geno is a class union of several matrix-like types,
many of them suitable for very large datasets. Currently supported are LinkedMatrix::LinkedMatrix,
BEDMatrix::BEDMatrix, bigmemory::big.matrix, ff_matrix, and matrix.

pheno A data.frame that contains phenotypes.

map A data.frame that contains a genetic map.

Examples

X <- matrix(data = rnorm(100), nrow = 10, ncol = 10)
Y <- data.frame(y = runif(10))
MAP <- data.frame(means = colMeans(X), freqNA = colMeans(is.na(X)))
DATA <- BGData(geno = X, pheno = Y, map = MAP)

dim(DATA@geno)
head(DATA@pheno)
head(DATA@map)

chunkedApply Applies a Function on Each Row or Column of a File-Backed Matrix.

Description

Similar to base::apply(), but designed for file-backed matrices. The function brings chunks of
an object into physical memory by taking subsets, and applies a function on either the rows or the
columns of the chunks using an optimized version of base::apply(). If nCores is greater than 1,
the function will be applied in parallel using parallel::mclapply(). In that case the subsets of
the object are taken on the slaves.

Usage

chunkedApply(X, MARGIN, FUN, i = seq_len(nrow(X)),
j = seq_len(ncol(X)), chunkSize = 5000L,
nCores = getOption("mc.cores", 2L), verbose = FALSE, ...)

Arguments

X A file-backed matrix, typically @geno of a BGData object.

MARGIN The subscripts which the function will be applied over. 1 indicates rows, 2
indicates columns.

FUN The function to be applied.

i Indicates which rows of X should be used. Can be integer, boolean, or character.
By default, all rows are used.

j Indicates which columns of X should be used. Can be integer, boolean, or char-
acter. By default, all columns are used.

chunkedApply 7

chunkSize The number of rows or columns of X that are brought into physical memory for
processing per core. If NULL, all elements in i or j are used. Defaults to 5000.

nCores The number of cores (passed to parallel::mclapply()). Defaults to the num-
ber of cores as detected by parallel::detectCores().

verbose Whether progress updates will be posted. Defaults to FALSE.

... Additional arguments to be passed to the base::apply() like function.

File-backed matrices

Functions with the chunkSize parameter work best with file-backed matrices such as BEDMa-
trix::BEDMatrix objects. To avoid loading the whole, potentially very large matrix into memory,
these functions will load chunks of the file-backed matrix into memory and perform the operations
on one chunk at a time. The size of the chunks is determined by the chunkSize parameter. Care
must be taken to not set chunkSize too high to avoid memory shortage, particularly when combined
with parallel computing.

Multi-level parallelism

Functions with the nCores, i, and j parameters provide capabilities for both parallel and distributed
computing.

For parallel computing, nCores determines the number of cores the code is run on. Memory usage
can be an issue for higher values of nCores as R is not particularly memory-efficient. As a rule
of thumb, at least around (nCores * object_size(chunk)) + object_size(result) MB of
total memory will be needed for operations on file-backed matrices, not including potential copies
of your data that might be created (for example stats::lsfit() runs cbind(1, X)). i and j can
be used to include or exclude certain rows or columns. Internally, the parallel::mclapply()
function is used and therefore parallel computing will not work on Windows machines.

For distributed computing, i and j determine the subset of the input matrix that the code runs on.
In an HPC environment, this can be used not just to include or exclude certain rows or columns, but
also to partition the task among many nodes rather than cores. Scheduler-specific code and code to
aggregate the results need to be written by the user. It is recommended to set nCores to 1 as nodes
are often cheaper than cores.

Examples

Restrict number of cores to 1 on Windows
if (.Platform$OS.type == "windows") {

options(mc.cores = 1)
}

Load example data
bg <- BGData:::loadExample()

Compute standard deviation of columns
chunkedApply(X = bg@geno, MARGIN = 2, FUN = sd)

8 chunkedMap

chunkedMap Applies a Function on Each Chunk of a File-Backed Matrix.

Description

Similar to base::lapply(), but designed for file-backed matrices. The function brings chunks of
an object into physical memory by taking subsets, and applies a function on them. If nCores is
greater than 1, the function will be applied in parallel using parallel::mclapply(). In that case
the subsets of the object are taken on the slaves.

