
GiANT package vignette

Florian Schmid, Christoph Müssel, Johann M. Kraus, Hans A. Kestler

September 3, 2024

Contents

1 Introduction 2

2 Performing a gene set analysis 2

3 Gene set uncertainty analysis 6

4 Custom analyses 9

A Further investigation options 10

1



1 Introduction

Gene set analyses investigate the relationship between relevant genes from an experiment and gene
sets associated with higher-level terms, such as pathways. For example, sequencing or microarray
experiments typically yield a list of genes that are differentially expressed with respect to two ex-
perimental conditions, phenotypes or tissues. Gene set analyses can address the question whether
these differentially expressed genes are associated to known biological processes or pathways.
Typical gene set analyses are often comprised of a sequence of processing steps [1], for each of which
different interchangeable methods exist (see Figure 1). The first of these steps is the calculation
of a gene-level statistic that quantifies how well each measurement corresponds to the analyzed
groups. Examples are the t-statistic, the fold change or the correlation of the measurements to the
grouping. In some cases, the gene-level statistic values need to be transformed for the subsequent
steps, e.g. by taking the absolute value. The gene set statistic summarizes the (transformed)
gene-level statistic values for a specific gene set (e.g. a pathway). A computer-intensive test then
compares the gene set statistic to a randomly generated baseline distribution to assess whether
there is a significant association of the differentially expressed genes to the gene set.
GiANT is an R package that implements a dynamic pipeline for gene set analysis based on the
described processing steps. It implements various methods for each step as well as predefined
pipelines for well-known gene set analysis approaches, but also allows for implementing custom
toolchains.
To install GiANT in R, type

> install.packages("GiANT")

To use the package’s interfaces to existing methods in other packages, these packages have to
be installed as well. For example, GiANT comprises wrappers for the GlobalAncova method in
the GlobalAncova package [3] as well as the gt method in the globaltest package [2]. These
suggested packages and their dependencies can be installed using the following commands:

> # CRAN packages
> install.packages(c("st", "fdrtool"))
> # Bioconductor packages
> BiocManager::install(c("GlobalAncova", "limma", "DESeq2"))

After installing all required packages, the GiANT package can be loaded via

> library(GiANT)

2 Performing a gene set analysis

The main interface of the package is the geneSetAnalysis() function. In the analysis param-
eter, this function is supplied with a description of the analysis that should be applied. Further
arguments hold parameters of the method.
In the following, we apply the well-known Gene Set Enrichment Analysis (GSEA, [6]) to a gene
expression data set of 96 breast cancer samples grouped according to their metastasis status
and a set of nine pathways that are related to cancer. Both the data set and the pathways are
provided in the GlobalAncova package. For the analysis parameter, we specify the function
analysis.gsea() that creates a wrapper object describing the toolchain for a GSEA analysis.
We further specify that Pearson correlation should be used as a gene-level statistic and that gene
set enrichment p-values should be adjusted according to false discovery rate (FDR). We use a
significance level of 0.1, which is common when using FDR-based adjustments.

2



Significance assessment

Gene-level statistic

Transformation

Gene set statistic

“Spearman correlation”

“absolute value”

“mean”

“gene sampling”

“The cell cycle control gene set is 
significantly enriched in the dataset.”

“expression dataset”

“cell cycle control”

Experimental 
data

Gene set

Statistical conclusion

Figure 1: The modular structure of a gene set analysis, implemented in the package. For each
module an example is given in red.

> resGsea <- geneSetAnalysis(
+ labs = labels,
+ method = "pearson",
+ 0,
+ dat = countdata,
+ geneSets = pathways,
+ analysis = analysis.gsea(),
+ adjustmentMethod = "fdr",
+ signLevel=0.1)
>

The results of enrichment analyses can be summarized via the summary() function:

> summary(resGsea)

Analysis: gsea

9 gene set(s) tested:
- 2 gene set(s) with raw p-value < 0.1
- min p-value: cell_cycle_control (0.001998002)

Correction for multiple testing: fdr
- 2 gene set(s) with adjusted p-value < 0.1

We can see how many of the gene sets are enriched significantly. The alpha level used in the
original analysis was applied. To get more detailed results, we can create a table with the raw and
adjusted p-values for each gene set that can be useful for further processing steps:

