TERN AusPlots is a national plot-based terrestrial ecosystem surveillance monitoring method and dataset for Australia (Sparrow et al. 2020). Through ausplotsR, users can directly access AusPlots data collected by on-ground observers on vegetation and soils, including physical sample/voucher details and barcode numbers. The dataset can be downloaded in its entirety or as individual modules, and can be subsetted by geographic bounding box or species name search. The package also includes a series of bespoke functions for working with AusPlots data, including visualisation, creating tables of species composition, and calculation of tree basal area, fractional cover or vegetation cover by growth form/structure/strata and so on.
This is a short guide for getting started with analysis of AusPlots data through the ausplotsR R package. More information on making use of AusPlots data in ausplotsR is available through the package help files and manual. Below, we demonstrate installing the package, accessing some AusPlots data, generating matrices and running simple example analyses.
More comprehensive tutorials on accessing and analysing AusPlots data (Blanco-Martin 2019) are available at: https://github.com/ternaustralia/TERN-Data-Skills/tree/master/EcosystemSurveillance_PlotData
The latest version of ausplotsR can be installed directly from github using the devtools
package, which must be installed first.
library(devtools)
install_github("ternaustralia/ausplotsR", build_vignettes = TRUE, dependencies = TRUE)
Once installed, load the package as follows. Note, packages vegan, maps and mapdata are required for ausplotsR to load, and functions are also imported from packages: plyr, R.utils, simba, httr, jsonlite, sp, maptools, ggplot2, gtools, jose, curl and betapart, while knitr and rmarkdown are required to build this package vignette (i.e., if ‘build_vignettes’ is set to TRUE above).
We can now access live data, starting here with basic site information and vegetation point-intercept modules and using a bounding box to spatially filter the dataset to central Australia. All data modules are extracted via a single function, get_ausplots
:
The output of the above call is a list with the following $elements
:
The ‘site.info’ table contains basic site and visit details. Here are a selected few of the many fields:
head(my.ausplots.data$site.info[, c("site_location_name", "site_unique", "longitude",
"latitude", "bioregion_name")])
#> site_location_name site_unique longitude latitude bioregion_name
#> 1 NTADAC0001 NTADAC0001-53518 130.7779 -13.15835 DAC
#> 2 NTASSD0015 NTASSD0015-53565 135.6168 -25.12393 SSD
#> 3 QDAMII0002 QDAMII0002-53546 138.1606 -20.00789 MII
#> 4 SATSTP0005 SATSTP0005-53513 138.8488 -29.45660 STP
#> 5 SATSTP0005 SATSTP0005-58639 138.8488 -29.45660 STP
#> 6 NTTDAB0001 NTTDAB0001-53580 131.6740 -13.96288 DAB
Each survey is identified by the ‘site_unique’ field, which is unique combination of site ID (‘site_location_name’) and visit ID (‘site_location_visit_id’). The ‘site_unique’ field therefore links all tables returned from the get_ausplots
function.
The ‘site.info’ table and can be used to identify, subset or group surveys in space and time, for example:
The package has an in-built function - see ?ausplots_visual
- to rapidly map AusPlots over Australia and to visualise the relative cover/abundance of green vegetation, plant growth forms and species. Maps can also be generated manually using the longitude and latitude fields in the $site.info
table.
Alternatively, the following call generates a pdf with a map of all sites and attribute graphics for selected AusPlots: ausplotsR::ausplots_visual()
Here is a snippet of the raw point-intercept data that will be used in the following examples to derive vegetation attributes:
head(subset(my.ausplots.data$veg.PI, !is.na(herbarium_determination)))
#> site_unique site_location_name site_location_visit_id transect
#> 6 NTAARP0002-58423 NTAARP0002 58423 S1-N1
#> 7 NTAARP0002-58423 NTAARP0002 58423 S1-N1
