Styperidge.reg: An R package for the S-type ridge regression

This R package implements S-type ridge regression: a robust and multicollinearity-aware linear regression estimator that combines S-type robust weighting with ridge penalization. The method targets two common hurdles in linear modeling simultaneously: sensitivity to outliers and inflated variance due to severe multicollinearity. The S-type estimators were introduced by Sazak and Mutlu (2023) in “Comparison of the Robust Methods in the General Linear Regression Model.” The ridge parameter k is selected automatically via the approach implemented in the ridgregextra R package (Karadağ et al., 2023; Karadağ and Sazak, 2022), which targets variance inflation factor (VIF) values close to but not below 1 (following Kutner et al., 2004). For automatic ridge parameter selection, the package leverages the approach operationalized in the ridgregextra package, so users do not need to tune k manually. This package, in conjunction with the Stype.est package, offers a robust ridge regression solution adept at addressing issues of extreme multicollinearity and outliers, providing S-type ridge estimates without requiring manual adjustment of the ridge parameter. There are two functions in this package:

Features

Installation

To install the package from GitHub, use the following command:

Installing Styperidge.reg development version

Please make sure that you installed devtools package first:

install.packages("devtools")

Install the package

devtools::install_github("filizkrgd/Styperidge.reg")

Installing Styperidge.reg from CRAN

install.packages( “Styperidge.reg”)

Installing Styperidge.reg development version

Example usage of the package.

When you install Styperidge.reg, required packages such as ridgregextra and Stype.est will be installed automatically via dependencies. For example data, you can install and load the isdals package (it contains the bodyfat data set). - Prepare an example data set (bodyfat) from isdals:

library(isdals)
data(bodyfat)
x=bodyfat[,-1]
y=bodyfat[,1]
regstyperidge=regstyperidge(x,y)
regstyperidge$MSE
regstyperidge$stdbeta
weightedridgereg=Weightedridge.reg(x,y,W)
weightedridgereg$MSE
weightedridgereg$stdbeta

## References - Karadağ, F. and Sazak, H.S., “R Algorithm for Ridge Parameter Estimation in Ridge Regression” Why R? Turkey 2022 Conference, online, Verbal, Summary Text, p.13, 2022. (https://www.nobelyayin.com/why-r-turkiye-2022-konferansi-18447.html) - Karadağ, F., Sazak, H. S., and Aydın, O. (2023). ridgregextra: Ridge Regression Parameter Estimation. R package version 0.1.1. Available at CRAN. URL: https://CRAN.R-project.org/package=ridgregextra - Kutner, M. H., Nachtsheim, C. J., Neter, J., and Li, W. (2004). Applied Linear Statistical Models - Sazak, H. S., Karadağ, F., and Aydın, O. (2025). Stype.est: S-Type Estimators. R package version 0.1.0. URL: https://cran.r-project.org/web/packages/Stype.est/Stype.est.pdf - Sazak, H. S., & Mutlu, N. (2021). Comparison of the robust methods in the general linear regression model. Communications in Statistics – Simulation and Computation, 52(7), 1–38. https://doi.org/10.1080/03610918.2021.1928196

Contact

For any questions please contact: