Package ‘FluxPoint’

January 6, 2026

Type Package

Title Change Point Detection for Non-Stationary and Cross-Correlated
Time Series

Version 0.1.1
Maintainer Yuhan Tian <yuhan.tian@fau.de>

Description Implements methods for multiple change point detection in multivariate
time series with non-stationary dynamics and cross-correlations. The methodology
is based on a model in which each component has a fluctuating mean represented by
a random walk with occasional abrupt shifts, combined with a stationary vector
autoregressive structure to capture temporal and cross-sectional dependence. The
framework is broadly applicable to correlated multivariate sequences in which
large, sudden shifts occur in all or subsets of components and are the primary
targets of interest, whereas small, smooth fluctuations are not. Although random
walks are used as a modeling device, they provide a flexible approximation for a
wide class of slowly varying or locally smooth dynamics, enabling robust
performance beyond the strict random walk setting.

License GPL-2
Encoding UTF-8

Imports Rcpp, blockmatrix, corpcor, doParallel, ggplot2, glmnet, MASS,
Matrix, nnls, pracma, SimDesign

LinkingTo Rcpp, ReppArmadillo
RoxygenNote 7.3.3
NeedsCompilation yes

Author Yuhan Tian [aut, cre],
Abolfazl Safikhani [aut]

Repository CRAN
Date/Publication 2026-01-06 11:00:20 UTC

Contents

add_jumps

2 add_jumps

estimatePhinu_nondiag 3
estimate_MUSSEZ v v v v v e e e e e e e e e e e e e e e e 4
estimate. RWVAR _cp_heter 5
FluxPoint e 7
FluxPoint_raw 9
generate_data L. L e e e e e e e 11
GELLMELIICS . . . v v ot e e e e e e e e e e e e e e e e e 13
et SIZS . . . e 14
get_Sig el _approxX e e 15
plot_FluxPoint 16
random_Phi e 17
random_Signu e e e e e 18

Index 19

add_jumps Add mean shifts to multivariate time series data
Description

Adds constant mean shifts to a multivariate time series by applying a fixed jump vector at evenly
spaced change points. After each change point, all subsequent observations are shifted by the
specified vector.

Usage

add_jumps(data, delta, num)

Arguments
data Numeric matrix of dimension n X p, representing the time series data.
delta Numeric vector of length p, specifying the shift magnitudes added to each vari-
able after each change point.
num Integer; number of change points. The data are divided evenly into num + 1
segments, and delta is added cumulatively after each change point.
Details

The total length of the time series is denoted by n. Change points are placed at evenly spaced
locations given by k|n/(num + 1)], for k = 1,... , num. After each change point, a constant
shift vector delta is added to all subsequent observations. This construction produces synthetic
data with known and controlled mean shifts, making the function useful for simulation studies and
benchmarking change point detection methods.

Value

A numeric matrix of the same dimension as ‘data‘, containing the adjusted series with added mean
shifts.

estimatePhinu_nondiag 3

estimatePhinu_nondiag Estimate non-diagonal VAR(1) parameters after mean removal

Description

Estimates the non-diagonal autoregressive coefficient matrix ® and innovation covariance matrix
3, for the residual process obtained after removing the estimated fluctuating mean from the data.
The estimation applies the Lasso to encourage sparsity in the cross-variable dependence structure.

Usage

estimatePhinu_nondiag(
epsilons,
Sig_nu_diag,
Phi_diag,
replace_diag = FALSE,
needReproduce = FALSE

)
Arguments
epsilons Numeric matrix of dimension n X p, representing the estimated residuals €; =
Yt = Fy
Sig_nu_diag Numeric p X p diagonal matrix providing initial (diagonal) estimates of X,,.
Phi_diag Numeric p X p diagonal matrix providing initial (diagonal) estimates of ®.

replace_diag Logical; if TRUE, replaces the diagonal entries of the estimated matrices with
those from Sig_nu_diag and Phi_diag (default FALSE).

needReproduce Logical; if TRUE, uses fixed fold assignments in cross-validation to ensure repro-
ducibility (default FALSE).

Details

The function applies a Lasso-penalized VAR(1) fit to the residual process €; to estimate cross-
dependencies among variables. The fitting is performed using the function fitVAR(), which is
adapted from the sparsevar package. When replace_diag = TRUE, the diagonal entries of ® and
>, are replaced by their componentwise estimates obtained in Phase I for improved numerical
stability.