Usage

chunkedMap(X, FUN, i = seq_len(nrow(X)), j = seq_len(ncol(X)),
chunkBy = 2L, chunkSize = 5000L, nCores = getOption("mc.cores",
2L), verbose = FALSE, ...)

Arguments

X A file-backed matrix, typically @geno of a BGData object.

FUN The function to be applied on each chunk.

i Indicates which rows of X should be used. Can be integer, boolean, or character.
By default, all rows are used.

j Indicates which columns of X should be used. Can be integer, boolean, or char-
acter. By default, all columns are used.

chunkBy Whether to extract chunks by rows (1) or by columns (2). Defaults to columns
(2).

chunkSize The number of rows or columns of X that are brought into physical memory for
processing per core. If NULL, all elements in i or j are used. Defaults to 5000.

nCores The number of cores (passed to parallel::mclapply()). Defaults to the num-
ber of cores as detected by parallel::detectCores().

verbose Whether progress updates will be posted. Defaults to FALSE.

... Additional arguments to be passed to the base::apply() like function.

File-backed matrices

Functions with the chunkSize parameter work best with file-backed matrices such as BEDMa-
trix::BEDMatrix objects. To avoid loading the whole, potentially very large matrix into memory,
these functions will load chunks of the file-backed matrix into memory and perform the operations
on one chunk at a time. The size of the chunks is determined by the chunkSize parameter. Care
must be taken to not set chunkSize too high to avoid memory shortage, particularly when combined
with parallel computing.

findRelated 9

Multi-level parallelism

Functions with the nCores, i, and j parameters provide capabilities for both parallel and distributed
computing.

For parallel computing, nCores determines the number of cores the code is run on. Memory usage
can be an issue for higher values of nCores as R is not particularly memory-efficient. As a rule
of thumb, at least around (nCores * object_size(chunk)) + object_size(result) MB of
total memory will be needed for operations on file-backed matrices, not including potential copies
of your data that might be created (for example stats::lsfit() runs cbind(1, X)). i and j can
be used to include or exclude certain rows or columns. Internally, the parallel::mclapply()
function is used and therefore parallel computing will not work on Windows machines.

For distributed computing, i and j determine the subset of the input matrix that the code runs on.
In an HPC environment, this can be used not just to include or exclude certain rows or columns, but
also to partition the task among many nodes rather than cores. Scheduler-specific code and code to
aggregate the results need to be written by the user. It is recommended to set nCores to 1 as nodes
are often cheaper than cores.

Examples

Restrict number of cores to 1 on Windows
if (.Platform$OS.type == "windows") {

options(mc.cores = 1)
}

Load example data
bg <- BGData:::loadExample()

Compute column sums of each chunk
chunkedMap(X = bg@geno, FUN = colSums)

findRelated Find related individuals in a relationship matrix.

Description

Find related individuals in a relationship matrix.

Usage

findRelated(x, ...)

S3 method for class 'matrix'
findRelated(x, cutoff = 0.03, ...)

S3 method for class 'symDMatrix'
findRelated(x, cutoff = 0.03, verbose = FALSE,
...)

10 geno-class

Arguments

x A matrix-like object with dimnames.

... Additional arguments for methods.

cutoff The cutoff between 0 and 1 for related individuals to be included in the output.
Defaults to 0.03.

verbose Whether progress updates will be posted. Defaults to FALSE.

Value

A vector of names or indices of related individuals.

Methods (by class)

• matrix: Find related individuals in matrices

• symDMatrix: Find related individuals in symDMatrix objects

Examples

Load example data
bg <- BGData:::loadExample()

G <- getG(bg@geno)
findRelated(G)

geno-class An Abstract S4 Class Union of Matrix-Like Types.

Description

geno is a class union of several matrix-like types, many of them suitable for very large datasets. Cur-
rently supported are LinkedMatrix::LinkedMatrix, BEDMatrix::BEDMatrix, bigmemory::big.matrix,
ff_matrix, and matrix.

See Also

The @geno slot of BGData that accepts geno objects.

getG 11

getG Computes a Genomic Relationship Matrix.

Description

Computes a positive semi-definite symmetric genomic relation matrix G=XX’ offering options for
centering and scaling the columns of X beforehand.