#> 8 NTAARP0002-58423 NTAARP0002 58423 S1-N1
#> 19 NTAARP0002-58423 NTAARP0002 58423 S1-N1
#> 25 NTAARP0002-58423 NTAARP0002 58423 S1-N1
#> 44 NTAARP0002-58423 NTAARP0002 58423 N2-S2
#> point_number herbarium_determination substrate in_canopy_sky dead
#> 6 56 Sorghum sp. Litter FALSE FALSE
#> 7 57 Sorghum sp. Litter FALSE FALSE
#> 8 58 Sorghum sp. Litter FALSE FALSE
#> 19 70 Sorghum sp. Litter FALSE FALSE
#> 25 76 Sorghum sp. Litter FALSE FALSE
#> 44 1 Sorghum sp. Litter FALSE FALSE
#> growth_form height veg_barcode standardised_name family genus
#> 6 Tussock grass 0.7 NTA018577 Sorghum Poaceae Sorghum
#> 7 Tussock grass 0.2 NTA018577 Sorghum Poaceae Sorghum
#> 8 Tussock grass 0.2 NTA018577 Sorghum Poaceae Sorghum
#> 19 Tussock grass 0.4 NTA018577 Sorghum Poaceae Sorghum
#> 25 Tussock grass 0.2 NTA018577 Sorghum Poaceae Sorghum
#> 44 Tussock grass 0.1 NTA018577 Sorghum Poaceae Sorghum
#> specific_epithet infraspecific_rank infraspecific_epithet taxa_status
#> 6 <NA> <NA> <NA> Accepted
#> 7 <NA> <NA> <NA> Accepted
#> 8 <NA> <NA> <NA> Accepted
#> 19 <NA> <NA> <NA> Accepted
#> 25 <NA> <NA> <NA> Accepted
#> 44 <NA> <NA> <NA> Accepted
#> taxa_group genus_species authorship published_in rank hits_unique
#> 6 angiosperms Sorghum Moench Methodus 207. 1794. genus S1-N1 56
#> 7 angiosperms Sorghum Moench Methodus 207. 1794. genus S1-N1 57
#> 8 angiosperms Sorghum Moench Methodus 207. 1794. genus S1-N1 58
#> 19 angiosperms Sorghum Moench Methodus 207. 1794. genus S1-N1 70
#> 25 angiosperms Sorghum Moench Methodus 207. 1794. genus S1-N1 76
#> 44 angiosperms Sorghum Moench Methodus 207. 1794. genus N2-S2 1
Note that ‘veg_barcode’ links species hits to the vegetation vouchers module, while the ‘hits_unique’ field identifies the individual point-intercept by transect and point number (see help(ausplotsR)
and references for more details on the plot layout and survey method). At each point, plant species (if any), growth form and height are recorded along with substrate type.
Let’s visualise basic vegetation cover as a function of latitude. First, we call the fractional_cover
function on the extracted point-intercept data ($veg.PI
). The function converts the raw data to proportional cover of green/brown vegetation and bare substrate. Note the calculation may take a few minutes for many AusPlots, so for this example we will pull out a subset of 100 randomly drawn sites to work with.
sites100 <- my.ausplots.data$veg.PI[which(my.ausplots.data$veg.PI$site_unique %in%
sample(my.ausplots.data$site.info$site_unique, 100)), ]
my.fractional <- fractional_cover(sites100)
head(my.fractional)
#> site_unique NA. bare brown green
#> NTAARP0001-58422 NTAARP0001-58422 0.0 3.27 28.32 68.42
#> NTABRT0004-53619 NTABRT0004-53619 0.0 22.10 31.42 46.48
#> NTABRT0005-53620 NTABRT0005-53620 0.0 36.63 19.41 43.96
#> NTAFIN0001-53519 NTAFIN0001-53519 0.0 39.31 53.27 7.43
#> NTAFIN0001-58009 NTAFIN0001-58009 0.1 44.36 43.37 12.18
#> NTAFIN0002-58787 NTAFIN0002-58787 0.1 13.96 42.48 43.47
Next, we need to merge the fractional cover scores with longlat coordinates from the site information table. We use the ‘site_unique’ field (unique combination of site and visit IDs) to link tables returned from the get_ausplots
function:
my.fractional <- merge(my.fractional, my.ausplots.data$site.info, by = "site_unique")[,
c("site_unique", "bare", "brown", "green", "NA.", "longitude", "latitude")]
my.fractional <- na.omit(my.fractional)
head(my.fractional)
#> site_unique bare brown green NA. longitude latitude
#> 1 NTAARP0001-58422 3.27 28.32 68.42 0.0 132.2701 -13.55729
#> 2 NTABRT0004-53619 22.10 31.42 46.48 0.0 133.6164 -22.28981
#> 3 NTABRT0005-53620 36.63 19.41 43.96 0.0 133.6121 -22.29108
#> 4 NTAFIN0001-53519 39.31 53.27 7.43 0.0 133.4679 -24.12430
#> 5 NTAFIN0001-58009 44.36 43.37 12.18 0.1 133.4679 -24.12430
#> 6 NTAFIN0002-58787 13.96 42.48 43.47 0.1 133.4343 -24.00942
Now we can plot out the continental relationship, e.g., between the proportion of bare ground with no kind of vegetation cover above and latitude.
There appears to be a hump-backed relationship, with a higher proportion of bare ground in the arid inland at mid-latitudes. We can add a simple quadratic model to test/approximate this:
my.fractional$quadratic <- my.fractional$latitude^2
LM <- lm(bare ~ latitude + quadratic, data = my.fractional)
summary(LM)
#>
#> Call:
#> lm(formula = bare ~ latitude + quadratic, data = my.fractional)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -30.261 -11.701 -2.797 10.360 37.808
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -162.54270 23.95273 -6.786 1.02e-09 ***
#> latitude -16.47845 1.98258 -8.312 7.06e-13 ***
#> quadratic -0.32765 0.03922 -8.354 5.76e-13 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 16.56 on 94 degrees of freedom
#> Multiple R-squared: 0.4262, Adjusted R-squared: 0.414
#> F-statistic: 34.92 on 2 and 94 DF, p-value: 4.573e-12
# generate predicted values for plotting:
MinMax <- c(min(my.fractional$latitude), max(my.fractional$latitude))
ND <- data.frame(latitude = seq(from = MinMax[1], to = MinMax[2], length.out = 50),
quadratic = seq(from = MinMax[1], to = MinMax[2], length.out = 50)^2)
ND$predict <- predict(LM, newdata = ND)
#
plot(bare ~ latitude, data = my.fractional, pch = 20, bty = "n")
points(ND$latitude, ND$predict, type = "l", lwd = 2, col = "darkblue")
Aside from ‘gross’ values from plots such as fractional cover, many analyses in community ecology begin with species abundance information. With ausplotsR you can generate this easily from the more complex vegetation point-intercept data. The first step to work with species-level AusPlots data is to create a species occurrence matrix. The species_table
function in the ausplotsR package can be used to create this type of matrix. This function takes a data frame of individual raw point-intercept hits (i.e. a $veg.PI
data frame) generated using the get_ausplots
function and returns a ‘species against sites’ matrix:
# The species_table function below can also take the `$veg.voucher` module as
# input, but `m_kind='PA'` must be specified to get a sensible presence/absence
# output.
# The 'species_name' argument below specifies use of the 'standardised_name'
# field to identify species, which is based on herbarium_determination names
# (i.e., 'HD' option in species_name) matched to accepted scientific name
# according to a standard (http://www.worldfloraonline.org/).
my.sppBYsites <- species_table(my.ausplots.data$veg.PI, m_kind = "percent_cover",
cover_type = "PFC", species_name = "SN")
# check the number of rows (plots) and columns (species) in the matrix
dim(my.sppBYsites)
#> [1] 391 1752
# look at the top left corner (as the matrix is large)
my.sppBYsites[1:5, 1:5]
#> Abutilon Abutilon.fraseri Abutilon.halophilum Abutilon.hannii
#> NTAARP0001-58422 0 0 0 0
#> NTAARP0002-58423 0 0 0 0
#> NTAARP0003-58424 0 0 0 0
#> NTABRT0001-53616 0 0 0 0
#> NTABRT0002-53617 0 0 0 0
#> Abutilon.leucopetalum
#> NTAARP0001-58422 0
#> NTAARP0002-58423 0
#> NTAARP0003-58424 0
#> NTABRT0001-53616 0
#> NTABRT0002-53617 0
We can crudely pull out the 10 highest ranking species in terms of their percent cover cumulative across all plots they occur in:
rev(sort(colSums(my.sppBYsites)))[1:10]
#> Triodia.basedowii Aristida.holathera Eucalyptus.obliqua
#> 651.4038 456.6403 359.5146
#> Eulalia.aurea Eucalyptus.baxteri Triodia.bitextura
#> 340.4958 335.0025 325.2499
#> Cenchrus.ciliaris Triodia.pungens Acacia.shirleyi
#> 306.7625 291.3861 282.0792
#> Schizachyrium.fragile
#> 264.3876
A simple example of downstream visualisation and analysis of species-level AusPlots data is Rank-Abundance Curves (also known as Whittaker Plots). Rank-Abundance Curves provide further information on species diversity. They provide a more complete picture than a single diversity index. Their x-axis represents the abundance rank (from most to least abundant) and in the y-axis the species relative abundance. Thus, they depict both Species Richness and Species Evenness (slope of the line that fits the rank; steep gradient indicates low evenness and a shallow gradient high evenness).