3



> tab <- createSummaryTable(resGsea)

> tab

geneSetName adjustedPValues rawPValues geneSetSize
1 cell_cycle_control 0.01798202 0.001998002 31
2 notch_delta_signalling 0.07192807 0.015984016 34
3 p53_signalling 0.49750250 0.165834166 33
4 wnt_signaling 0.70804196 0.314685315 176
5 tight_junction_signaling 0.79840160 0.443556444 326
6 apoptosis 0.91595904 0.814185814 187
7 ras_signalling 0.91595904 0.646353646 266
8 tgf_beta_signaling 0.91595904 0.735264735 82
9 androgen_receptor_signaling 0.96103896 0.961038961 72

This function can be parameterized in different ways. E.g., to extract only the significantly
enriched gene sets ordered by their name, type

> signtab <- createSummaryTable(resGsea, significantOnly=TRUE, orderBy="geneSetName")

> signtab

geneSetName adjustedPValues rawPValues geneSetSize
1 cell_cycle_control 0.01798202 0.001998002 31
2 notch_delta_signalling 0.07192807 0.015984016 34

The data frames resulting from createSummaryTable() can be used to export results to other
programs, e.g. by writing it to CSV files using write.csv().
The results of the enrichment analyses can also be visualized in form of histograms, where each
histogram visualizes the gene set enrichment score of one pathway as compared to the null distri-
bution. The following plots the cell cycle control gene set (subset=3):

> hist(resGsea, subset = 3, aggregate = TRUE)

The results are shown in Figure 2. Here, the histogram corresponds to the null distribution of
gene set statistic values for random gene sets and class assignments, whereas the red vertical line
corresponds to the gene set statistic score of the cell cycle control gene set. The fact that the line
is to the right of the 95% quantile of the null distribution (the blue line) expresses that the gene
set is significantly enriched.
For analyzing the gene sets in parallel, the parallelization option, integrated in the package can
be used:

> library(parallel)
> mc <- 2 #number of cpus to use
> cl <- makeCluster(mc) #initialize a cluster
> resGsea <- geneSetAnalysis(
+ labs = labels,
+ method = "pearson",
+ numSamples = 1000,
+ dat = vantVeer,
+ geneSets = pathways,
+ analysis = analysis.gsea(),
+ adjustmentMethod = "fdr",
+ signLevel=0.1,
+ cluster = cl)
> stopCluster(cl)

4



cell_cycle_control (p = 0.0539)

−0.2 0.0 0.2 0.4 0.6

0
50

10
0

15
0

t0.9

t*

Figure 2: Histogram visualizing the results of a Gene Set Enrichment Analysis for the cell cycle
control gene set. The histogram corresponds to the null distribution of the gene set statistic,
whereas the red line corresponds to the statistic score of the cell cycle control gene set. The blue
line is the 95% quantile of the null distribution.

5



Another commonly used gene set analysis method is the overrepresentation analysis, which checks
whether the genes of a core set are significantly overrepresented among the gene sets. While the
GSEA considers all genes in a data set and their corresponding gene-level statistics, an overrep-
resentation analysis requires a prior selection of an interesting subset, such as those genes whose
p-value for differential expression is significant, or the top 100 differentially expressed genes. The
names of the genes in this subset are supplied as a vector in the coreSet parameter. Here, we
select the 25 genes with the highest absolute correlation to the class label:

> stat <- abs(apply(vantVeer,1,cor,y = labels))
> coreSet <- rownames(vantVeer)[tail(order(stat), 25)]
> resOverrep <- geneSetAnalysis(
+ dat = vantVeer,
+ geneSets = pathways[1:4],
+ analysis = analysis.customOverrepresentation(),
+ coreSet = coreSet,
+ adjustmentMethod = "fdr",
+ signLevel=0.1)
> summary(resOverrep)

We can see that the cell cycle control gene set, which was already significantly enriched in the
GSEA, is significantly overrepresented in the core set as well.
For the overrepresentation analysis, plotOverrepresentation() can be used to visualize the
overlaps of the core set and the specified gene sets in form of a Venn diagram:

> plotOverrepresentation(resOverrep, aggregate = TRUE)

The plot is shown in Figure 3. Venn diagrams can only be plotted for up to five sets, which is
why we restrict the overrepresentation analysis to four sets here. For more than 5 sets or area
proportional Venn diagramms we recommend VennMaster [4, 5] (http://sysbio.uni-ulm.de/). The
cell cycle control gene set, which is the only significant set, has an overlap of 6 genes with the core
set. The other gene sets show almost no overlap with the core set and with each other.
Apart from GSEA and overrepresentation analysis, the package defines further standard analyses,
such as a wrapper for the global Ancova method in the GlobalAncova package. All these methods
can be used in the same way. An overview of predefined configurations can be found on the help
page predefinedAnalyses.

3 Gene set uncertainty analysis

In some cases, gene sets may not stem from validated sources like manually curated ontologies,
but may be hand-crafted for the specific question under consideration. In this scenario, it is not
only interesting whether the gene set is significantly enriched among the measurements: Another
important aspect is the quality of the gene set itself. One way of quantifying gene set quality is
a robustness test that performs multiple gene set analyses with slightly perturbed gene sets and
checks whether the gene set statistic of the original gene set differs significantly from those of the
perturbed sets. This assesses how susceptible the gene set is to exchanging members and thus
measures the uncertainty (or certainty) of the gene set. GiANT implements this strategy in the
evaluateGeneSetUncertainty() function.
For example, the following quantifies the uncertainty of the cell cycle control gene set that was
significantly enriched in the above analyses:

> resUncertainty <- evaluateGeneSetUncertainty(
+ #parameters in ...
+ labs = labels,

6



coreSet

androgen_receptor_signaling

apoptosis

cell_cycle_control

notch_delta_signalling

25

72

187

31
34

0

1

6 *
0

13

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

1113

Figure 3: Venn diagram showing the overlaps of gene sets with the analyzed core set of differentially
expressed genes. The numbers correspond to the numbers of genes in the sets and in the overlaps
respectively.

7



0.0 0.2 0.4 0.6 0.8 1.0

0.
10

0.
12

0.
14

0.
16

0.
18

cell_cycle_control
 resampling stability: 0.7 

 minimal stability: 0.84

original geneSet genes (k)

te
st

 s
ta

tis
tic

 (
t)

5%−quantile
50%−quantile
95%−quantile
t0.95

t*

Figure 4: Results of an uncertainty analysis. Blue lines correspond to the tested degrees of
fuzziness. Dots in the columns give the quantiles ({0.05, 0.5, 0.95}) of the test statistic values
obtained by resampling a percentage of genes from the gene set (k) and the remaining genes
(1− k) from the set of all genes in the dataset. The fuzziness of the gene set is the tested value of
k which has a non overlapping confidence interval with the null distribution (resampling stability,
black vertical line).

+ numSamples = 1000,
+ #parameters for evaluateGeneSetUncertainty
+ dat = vantVeer,
+ geneSet = pathways[[3]],
+ analysis = analysis.averageCorrelation(),
+ numSamplesUncertainty = 100,
+ k = seq(0.1,0.9,by = 0.1))
> plot(resUncertainty,
+ main = names(pathways[3]),
+ addMinimalStability = TRUE)

Figure 4 shows the results of the analysis. The blue lines show the tested degrees of fuzziness.
The dots in each column give the quantiles ({0.05, 0.5, 0.95}) of the test statistic values obtained
by resampling a percentage of genes from the gene set (k) and the remaining genes (1 − k) from
the set of all genes in the dataset. The values for k = 0 give the quantiles of the null distribution
with the green line corresponding to the 95% quantile. The red line shows the value of the test-
statistic for the original set. The fuzziness of the gene set is the tested value of k which has a non
overlapping confidence interval with the null distribution. The dotted lines give the lower bound
for the fuzziness of the gene set.