Usage

getG(X, center = TRUE, scale = TRUE, scaleG = TRUE, minVar = 1e-05,
i = seq_len(nrow(X)), j = seq_len(ncol(X)), i2 = NULL,
chunkSize = 5000L, nCores = getOption("mc.cores", 2L),
verbose = FALSE)

Arguments

X A matrix-like object, typically @geno of a BGData object.

center Either a logical value or a numeric vector of length equal to the number of
columns of X. Numeric vector required if i2 is used. If FALSE, no centering
is done. Defaults to TRUE.

scale Either a logical value or a numeric vector of length equal to the number of
columns of X. Numeric vector required if i2 is used. If FALSE, no scaling is
done. Defaults to TRUE.

scaleG Whether XX’ should be scaled. Defaults to TRUE.

minVar Columns with variance lower than this value will not be used in the computation
(only if scale is not FALSE).

i Indicates which rows of X should be used. Can be integer, boolean, or character.
By default, all rows are used.

j Indicates which columns of X should be used. Can be integer, boolean, or char-
acter. By default, all columns are used.

i2 Indicates which rows should be used to compute a block of the genomic rela-
tionship matrix. Will compute XY’ where X is determined by i and j and Y
by i2 and j. Can be integer, boolean, or character. If NULL, the whole genomic
relationship matrix XX’ is computed. Defaults to NULL.

chunkSize The number of columns of X that are brought into physical memory for process-
ing per core. If NULL, all columns of X are used. Defaults to 5000.

nCores The number of cores (passed to parallel::mclapply()). Defaults to the num-
ber of cores as detected by parallel::detectCores().

verbose Whether progress updates will be posted. Defaults to FALSE.

Details

If center = FALSE, scale = FALSE and scaleG = FALSE, getG() produces the same outcome
than base::tcrossprod().

12 getG

Value

A positive semi-definite symmetric numeric matrix.

File-backed matrices

Functions with the chunkSize parameter work best with file-backed matrices such as BEDMa-
trix::BEDMatrix objects. To avoid loading the whole, potentially very large matrix into memory,
these functions will load chunks of the file-backed matrix into memory and perform the operations
on one chunk at a time. The size of the chunks is determined by the chunkSize parameter. Care
must be taken to not set chunkSize too high to avoid memory shortage, particularly when combined
with parallel computing.

Multi-level parallelism

Functions with the nCores, i, and j parameters provide capabilities for both parallel and distributed
computing.

For parallel computing, nCores determines the number of cores the code is run on. Memory usage
can be an issue for higher values of nCores as R is not particularly memory-efficient. As a rule
of thumb, at least around (nCores * object_size(chunk)) + object_size(result) MB of
total memory will be needed for operations on file-backed matrices, not including potential copies
of your data that might be created (for example stats::lsfit() runs cbind(1, X)). i and j can
be used to include or exclude certain rows or columns. Internally, the parallel::mclapply()
function is used and therefore parallel computing will not work on Windows machines.

For distributed computing, i and j determine the subset of the input matrix that the code runs on.
In an HPC environment, this can be used not just to include or exclude certain rows or columns, but
also to partition the task among many nodes rather than cores. Scheduler-specific code and code to
aggregate the results need to be written by the user. It is recommended to set nCores to 1 as nodes
are often cheaper than cores.

Examples

Restrict number of cores to 1 on Windows
if (.Platform$OS.type == "windows") {

options(mc.cores = 1)
}

Load example data
bg <- BGData:::loadExample()

Compute a scaled genomic relationship matrix from centered and scaled
genotypes
g1 <- getG(X = bg@geno)

Disable scaling of G
g2 <- getG(X = bg@geno, scaleG = FALSE)

Disable centering of genotypes
g3 <- getG(X = bg@geno, center = FALSE)

getG_symDMatrix 13

Disable scaling of genotypes
g4 <- getG(X = bg@geno, scale = FALSE)

Provide own scales
scales <- chunkedApply(X = bg@geno, MARGIN = 2, FUN = sd)
g4 <- getG(X = bg@geno, scale = scales)

Provide own centers
centers <- chunkedApply(X = bg@geno, MARGIN = 2, FUN = mean)
g5 <- getG(X = bg@geno, center = centers)

Only use the first 50 individuals (useful to account for population structure)
g6 <- getG(X = bg@geno, i = 1:50)

Only use the first 100 markers (useful to ignore some markers)
g7 <- getG(X = bg@geno, j = 1:100)