Value

A list containing:

* ‘Phi_hat* — Estimated non-diagonal autoregressive matrix ®.

* ‘Sig_nu_hat* — Estimated non-diagonal innovation covariance matrix >J,,.

4 estimate_musseg

estimate_musseg Estimate fluctuating mean segmentwise given detected change points

Description
Estimates the fluctuating mean sequence {p,}7; segmentwise by applying the maximum likeli-
hood estimation (MLE) procedure within each segment defined by detected change points.

Usage

estimate_musseg(data, cps, Sig_eta, Sig_nu, Phi, Sig_el)

Arguments
data Numeric matrix of dimension n X p, representing the multivariate time series
{yetize-
cps Numeric vector of detected change point locations (sorted indices).
Sig_eta Numeric p X p covariance matrix 3J,, of the random walk innovation.
Sig_nu Numeric p X p covariance matrix 3, of the VAR(1) innovation.
Phi Numeric p X p autoregressive coefficient matrix .
Sig_el Numeric p X p initial-state covariance matrix I'¢(0).
Details

The time series is partitioned into contiguous segments defined by the specified change points.
Within each segment, estimate_mus is applied to obtain the maximum likelihood estimate of the
fluctuating mean sequence for that interval. The resulting segment-wise estimates are then concate-
nated to form a complete piecewise estimate of pt, over the entire time series.

Value

A numeric matrix of dimension n X p, containing the estimated fluctuating mean sequence across
all segments.

Examples

set.seed(123)

p <-3

mud <- rep(@, p)

deltas <- list(c(3, @, -3), c(-2, 4, 0))
Sig_eta <- diag(0.01, p)

Sig_nu <- random_Signu(p, 0)

Phi <- random_Phi(p, p)

Sig_el <- get_Sig_el_approx(Sig_nu, Phi)

Generate data and estimate mean segmentwise after known CPs
Y <- generate_data(mu@, deltas, Sig_eta, Sig_nu, Phi, Sig_el,

estimate_ RWVAR_cp_heter 5

non

errortype = "n", number_cps = 2, lengthofeachpart = 100)
cps <- c(100, 200)
mu_seg <- estimate_musseg(Y, cps, Sig_eta, Sig_nu, Phi, Sig_el)
dim(mu_seg)

estimate_RWVAR_cp_heter
Robust parameter estimation (RPE) for multivariate time series

Description

Applies the robust parameter estimation (RPE) procedure componentwise to a multivariate time
series in order to estimate the diagonal elements of X, 3J,,, and ®.

Usage
estimate_RWVAR_cp_heter(
data,
L =15,
phiLower = -0.8,
phiUpper = 0.8,

sigetalower = 0,
sigetalpper = Inf,
signuLower = 1e-06,
signuUpper = Inf,
num_inis = 20,

CPs = NULL
)
Arguments
data Numeric matrix of dimension n X p, representing the multivariate time series
{yetizt-
L Integer; number of lag differences used in each univariate RPE estimation (de-
fault = 15).

philLower, phiUpper

Numeric; lower and upper bounds for the autoregressive coefficient ¢.
sigetalower, sigetaUpper

Numeric; lower and upper bounds for 0,27, the random walk innovation variance.
signulLower, signuUpper

Numeric; lower and upper bounds for J?,, the VAR(1) innovation variance.

num_inis Integer; number of initial values of ¢ used for grid search initialization (default
=20).
CPs Optional numeric vector of change point locations (indices). If provided, differ-

enced data overlapping these points are removed for more robust estimation.

6 estimate_RWVAR_cp_heter

Details

This function performs the RPE procedure for each variable (column) in ‘data‘ independently, us-
ing estimate_RWVAR_cp as the univariate estimator. The resulting estimates are combined into
diagonal matrices:

* 3, — estimated innovation covariance of the VAR(1) component.

* X}, — estimated innovation covariance of the random walk component.

* & — estimated autoregressive coefficient matrix.

Value

A list containing:

* ‘Sig_nu‘ — Diagonal matrix of estimated o2 ,.
* ‘Sig_eta‘* — Diagonal matrix of estimated afm.

* ‘Phi* — Diagonal matrix of estimated autoregressive coefficients ¢;.