8



4 Custom analyses

Apart from using predefined analysis configurations, it is also possible to define custom analyses.
The gsAnalysis() function generates wrapper objects for such analysis pipeline configurations.
Generally, methods can either follow the toolchain of gene-level statistic calculation, transforma-
tion, gene set statistic calculation and significance assessment, or they can define a single, “global”
method performing all required steps at once. In the following, we will define an analysis that
rates gene sets according to the average absolute correlation of the involved genes to the class
labels. This belongs to the former category, i.e. it can be formulated as a four-step toolchain.
As a first step, we need to define a function that calculates the gene-level statistic, i.e. the
correlation to the class labels. Basically, this is a wrapper that applies R’s cor() function to all
rows of a data set:

> myGLS <- function(dat, labs, method = "pearson"){
+ return(apply(dat, 1, function(x){
+ cor(x = x, y = labs, method = method)
+ }))
+ }

In the next step, the correlation values are transformed by taking the absolute value. We do not
need to define a custom function here, as this is exactly what R’s abs() function does.
The gene set statistic is simply the average of the absolute correlation values for all genes in the
set:

> myGSS <- function(x, geneSetIndices){
+ return(mean(x[geneSetIndices]))
+ }

Here, the absolute correlation values for all genes are supplied to myGSS() in x, and the indices of
the genes in the currently investigated gene set are supplied in geneSetIndices.
The final step is the significance assessment. This step compares the gene set statistic value of the
true gene set to a null distribution that is approximated by random sampling. Instead of writing
this function ourselves, we rely on a function that is supplied by the package: significance.sampling()
draws a high number of random gene sets and calculates the gene set statistic in the same way as
for the true gene set. The p-value of the gene set is the fraction of genes having a greater gene set
statistic value than the value for the set.
Let us now assemble the above steps. For this purpose, we define a function myAnalysis() that
calls gsAnalysis() with the specified functions and their parameter names internally. Calling
myAnalysis() function will then return the wrapper object that defines our analysis:

> myAnalysis <- function(){
+ return(gsAnalysis(name = "myAnalysis",
+ gls = "myGLS",
+ glsParameterNames = c("labs", "method"),
+ transformation = "abs",
+ transformationParameterNames = NULL,
+ gss = "myGSS",
+ gssParameterNames = NULL,
+ globalStat = NULL,
+ globalStatParameterNames = NULL,
+ significance = "significance.sampling",
+ significanceParameterNames = c("numSamples"),
+ testAlternative = "greater"))
+ }

9



Here, gls, transformation, gss and significance define the functions to be called for the gene-
level statistic calculation, the transformation, the gene set statistic calculation and the significance
assessment respectively. glsParameterNames, transformationParameterNames, gssParameterNames
and significanceParameterNames define the names of additional parameters of the correspond-
ing functions. These parameters can be supplied in the ... argument of geneSetAnalysis()
when performing the analysis. The parameters globalStat and globalStatParameterNames can
be used for the alternative definition of a single, global analysis function discussed above, which is
why they are set to NULL here. Finally, testAlternative specifies how the p-value is determined
from the gene set statistic values, i.e. whether the statistic value of a relevant gene set is expected
to be greater or less than the random values.
Our new analysis can now be called exactly in the same way as the predefined analysis by supplying
it to geneSetAnalysis():

> myResult <- geneSetAnalysis(
+ labs = labels,
+ method = "pearson",
+ numSamples = 100,
+ dat = vantVeer,
+ geneSets = pathways,
+ analysis = myAnalysis(),
+ adjustmentMethod = "fdr")

> hist(myResult)

Similarly to the predefined significance assessment significance.sampling() we used above,
there are predefined building blocks for all pipeline steps that can be combined freely. For more in-
formation, refer to the help pages gls, transformation, gss, significance and globalAnalysis.
Finally, it should be mentioned that an analysis comprising the above steps is already defined in
the package: Instead of defining our own analysis, we could also have used the predefined analysis
analysis.averageCorrelation() in this case.

A Further investigation options

We also investigated the behavior of the presented quantification of uncertainty by introducing
noise to the measurements related to gene set genes. Random values were drawn from the dataset.
We replaced measurements of up to 15 pathway genes by randomly drawn measurements from the
complete data set (Figure 5). The robustness of the pathway (and also the mean correlation of the
pathway genes) decreases with an increasing amount of this type of noise. While for the original
pathway about 30% of randomly selected genes still led to a significant result (see Figure 4), only
5% of randomly selected genes can be replaced when 8 of the pathway genes are noisy. For 12
noisy genes the pathway is not significantly enriched anymore.