Compute unscaled G matrix by combining blocks of XX_{i2}' where X_{i2} is
a horizontal partition of X. This is useful for distributed computing as each
block can be computed in parallel. Centers and scales need to be precomputed.
block1 <- getG(X = bg@geno, i2 = 1:100, center = centers, scale = scales)
block2 <- getG(X = bg@geno, i2 = 101:199, center = centers, scale = scales)
g8 <- cbind(block1, block2)

Compute unscaled G matrix by combining blocks of $X_{i}X_{i2}'$ where both
X_{i} and X_{i2} are horizontal partitions of X. Similarly to the example
above, this is useful for distributed computing, in particular to compute
very large G matrices. Centers and scales need to be precomputed. This
approach is similar to the one taken by the symDMatrix package, but the
symDMatrix package adds memory-mapped blocks, only stores the upper side of
the triangular matrix, and provides a type that allows for indexing as if the
full G matrix is in memory.
block11 <- getG(X = bg@geno, i = 1:100, i2 = 1:100, center = centers, scale = scales)
block12 <- getG(X = bg@geno, i = 1:100, i2 = 101:199, center = centers, scale = scales)
block21 <- getG(X = bg@geno, i = 101:199, i2 = 1:100, center = centers, scale = scales)
block22 <- getG(X = bg@geno, i = 101:199, i2 = 101:199, center = centers, scale = scales)
g9 <- rbind(

cbind(block11, block12),
cbind(block21, block22)

)

getG_symDMatrix Computes a Very Large Genomic Relationship Matrix.

Description

Computes a positive semi-definite symmetric genomic relation matrix G=XX’ offering options for
centering and scaling the columns of X beforehand.

14 getG_symDMatrix

Usage

getG_symDMatrix(X, center = TRUE, scale = TRUE, scaleG = TRUE,
minVar = 1e-05, blockSize = 5000L,
folderOut = paste0("symDMatrix_", randomString()), vmode = "double",
i = seq_len(nrow(X)), j = seq_len(ncol(X)), chunkSize = 5000L,
nCores = getOption("mc.cores", 2L), verbose = FALSE)

Arguments

X A matrix-like object, typically @geno of a BGData object.

center Either a logical value or a numeric vector of length equal to the number of
columns of X. If FALSE, no centering is done. Defaults to TRUE.

scale Either a logical value or a numeric vector of length equal to the number of
columns of X. If FALSE, no scaling is done. Defaults to TRUE.

scaleG TRUE/FALSE whether xx’ must be scaled.

minVar Columns with variance lower than this value will not be used in the computation
(only if scale is not FALSE).

blockSize The number of rows and columns of each block. If NULL, a single block of the
same length as i will be created. Defaults to 5000.

folderOut The path to the folder where to save the symDMatrix::symDMatrix object. De-
faults to a random string prefixed with "symDMatrix_".

vmode vmode of ff objects.

i Indicates which rows of X should be used. Can be integer, boolean, or character.
By default, all rows are used.

j Indicates which columns of X should be used. Can be integer, boolean, or char-
acter. By default, all columns are used.

chunkSize The number of columns of X that are brought into physical memory for process-
ing per core. If NULL, all columns of X are used. Defaults to 5000.

nCores The number of cores (passed to parallel::mclapply()). Defaults to the num-
ber of cores as detected by parallel::detectCores().

verbose Whether progress updates will be posted. Defaults to FALSE.

Details

Even very large genomic relationship matrices are supported by partitioning X into blocks and call-
ing getG() on these blocks. This function performs the block computations sequentially, which
may be slow. In an HPC environment, performance can be improved by manually distributing these
operations to different nodes.

Value

A symDMatrix::symDMatrix object.

GWAS 15

Multi-level parallelism

Functions with the nCores, i, and j parameters provide capabilities for both parallel and distributed
computing.

For parallel computing, nCores determines the number of cores the code is run on. Memory usage
can be an issue for higher values of nCores as R is not particularly memory-efficient. As a rule
of thumb, at least around (nCores * object_size(chunk)) + object_size(result) MB of
total memory will be needed for operations on file-backed matrices, not including potential copies
of your data that might be created (for example stats::lsfit() runs cbind(1, X)). i and j can
be used to include or exclude certain rows or columns. Internally, the parallel::mclapply()
function is used and therefore parallel computing will not work on Windows machines.