Examples

set.seed(123)
p<-3

True (diagonal) parameters for simulation

muo <- rep(0, p)

Sig_eta <- diag(0.01, p)

Sig_nu <- random_Signu(p, @) # diagonal here since num_nonzero = @
Phi <- random_Phi(p, @) # diagonal here since num_nonzero = @
Sig_el <- get_Sig_el_approx(Sig_nu, Phi)

Two evenly spaced change points
deltas <- list(c(3, @, -3), c(-2, 4, 0))
Y <- generate_data(mu@, deltas, Sig_eta, Sig_nu, Phi, Sig_el,

nan

errortype = "n", number_cps = 2, lengthofeachpart = 100)

Provide CP locations to remove affected differences in RPE
CPs <- c(100, 200)

Componentwise robust parameter estimation
fit <- estimate_RWVAR_cp_heter(Y, L = 15, CPs = CPs)

Estimated diagonal matrices:
fit$Sig_eta

fit$Sig_nu

fit$Phi

FluxPoint

FluxPoint

FluxPoint change point detection algorithm

Description

Implements the full FluxPoint algorithm for detecting multiple change points in multivariate time
series with non-stationary dynamics and cross-correlations. The procedure iteratively estimates
model parameters and change point locations, alternating between parameter estimation and detec-
tion steps until convergence.

Usage

FluxPoint(
data,
w,
tc,
max_iter1,
max_iter2,
ignoreCross =
noeta = FALSE
nophi = FALSE
needReproduce

Arguments

data

w
tc

max_iter1

max_iter2

ignoreCross

noeta

nophi

needReproduce

FALSE,

’

’

= FALSE

Numeric matrix of dimension n X p containing the observed multivariate time
series.

Integer specifying the window size used by the detector.

Numeric tuning constant used in the detection threshold D = tc-min(4, log(e?+
p)) - log(n — w).

Integer specifying the maximum number of iterations for the first-stage loop,
which alternates between diagonal robust parameter estimation and change point
detection.

Integer specifying the maximum number of iterations for the second-stage re-
finement loop, which incorporates non-diagonal vector autoregressive updates.

Logical; if TRUE, the algorithm terminates after the first stage and treats the
components of the time series as independent.

Logical; if TRUE, forces 3, = 0 and performs change point detection without
accounting for random walk fluctuations in the mean.

Logical; if TRUE, forces ® = 0 and performs change point detection without
accounting for temporal dependence. This option should only be used when
ignoreCross = TRUE.

Logical; if TRUE, fixed folds are used in internal cross-validation steps to im-
prove reproducibility.

8 FluxPoint
Details
The algorithm proceeds through the following stages:

1. Stage I (diagonal estimation): Robust parameter estimation is performed to obtain diagonal
estimates of X, ¥, and ®. These estimates are used to construct the windowed covariance
matrix ¥ 1y, and its inverse. Change point detection is then carried out using the resulting
detector statistic. The estimation and detection steps are iterated until the detected change
points stabilize or max_iter1 is reached.

2. Stage II (refinement with cross-correlation): If enabled, the fluctuating mean is estimated
segmentwise and removed from the data. A sparse vector autoregressive model is then fitted
to the residuals to obtain non-diagonal estimates of ® and X,,. The covariance matrix >,
is recomputed and change point detection is rerun. This refinement loop is repeated until
convergence or until max_iter?2 is reached.

Value
A list containing:
* cps: Sorted indices of the detected change points.
* Sig_eta_hat: Final estimate of ;.
e Sig_nu_hat: Final estimate of 3.,,, which may be non-diagonal if the second-stage refinement
is performed.
* Phi_hat: Final estimate of ®, which may be non-diagonal if the second-stage refinement is
performed.
* muhats: Estimated fluctuating mean sequence.
* detectorStats: Detector statistic evaluated over time.
* cps_at: A list mapping each detected change point to the indices of components selected as
contributing to that change.
References
Tian, Y. and Safikhani, A. (2025). Multiple change point detection in time series with non-stationary
dynamics. Manuscript under review.
Examples

Minimal runnable example (fast)
set.seed(123)

p <-1

mud <- rep(@, p)

deltas <- list(c(3), c(-3))
Sig_eta <- diag(0.01, p)

Sig_nu <- random_Signu(p, 0)

Phi

<- random_Phi(p, @)

Sig_el <- get_Sig_el_approx(Sig_nu, Phi)