10



o o o
o o o o

o
o o o

o o
o

o o
o o

o
o

o

0.
10

0.
12

0.
14

0.
16

0.
18

random values for 2 cell_cycle_control genes

percentage of original gene set genes (k)

o o o
o o

o o
o o

o o
o o

o o o
o o

o o
o

o
o o o o

o o
o o o

o o o o o o o o o o
o

o
o
o

5%−quantile
50%−quantile
95%−quantile
t0.95

t*

0 0.25 0.5 0.75 1

te
st

 s
ta

tis
tic

 (
t)

o o o
o o

o o
o o o

o o
o

o
o o

o o

o o

o
0.

10
0.

12
0.

14
0.

16
0.

18

random values for 5 cell_cycle_control genes

percentage of original gene set genes (k)

o o o
o o

o o o o o o
o

o o
o o o o o o

o

o o o
o o o o

o o o
o o o o o o o o o o

o

o
o
o

5%−quantile
50%−quantile
95%−quantile
t0.95

t*

0 0.25 0.5 0.75 1

te
st

 s
ta

tis
tic

 (
t)

o o
o

o o o
o o o

o o
o

o o
o o

o
o

o
o

o

0.
10

0.
12

0.
14

0.
16

random values for 8 cell_cycle_control genes

percentage of original gene set genes (k)

o o o o o o
o o o o o

o
o o o o o o o o o

o o o o o
o o o o o o o o o o o o o o o

o

o
o
o

5%−quantile
50%−quantile
95%−quantile
t0.95

t*

0 0.25 0.5 0.75 0.95

te
st

 s
ta

tis
tic

 (
t)

o o o o o o
o o o

o o
o o o

o o o o
o

o

o

0.
09

0.
11

0.
13

0.
15

random values for 12 cell_cycle_control genes

percentage of original gene set genes (k)

o o o o o o o o o o o o o o o o
o o o o o

o o o
o o

o
o

o o o
o o o o o o o o o

o

o

o
o
o

5%−quantile
50%−quantile
95%−quantile
t0.95

t*

0 0.25 0.5 0.75 1

te
st

 s
ta

tis
tic

 (
t)

Figure 5: Results of the uncertainty analysis with different levels of noise. Measurements of up to
15 of 31 genes have been replaced by randomly drawn measurements. The uncertainty decreases
with increasing noise. With 12 genes replaced the gene set is not enriched anymore.

11



References

[1] Marit Ackermann and Korbinian Strimmer. A general modular framework for gene set enrich-
ment analysis. BMC Bioinformatics, 10(1):47, 2009.

[2] Jelle J. Goeman, Sara A. van de Geer, Floor de Kort, and Hans C. van Houwelingen. A
global test for groups of genes: testing association with a clinical outcome. Bioinformatics,
20(1):93–99, 2004.

[3] Manuela Hummel, Reinhard Meister, and Ulrich Mansmann. Globalancova: exploration and
assessment of gene group effects. Bioinformatics, 24(1):78–85, 2008.

[4] Hans A. Kestler, André Müller, Thomas M. Gress, and Malte Buchholz. Generalized venn dia-
grams: a new method of visualizing complex genetic set relations. Bioinformatics, 21(8):1592–
1595, 2005.

[5] Hans A. Kestler, André Müller, Johann Kraus, Malte Buchholz, Thomas Gress, Hongfang
Liu, David Kane, Barry Zeeberg, and John Weinstein. Vennmaster: Area-proportional euler
diagrams for functional go analysis of microarrays. BMC Bioinformatics, 9(1):67, 2008.

[6] Aravind Subramanian, Pablo Tamayo, Vamsi K. Mootha, Sayan Mukherjee, Benjamin L.
Ebert, Michael A. Gillette, Amanda Paulovich, Scott L. Pomeroy, Todd R. Golub, Eric S.
Lander, and Jill P. Mesirov. Gene set enrichment analysis: A knowledge-based approach for
interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences
of the United States of America, 102(43):15545–15550, 2005.

12


	Introduction
	Performing a gene set analysis
	Gene set uncertainty analysis
	Custom analyses
	Further investigation options