For distributed computing, i and j determine the subset of the input matrix that the code runs on.
In an HPC environment, this can be used not just to include or exclude certain rows or columns, but
also to partition the task among many nodes rather than cores. Scheduler-specific code and code to
aggregate the results need to be written by the user. It is recommended to set nCores to 1 as nodes
are often cheaper than cores.

GWAS Performs Single Marker Regressions Using BGData Objects.

Description

Implements single marker regressions. The regression model includes all the covariates specified
in the right-hand-side of the formula plus one column of @geno at a time. The data from the
association tests is obtained from a BGData object.

Usage

GWAS(formula, data, method = "lsfit", i = seq_len(nrow(data@geno)),
j = seq_len(ncol(data@geno)), chunkSize = 5000L,
nCores = getOption("mc.cores", 2L), verbose = FALSE, ...)

Arguments

formula The formula for the GWAS model without including the marker, e.g. y ~ 1 or
y ~ factor(sex) + age. The variables included in the formula must be in the
@pheno object of the BGData.

data A BGData object.

method The regression method to be used. Currently, the following methods are imple-
mented: rayOLS, stats::lsfit(), stats::lm(), stats::lm.fit(), stats::glm(),
lme4::lmer(), and SKAT::SKAT(). Defaults to lsfit.

i Indicates which rows of @geno should be used. Can be integer, boolean, or
character. By default, all rows are used.

j Indicates which columns of @geno should be used. Can be integer, boolean, or
character. By default, all columns are used.

16 GWAS

chunkSize The number of columns of @geno that are brought into physical memory for
processing per core. If NULL, all elements in j are used. Defaults to 5000.

nCores The number of cores (passed to parallel::mclapply()). Defaults to the num-
ber of cores as detected by parallel::detectCores().

verbose Whether progress updates will be posted. Defaults to FALSE.

... Additional arguments for chunkedApply and regression method.

Value

The same matrix that would be returned by coef(summary(model)).

File-backed matrices

Functions with the chunkSize parameter work best with file-backed matrices such as BEDMa-
trix::BEDMatrix objects. To avoid loading the whole, potentially very large matrix into memory,
these functions will load chunks of the file-backed matrix into memory and perform the operations
on one chunk at a time. The size of the chunks is determined by the chunkSize parameter. Care
must be taken to not set chunkSize too high to avoid memory shortage, particularly when combined
with parallel computing.

Multi-level parallelism

Functions with the nCores, i, and j parameters provide capabilities for both parallel and distributed
computing.

For parallel computing, nCores determines the number of cores the code is run on. Memory usage
can be an issue for higher values of nCores as R is not particularly memory-efficient. As a rule
of thumb, at least around (nCores * object_size(chunk)) + object_size(result) MB of
total memory will be needed for operations on file-backed matrices, not including potential copies
of your data that might be created (for example stats::lsfit() runs cbind(1, X)). i and j can
be used to include or exclude certain rows or columns. Internally, the parallel::mclapply()
function is used and therefore parallel computing will not work on Windows machines.

For distributed computing, i and j determine the subset of the input matrix that the code runs on.
In an HPC environment, this can be used not just to include or exclude certain rows or columns, but
also to partition the task among many nodes rather than cores. Scheduler-specific code and code to
aggregate the results need to be written by the user. It is recommended to set nCores to 1 as nodes
are often cheaper than cores.

Examples

Restrict number of cores to 1 on Windows
if (.Platform$OS.type == "windows") {

options(mc.cores = 1)
}

Load example data
bg <- BGData:::loadExample()

Perform a single marker regression
res1 <- GWAS(formula = FT10 ~ 1, data = bg)

initialize,BGData-method 17

Draw a Manhattan plot
plot(-log10(res1[, 4]))

Use lm instead of lsfit (the default)
res2 <- GWAS(formula = FT10 ~ 1, data = bg, method = "lm")

Use glm instead of lsfit (the default)
y <- bg@pheno$FT10
bg@pheno$FT10.01 <- y > quantile(y, 0.8, na.rm = TRUE)
res3 <- GWAS(formula = FT10.01 ~ 1, data = bg, method = "glm")

Perform a single marker regression on the first 50 markers (useful for
distributed computing)
res4 <- GWAS(formula = FT10 ~ 1, data = bg, j = 1:50)

initialize,BGData-method

Creates a New BGData Instance.