Simulate data with two evenly spaced change points

Y <-

generate_data(mu@, deltas, Sig_eta, Sig_nu, Phi, Sig_el,

FluxPoint_raw

non

errortype = "n",

Run the algorithm

out <- FluxPoint(Y, w = 20, tc =1,
out$cps

Visualization

p1 <- plot_FluxPoint(Y, out$muhats,
print(p1)

More realistic example (may take
set.seed(123)

p<-3

mud <- rep(0, p)

deltas <- list(c(3, @, -3), c(0, -2,

Sig_eta <- diag(@.01, p)
Sig_nu <- random_Signu(p, 0)
Phi <- random_Phi(p, p)

Sig_el <- get_Sig_el_approx(Sig_nu,

Y <- generate_data(mu@, deltas, Sig_

non

errortype = "n",

out <- FluxPoint(Y, w =20, tc =1,
out$cps

Visualization

number_cps = 2, lengthofeachpart = 100)

max_iter1 = 5, max_iter2 = 5)

nn

out$cps, titlename = "", xaxis = "Time")

longer)

)

Phi)

eta, Sig_nu, Phi, Sig_el,
number_cps = 2, lengthofeachpart = 100)

max_iter1l = 5, max_iter2 = 5)

pl <- plot_FluxPoint(Y, out$muhats, out$cps, titlename = "", xaxis = "Time")
print(p1)
FluxPoint_raw Core change point detection algorithm (given known parameters)
Description

Implements the core step of the proposed change point detection (CPD) algorithm to estimate the
locations of change points, given the inverse windowed covariance Zj‘@i. The method computes
detector statistics over a moving window using a projection-based quadratic form and identifies
candidate change points via peak detection.

Usage

FluxPoint_raw(data, Sig_all_inv,

Arguments

w, D, needReproduce = FALSE)

data Numeric matrix of dimension n X p, the multivariate time series.

10 FluxPoint_raw

Sig_all_inv Numeric matrix of dimension (pw) x (pw), the inverse of the combined covari-
ance X1, (accounts for random walk and VAR(1) effects within a window of
size w).

w Integer; window size used in the moving-window detection step.

D Numeric; detection threshold used in the peak-finding step.

needReproduce Logical; if TRUE, a fixed fold assignment is used in cross-validation to ensure
reproducibility (default FALSE).

Details

For each center index k, a window of width w is formed and contrast vectors are constructed to
compare the first and second halves of the window. Before computing the detector statistic, a
component-selection step is performed using an ¢1-penalized regression (lasso, via glmnet) with
weights 471 to identify variables that exhibit a shift. The resulting active set determines the pro-
jection used in the statistic. Sparse projection matrices indexed by the active-set pattern are cached
and reused for computational efficiency. The detector statistic is defined as a weighted quadratic
form measuring deviation from the baseline (no-change) projection, and locations at which the
statistic exceeds the threshold D are declared as estimated change points.

Value

A list with:

* ‘shiftIndices‘ — Binary matrix (n X p) indicating selected components at each index.
* ‘detectorStats* — Numeric vector of detector values over time.
* ‘Projection_list* — Cache of projection matrices by active-set pattern.

* ‘cps‘ — Indices of detected change points.

Examples

Minimal runnable example (fast)
set.seed(123)

p<-1

mud <- rep(@, p)

deltas <- list(c(3), c(4))

Sig_eta <- diag(@.01, p)

Sig_nu <- random_Signu(p, @)

Phi <- random_Phi(p,)

Sig_el <- get_Sig_el_approx(Sig_nu, Phi)

Simulate data with two evenly spaced change points
Y <- generate_data(mu@, deltas, Sig_eta, Sig_nu, Phi, Sig_el,

errortype = "n”, number_cps = 2,
lengthofeachpart = 100)

Windowed covariance and its inverse

w <- 20

Sigs <- get_Sigs(w, p, Sig_eta, Sig_nu, Phi, Sig_el)
Sig_all_inv <- Sigs$Sig_all_inv

generate_data 11

Run detector with a common threshold choice
n <- nrow(Y)

D <- min(4, log(exp(2) + p)) * log(n - w)

res <- FluxPoint_raw(Y, Sig_all_inv, w, D)
res$cps

More realistic example (may take longer)
set.seed(123)

p<-3

mud <- rep(@, p)

deltas <- list(c(3, 0, -3), c(0, -2, 4))
Sig_eta <- diag(0.01, p)

Sig_nu <- random_Signu(p, @)

Phi <- random_Phi(p, p)