Description

This method is run when a BGData object is created using BGData(...) or new("BGData", ...).

Usage

S4 method for signature 'BGData'
initialize(.Object, geno, pheno, map)

Arguments

.Object The BGData instance to be initialized. This argument is passed in by R and can
be ignored, but still needs to be documented.

geno A geno object that contains genotypes. geno is a class union of several matrix-
like types, many of them suitable for very large datasets. Currently supported are
LinkedMatrix::LinkedMatrix, BEDMatrix::BEDMatrix, bigmemory::big.matrix,
ff_matrix, and matrix.

pheno A data.frame that contains phenotypes. A stub that only contains an IID col-
umn populated with the rownames of @geno will be generated if missing.

map A data.frame that contains a genetic map. A stub that only contains a mrk
column populated with the colnames of @geno will be generated if missing.

18 orderedMerge

load.BGData Loads BGData (and Other) Objects from .RData Files.

Description

This function is similar to base::load(), but also initializes the different types of objects that the
@geno slot of a BGData object can take. Currently supported are ff_matrix, bigmemory::big.matrix,
and BEDMatrix::BEDMatrix objects. If the object is of type LinkedMatrix::LinkedMatrix, all nodes
will be initialized with their appropriate method.

Usage

load.BGData(file, envir = parent.frame())

Arguments

file The name of the .RData file to be loaded.

envir The environment where to load the data.

orderedMerge Merge Two Data Frames Keeping the Order of the First

Description

This is a simplified version of base::merge() useful for merging additional data into a BGData
object while keeping the order of the data in the BGData object.

Usage

orderedMerge(x, y, by = c(1L, 2L))

Arguments

x Data frame

y Data frame

by Specifications of the columns used for merging. Defaults to the first two columns
of the data frame, which traditionally has the family ID and the individual ID.

Value

Merged data frame

readRAW 19

readRAW Creates a BGData Object From a .raw File or a .ped-Like File.

Description

Creates a BGData object from a .raw file (generated with --recodeA in PLINK). Other text-based
file formats are supported as well by tweaking some of the parameters as long as the records of
individuals are in rows, and phenotypes, covariates and markers are in columns.

Usage

readRAW(fileIn, header = TRUE, dataType = integer(), n = NULL,
p = NULL, sep = "", na.strings = "NA", nColSkip = 6L,
idCol = c(1L, 2L), nNodes = NULL, linked.by = "rows",
folderOut = paste0("BGData_", sub("\\.[[:alnum:]]+$", "",
basename(fileIn))), outputType = "byte", dimorder = if (linked.by ==
"rows") 2L:1L else 1L:2L, verbose = FALSE)

readRAW_matrix(fileIn, header = TRUE, dataType = integer(), n = NULL,
p = NULL, sep = "", na.strings = "NA", nColSkip = 6L,
idCol = c(1L, 2L), verbose = FALSE)

readRAW_big.matrix(fileIn, header = TRUE, dataType = integer(),
n = NULL, p = NULL, sep = "", na.strings = "NA", nColSkip = 6L,
idCol = c(1L, 2L), folderOut = paste0("BGData_",
sub("\\.[[:alnum:]]+$", "", basename(fileIn))), outputType = "char",
verbose = FALSE)

Arguments

fileIn The path to the plaintext file.

header Whether fileIn contains a header. Defaults to TRUE.

dataType The coding type of genotypes in fileIn. Use integer() or double() for nu-
meric coding. Alpha-numeric coding is currently not supported for readRAW()
and readRAW_big.matrix(): use the --recodeA option of PLINK to convert
the .ped file into a .raw file. Defaults to integer().

n The number of individuals. Auto-detect if NULL. Defaults to NULL.

p The number of markers. Auto-detect if NULL. Defaults to NULL.

sep The field separator character. Values on each line of the file are separated by
this character. If sep = "" (the default for readRAW() the separator is "white
space", that is one or more spaces, tabs, newlines or carriage returns.

na.strings The character string used in the plaintext file to denote missing value. Defaults
to NA.

nColSkip The number of columns to be skipped to reach the genotype information in the
file. Defaults to 6.

https://www.cog-genomics.org/plink2

20 readRAW

idCol The index of the ID column. If more than one index is given, both columns will
be concatenated with "_". Defaults to c(1, 2), i.e. a concatenation of the first
two columns.