Sig_el <- get_Sig_el_approx(Sig_nu, Phi)

Y <- generate_data(mu@, deltas, Sig_eta, Sig_nu, Phi, Sig_el,

errortype = "n”, number_cps = 2,
lengthofeachpart = 100)

w <- 20
Sigs <- get_Sigs(w, p, Sig_eta, Sig_nu, Phi, Sig_el)
Sig_all_inv <- Sigs$Sig_all_inv

n <- nrow(Y)

D <- min(4, log(exp(2) + p)) * log(n - w)
res <- FluxPoint_raw(Y, Sig_all_inv, w, D)
res$cps

generate_data Generate multivariate time series from the proposed model

Description

Simulates a multivariate time series following the proposed model structure, where the mean com-
ponent evolves as a random walk with abrupt shifts, overlaid by a stationary VAR(1) process to
account for temporal and cross-sectional correlations.

Specifically, at each time point ¢ = 1, ..., n, the data are generated as

Yi = My + €,
where, fort =2,...,n,
My = 1 + 1y + Ot
and
€ = b€ 1 + vy

Here, 17, denotes the random walk innovation with covariance 3J,), and v is the VAR(1) innovation
with covariance 3J,,. The vector d; is nonzero only at change points.

12 generate_data

Usage
generate_data(
muo,
deltas,
Sig_eta,
Sig_nu,
Phi,
Sig_el,
errortype,
df = 10,
number_cps,
lengthofeachpart
)
Arguments
mu@ Numeric vector of length p. The initial mean vector ft,.
deltas A list of numeric vectors, each representing the jump magnitude §; at a change
point.
Sig_eta Numeric p X p covariance matrix XJ,, of the random walk innovation.
Sig_nu Numeric p X p covariance matrix Y, of the VAR(1) innovation.
Phi Numeric p x p autoregressive coefficient matrix ®.
Sig_el Numeric p X p initial-state covariance matrix of the VAR(1) process.
errortype Character; either "n" (Gaussian) or "t" (Student’s t) specifying the distribution
of the innovations.
df Degrees of freedom for the t-distribution (used only when ‘errortype = "t"*).
Default is 10.
number_cps Integer; number of change points (m).
lengthofeachpart
Integer; number of observations between consecutive change points (75+1 — 7)-
Details

The total length of the time series is given by n = (number_cps+ 1) x lengtho feachpart, so that
the specified change points partition the data into equally sized segments. When 3.,, = 0, the model
reduces to a piecewise constant mean process with no random walk component. When & = 0,
the process reduces to a random walk model without vector autoregressive dependence. If both
Yy = 0and ® = 0, the model simplifies to the classical piecewise constant setting commonly used
in multiple change point analysis. The two innovation components are generated independently.

The innovations 717, and v; are drawn either from a multivariate normal distribution (when errortype
="n") using mvrnorm, or from a multivariate Student’s t distribution (when errortype = "t") using
rmvt.

Value

A numeric matrix of dimension n x p, with n = (number_cps + 1) lengtho feachpart, containing
the simulated observations {y;}} ;.

get_metrics 13

Examples

set.seed(123)

p<-3

mud <- rep(@, p)

deltas <- list(c(3, @, -3), c(-2, 4, 0))
Sig_eta <- diag(@.01, p)

Sig_nu <- random_Signu(p, @)

Phi <- random_Phi(p, p)

Sig_el <- get_Sig_el_approx(Sig_nu, Phi)

Y <- generate_data(mu@, deltas, Sig_eta, Sig_nu, Phi, Sig_el,

non

errortype = "n", number_cps = 2, lengthofeachpart = 100)
dim(Y)

get_metrics Evaluate change point detection accuracy metrics

Description

Computes standard evaluation metrics — bias, precision, recall, and F1-score — for change point
detection results by comparing estimated change points against true ones within a specified toler-
ance (acceptance radius).

Usage

get_metrics(n, num_cps, est_cps, accept_radius)

Arguments
n Integer; total series length.
num_cps Integer; true number of change points.
est_cps Numeric vector of estimated change point locations.

accept_radius Numeric; tolerance radius within which an estimated change point is considered
correctly detected (a true positive).

Details

True change points are assumed to occur at evenly spaced positions. An estimated change point
is counted as a true positive if it lies within accept_radius of any true change point location.
Estimated points that do not match any true change point are classified as false positives, while true
change points that are not detected are counted as false negatives. Bias is defined as the absolute
difference between the true and estimated numbers of change points.