nNodes The number of nodes to create. Auto-detect if NULL. Defaults to NULL.

linked.by If columns a column-linked matrix (LinkedMatrix::ColumnLinkedMatrix) is
created, if rows a row-linked matrix (LinkedMatrix::RowLinkedMatrix). De-
faults to rows.

folderOut The path to the folder where to save the binary files. Defaults to the name of the
input file (fileIn) without extension prefixed with "BGData_".

outputType The vmode for ff and type for bigmemory::big.matrix) objects. Default to byte
for ff and char for bigmemory::big.matrix objects.

dimorder The physical layout of the underlying ff object of each node.

verbose Whether progress updates will be posted. Defaults to FALSE.

Details

The data included in the first couple of columns (up to nColSkip) is used to populate the @pheno
slot of a BGData object, and the remaining columns are used to fill the @geno slot. If the first row
contains a header (header = TRUE), data in this row is used to determine the column names for
@pheno and @geno.

@geno can take several forms, depending on the function that is called (readRAW, readRAW_matrix,
or readRAW_big.matrix). The following sections illustrate each function in detail.

readRAW

Genotypes are stored in a LinkedMatrix::LinkedMatrix object where each node is an ff instance.
Multiple ff files are used because the array size in ff is limited to the largest integer which can
be represented on the system (.Machine$integer.max) and for genetic data this limitation is of-
ten exceeded. The LinkedMatrix::LinkedMatrix package makes it possible to link several ff files
together by columns or by rows and treat them similarly to a single matrix. By default a Linked-
Matrix::ColumnLinkedMatrix is used for @geno, but the user can modify this using the linked.by
argument. The number of nodes to generate is either specified by the user using the nNodes ar-
gument or determined internally so that each ff object has a number of cells that is smaller than
.Machine$integer.max / 1.2. A folder (see folderOut) that contains the binary flat files (named
geno_*.bin) and an external representation of the BGData object in BGData.RData is created.

readRAW_matrix

Genotypes are stored in a regular matrix object. Therefore, this function will only work if the .raw
file is small enough to fit into memory.

readRAW_big.matrix

Genotypes are stored in a filebacked bigmemory::big.matrix object. A folder (see folderOut) that
contains the binary flat file (named BGData.bin), a descriptor file (named BGData.desc), and an
external representation of the BGData object in BGData.RData are created.

summarize 21

Reloading a BGData object

To reload a BGData object, it is recommended to use the load.BGData() function instead of
the base::load() function as base::load() does not initialize ff objects or attach bigmem-
ory::big.matrix objects.

See Also

load.BGData() to load a previously saved BGData object, as.BGData() to create BGData objects
from non-text files (e.g. BED files).

Examples

Path to example data
path <- system.file("extdata", package = "BGData")

Convert RAW files of chromosome 1 to a BGData object
bg <- readRAW(fileIn = paste0(path, "/chr1.raw"))

summarize Generates Various Summary Statistics.

Description

Computes the frequency of missing values, the (minor) allele frequency, and standard deviation of
each column of X.

Usage

summarize(X, i = seq_len(nrow(X)), j = seq_len(ncol(X)),
chunkSize = 5000L, nCores = getOption("mc.cores", 2L),
verbose = FALSE)

Arguments

X A matrix-like object, typically @geno of a BGData object.

i Indicates which rows of X should be used. Can be integer, boolean, or character.
By default, all rows are used.

j Indicates which columns of X should be used. Can be integer, boolean, or char-
acter. By default, all columns are used.

chunkSize The number of columns of X that are brought into physical memory for process-
ing per core. If NULL, all elements in j are used. Defaults to 5000.

nCores The number of cores (passed to parallel::mclapply()). Defaults to the num-
ber of cores as detected by parallel::detectCores().

verbose Whether progress updates will be posted. Defaults to FALSE.

22 summarize

Value

A data.frame with three columns: freq_na for frequencies of missing values, allele_freq for
(minor) allele frequencies, and sd for standard deviations.

File-backed matrices

Functions with the chunkSize parameter work best with file-backed matrices such as BEDMa-
trix::BEDMatrix objects. To avoid loading the whole, potentially very large matrix into memory,
these functions will load chunks of the file-backed matrix into memory and perform the operations
on one chunk at a time. The size of the chunks is determined by the chunkSize parameter. Care
must be taken to not set chunkSize too high to avoid memory shortage, particularly when combined
with parallel computing.