The metrics are defined as:

Precisi TP Recall TP P 2 - Precision - Recall
recision = ————— ecall = —— —
BN = P Fp TP+ FN' !

Precision + Recall

14 get_Sigs

Value
A list containing:

* ‘bias‘ — Absolute difference between true and estimated number of change points.
* ‘precision‘ — Proportion of correctly detected change points among all detections.
* ‘recall* — Proportion of true change points correctly detected.

* ‘F1°— Harmonic mean of precision and recall.

get_Sigs Compute the covariance matrix Y_ALL"x for observations within a
moving window

Description

Calculates the covariance matrix 7, for all observations within a moving window of length
w, given the random walk innovation covariance ,,, the VAR(1) innovation covariance 3,,, the
autoregressive coefficient matrix ®, and the initial-state covariance matrix I'¢(0) (denoted here by
‘Sig_e1‘). The resulting matrix accounts for both the random walk component and the temporal
dependence introduced by the VAR(1) structure.

Usage
get_Sigs(w, p, Sig_eta, Sig_nu, Phi, Sig_el)

Arguments

w Integer; window size.

p Integer; data dimension.

Sig_eta Numeric p X p matrix representing the covariance of the random walk innovation

Xn-

Sig_nu Numeric p X p matrix representing the covariance of the VAR(1) innovation ¥,,.

Phi Numeric p x p autoregressive coefficient matrix ®.

Sig_el Numeric p x p matrix representing the covariance of the initial state T'¢(0).
Details

The function decomposes the overall covariance matrix 3’ ;, into two additive components corre-
sponding to the random walk contribution X grw and the autoregressive contribution ¥, so that

YALL = Zrw + ZaR-

When p = 1, the construction reduces to the scalar random walk and AR(1) case, for which closed-
form covariance expressions are available. For higher-dimensional settings, block-matrix structures
are constructed using functions from the blockmatrix package to capture both cross-sectional and
temporal dependence. The returned inverse matrix (X% ;) ! is used in the main change point de-
tection algorithm to adjust for the effects of random walk drift and vector autoregressive correlation.

get_Sig_el_approx 15

Value

A list with the following components:

* ‘Sig_ AR* — Covariance contribution from the VAR(1) component (X zR).
* ‘Sig_ RW* — Covariance contribution from the random walk component (Xgrw).
* ‘Sig_all* — Combined covariance matrix (X3, = Y AR + Yrw)-

e ‘Sig_all_inv‘ — Inverse of the combined covariance matrix (X%;1) " .

Examples

set.seed(1)

p<-3

w <- 20

Sig_eta <- diag(@.01, p)

Sig_nu <- random_Signu(p, @)

Phi <- random_Phi(p, p)

Sig_el <- get_Sig_el_approx(Sig_nu, Phi)

res <- get_Sigs(w, p, Sig_eta, Sig_nu, Phi, Sig_el)

get_Sig_el_approx Approximate the long-run covariance matrix T'_e(0)

Description

Computes an approximate long-run covariance matrix I'c(0) for the stationary VAR(1) process
€ = Pe; 1 + vy,

where v, has innovation covariance >,,. The approximation is obtained via a truncated series
expansion up to order ‘m°.

Usage

get_Sig_el_approx(Sig_nu, Phi, m = 6)

Arguments
Sig_nu Numeric p X p matrix representing the innovation covariance %,,.
Phi Numeric p X p autoregressive coefficient matrix .
m Integer (default = 6). Number of lag terms used in the truncated series expan-

sion. Larger values yield higher accuracy but increase computation time.

16 plot_FluxPoint

Details
For a stable VAR(1) process, the theoretical long-run covariance satisfies
vec(Te(0)) = (Ie — @ ®) 'vec(S,).

To avoid matrix inversion, this function approximates the inverse by the truncated Neumann series:

m

(Ip = @@ @) =T+ Y (3%,
=1

where ®®? denotes the Kronecker product of ® with itself. The truncation level ‘m* controls the
approximation accuracy.

Value

A numeric p X p matrix giving the approximate I'¢(0).

plot_FluxPoint Plot multivariate time series with detected change points and esti-
mated means

Description

Visualizes multivariate time series data together with the estimated fluctuating mean sequence and
detected change points obtained from the proposed change point detection (CPD) algorithm. Each
variable is plotted in a separate panel (facet), with vertical dashed lines marking detected change
points and solid curves showing the estimated means when provided.