Multi-level parallelism

Functions with the nCores, i, and j parameters provide capabilities for both parallel and distributed
computing.

For parallel computing, nCores determines the number of cores the code is run on. Memory usage
can be an issue for higher values of nCores as R is not particularly memory-efficient. As a rule
of thumb, at least around (nCores * object_size(chunk)) + object_size(result) MB of
total memory will be needed for operations on file-backed matrices, not including potential copies
of your data that might be created (for example stats::lsfit() runs cbind(1, X)). i and j can
be used to include or exclude certain rows or columns. Internally, the parallel::mclapply()
function is used and therefore parallel computing will not work on Windows machines.

For distributed computing, i and j determine the subset of the input matrix that the code runs on.
In an HPC environment, this can be used not just to include or exclude certain rows or columns, but
also to partition the task among many nodes rather than cores. Scheduler-specific code and code to
aggregate the results need to be written by the user. It is recommended to set nCores to 1 as nodes
are often cheaper than cores.

Examples

Restrict number of cores to 1 on Windows
if (.Platform$OS.type == "windows") {

options(mc.cores = 1)
}

Load example data
bg <- BGData:::loadExample()

Summarize the whole dataset
sum1 <- summarize(X = bg@geno)

Summarize the first 50 individuals
sum2 <- summarize(X = bg@geno, i = 1:50)

Summarize the first 1000 markers (useful for distributed computing)
sum3 <- summarize(X = bg@geno, j = 1:100)

summarize 23

Summarize the first 50 individuals on the first 1000 markers
sum4 <- summarize(X = bg@geno, i = 1:50, j = 1:100)

Summarize by names
sum5 <- summarize(X = bg@geno, j = c("snp81233_C", "snp81234_C", "snp81235_T"))

Index

as.BGData, 3
as.BGData(), 5, 21

base::apply(), 6–8
base::lapply(), 8
base::load(), 18, 21
base::merge(), 18
base::tcrossprod(), 11
BEDMatrix, 2
BEDMatrix::BEDMatrix, 3, 4, 6–8, 10, 12,

16–18, 22
BEDMatrix::BEDMatrix-package, 3
BGData, 3–6, 8, 10, 11, 14, 15, 17–21
BGData (BGData-class), 5
BGData-class, 5
BGData-package, 2
bigmemory::big.matrix, 6, 10, 17, 18, 20, 21

chunkedApply, 6
chunkedMap, 8

data.table::fread(), 4

findRelated, 9

geno, 6, 10, 17
geno-class, 10
getG, 11
getG(), 5, 11, 14
getG_symDMatrix, 13
GWAS, 15
GWAS(), 5

initialize,BGData-method, 17

LinkedMatrix, 2
LinkedMatrix::ColumnLinkedMatrix, 3, 4,

20
LinkedMatrix::LinkedMatrix, 4–6, 10, 17,

18, 20
LinkedMatrix::LinkedMatrix-package, 3

LinkedMatrix::RowLinkedMatrix, 20
lme4::lmer(), 15
load.BGData, 18
load.BGData(), 5, 21

orderedMerge, 18

parallel::detectCores(), 7, 8, 11, 14, 16,
21

parallel::mclapply(), 3, 6–9, 11, 12,
14–16, 21, 22

readRAW, 19
readRAW(), 4, 5, 19
readRAW_big.matrix (readRAW), 19
readRAW_big.matrix(), 5, 19
readRAW_matrix (readRAW), 19
readRAW_matrix(), 5

SKAT::SKAT(), 15
stats::glm(), 15
stats::lm(), 15
stats::lm.fit(), 15
stats::lsfit(), 3, 7, 9, 12, 15, 16, 22
summarize, 21
symDMatrix, 2
symDMatrix::symDMatrix, 14
symDMatrix::symDMatrix-package, 3

utils::read.table(), 4

24

	BGData-package
	as.BGData
	BGData-class
	chunkedApply
	chunkedMap
	findRelated
	geno-class
	getG
	getG_symDMatrix
	GWAS
	initialize,BGData-method
	load.BGData
	orderedMerge
	readRAW
	summarize
	Index