Usage
plot_FluxPoint(data, muhats, cps, titlename = "", xaxis = "")
Arguments
data Numeric matrix of dimension n X p, representing the observed multivariate time
series {y:}7 1.
muhats Optional numeric matrix of the same dimension as ‘data‘, giving the estimated
fluctuating mean sequence {ft, }*;. If NULL, only raw data and detected change
points are shown.
cps Numeric vector of detected change point locations.
titlename Character string for the plot title.

xaxis Character string for the x-axis label (e.g., "Time").

random_ Phi 17

Details

When p = 1, the function produces a single plot displaying the observed time series, the estimated
mean curve, and vertical dashed lines indicating the detected change points. When p > 1, each
variable is shown in a separate facet with independently scaled y-axes for improved readability.
If muhats is provided, the estimated mean is overlaid using geom_line(); otherwise, only the
observed data and detected change points are displayed.

Value

A ggplot2 object displaying the time series, estimated means (if provided), and detected change
points.

random_Phi Randomly generate an autoregressive coefficient matrix ®

Description

Generates a p X p autoregressive coefficient matrix ® for the VAR(1) component in the proposed
model. The diagonal entries are randomly chosen from {0.5, -0.5}, and a specified number of
off-diagonal elements are randomly assigned nonzero values to introduce cross-dependence among
variables.

Usage

random_Phi(p, num_nonzero)

Arguments
p Integer. Dimension of the square matrix (p variables).
num_nonzero Integer. Target number of nonzero off-diagonal entries in ®.
Details

The diagonal elements are sampled independently from the set {0.5, —0.5}. Nonzero off-diagonal
entries are then placed at random positions until the total number of nonzero off-diagonal elements
reaches at least num_nonzero. Each nonzero off-diagonal element has magnitude 0.1 or 0.2 with
equal probability and a randomly assigned sign. The resulting matrix ® governs the temporal de-
pendence of the stationary VAR(1) process

€ = Pe1 + vy

Value

A numeric p X p matrix representing the autoregressive coefficient matrix with random diagonal
entries in {0.5, -0.5} and approximately ‘num_nonzero‘ nonzero off-diagonal elements.

18 random_Signu

random_Signu Randomly generate an innovation covariance matrix >._v

Description

Generates a symmetric p X p innovation covariance matrix >, for the VAR(1) component in the

proposed model. The diagonal elements are fixed at 0.5, and a specified number of off-diagonal

elements are randomly assigned nonzero values to introduce cross-correlation between variables.
Usage

random_Signu(p, num_nonzero)

Arguments
p Integer. Dimension of the covariance matrix (p variables).
num_nonzero Integer. Target number of nonzero off-diagonal entries (counted individually;
both upper and lower triangles are included). Since nonzero values are inserted
in symmetric pairs, an even value is recommended. The maximum meaningful
value is p(p — 1).
Details

Each nonzero off-diagonal entry is placed in symmetric pairs (4,) and (j,¢) to ensure symmetry
of the matrix. The magnitudes of the nonzero entries are randomly drawn from the set {0.1,0.2}
with randomly assigned signs. The diagonal entries are fixed at 0.5 to maintain a moderate level of
innovation variance.

In the full model, ¥,, governs the variability of the VAR(1) innovation term v, in €, = ®e;_1 +v;.

Value

A numeric symmetric matrix of dimension p X p representing 3,, with diagonal 0.5 and approxi-
mately ‘num_nonzero‘ nonzero off-diagonal entries.

Index

add_jumps, 2

estimate_mus, 4
estimate_musseg, 4
estimate_RWVAR_cp, 6
estimate_RWVAR_cp_heter, 5
estimatePhinu_nondiag, 3

FluxPoint, 7
FluxPoint_raw, 9

generate_data, 11
get_metrics, 13
get_Sig_el_approx, 15
get_Sigs, 14

mvrnorm, /2
plot_FluxPoint, 16

random_Phi, 17
random_Signu, 18
rmvt, 12

19

	add_jumps
	estimatePhinu_nondiag
	estimate_musseg
	estimate_RWVAR_cp_heter
	FluxPoint
	FluxPoint_raw
	generate_data
	get_metrics
	get_Sigs
	get_Sig_e1_approx
	plot_FluxPoint
	random_Phi
	random_Signu
	Index