# Whittaker plots for some selected AusPlots with alternative relative abundance
# models fitted to the plant community data:
par(mfrow = c(2, 2), mar = c(4, 4, 1, 1))
for (i in c(1:4)) {
plot(vegan::radfit(round(my.sppBYsites[9 + i, ], digits = 0), log = "xy"), pch = 20,
legend = FALSE, bty = "l")
legend("topright", legend = c("Null", "Preemption", "Lognormal", "Zipf", "Mandelbrot"),
lwd = rep(1, 5), col = c("black", "red", "green", "blue", "cyan"), cex = 0.7,
bty = "n")
}
Perhaps you simply want to browse which plant species have been recorded in AusPlots, without all the associated raw data? Here, the species_list
function is your friend:
# print a list of genus_species-only records from selected plots:
species_list(subset(my.ausplots.data$veg.vouch, site_unique %in% unique(site_unique)[1:2]),
grouping = "by_site", species_name = "GS")
#> $QDAMII0002
#> [1] Abutilon leucopetalum Acacia coriacea Acacia cowleana
#> [4] Acacia lysiphloia Aristida latifolia Atalaya hemiglauca
#> [7] Boerhavia repens Bonamia media Bothriochloa ewartiana
#> [10] Brachiaria subquadripara Bulbostylis barbata Carissa spinarum
#> [13] Chrysopogon benthamianus Cleome viscosa Convolvulus clementii
#> [16] Corymbia aparrerinja Corymbia terminalis Crotalaria medicaginea
#> [19] Cucumis melo Dichanthium sericeum Enneapogon polyphyllus
#> [22] Enneapogon purpurascens Enneapogon robustissimus Eucalyptus leucophloia
#> [25] Eucalyptus pruinosa Eulalia aurea Euphorbia tannensis
#> [28] Gossypium australe Indigofera colutea Indigofera linifolia
#> [31] Ipomoea coptica Ipomoea polymorpha Iseilema macratherum
#> [34] Mnesithea formosa Paspalidium rarum Portulaca oleracea
#> [37] Rhynchosia minima Salsola kali Senna notabilis
#> [40] Sida cleisocalyx Solanum quadriloculatum Sporobolus australasicus
#> [43] Tephrosia Themeda triandra Triodia pungens
#> [46] Ventilago viminalis Vigna
#>
#> $SAASTP0016
#> [1] Abutilon leucopetalum Acacia salicina
#> [3] Astrebla pectinata Atriplex angulata
#> [5] Atriplex incrassata Atriplex vesicaria
#> [7] Calocephalus platycephalus Calotis hispidula
#> [9] Centipeda thespidioides Cullen australasicum
#> [11] Cyperus alterniflorus Digitaria
#> [13] Dissocarpus biflorus Enchylaena tomentosa
#> [15] Eragrostis leptocarpa Eragrostis setifolia
#> [17] Eremophila longifolia Eriachne ovata
#> [19] Eulalia aurea Euphorbia drummondii
#> [21] Frankenia Goodenia lunata
#> [23] Iseilema vaginiflorum Leiocarpa leptolepis
#> [25] Malvastrum americanum Marsilea
#> [27] Minuria rigida Nitraria billardierei
#> [29] Osteocarpum dipterocarpum Panicum decompositum
#> [31] Plantago drummondii Podolepis
#> [33] Rhagodia spinescens Schenkia australis
#> [35] Sclerolaena divaricata Sclerolaena ventricosa
#> [37] Sida fibulifera Stemodia florulenta
#> [39] Streptoglossa adscendens Swainsona campylantha
#> [41] Tecticornia tenuis
# overall species list ordered by family (for demonstration we print only part):
species_list(my.ausplots.data$veg.vouch, grouping = "collapse", species_name = "SN",
append_family = TRUE)[1:20]
#> [1] Acanthaceae--Dicliptera armata
#> [2] Acanthaceae--Dipteracanthus australasicus
#> [3] Acanthaceae--Hygrophila ringens var. ringens
#> [4] Acanthaceae--Nelsonia canescens
#> [5] Acanthaceae--Rostellularia adscendens
#> [6] Aizoaceae--Carpobrotus rossii
#> [7] Aizoaceae--Carpobrotus virescens
#> [8] Aizoaceae--Disphyma clavellatum
#> [9] Aizoaceae--Gunniopsis
#> [10] Aizoaceae--Gunniopsis calcarea
#> [11] Aizoaceae--Gunniopsis kochii
#> [12] Aizoaceae--Gunniopsis quadrifida
#> [13] Aizoaceae--Gunniopsis septifraga
#> [14] Aizoaceae--Gunniopsis zygophylloides
#> [15] Aizoaceae--Mesembryanthemum crystallinum
#> [16] Aizoaceae--Mesembryanthemum nodiflorum
#> [17] Aizoaceae--Sarcozona praecox
#> [18] Aizoaceae--Tetragonia
#> [19] Aizoaceae--Tetragonia eremaea
#> [20] Aizoaceae--Tetragonia implexicoma
In addition to the key site info and vegetation point-intercept modules introduced above, get_ausplots
is your gateway to raw data modules for vegetation structural summaries, vegetation vouchers (covers the full species diversity observed at the plot and includes tissue sample details), basal wedge, and soils subsites, bulk density and pit/characterisation (including bulk and metagenomics soil samples).
Blanco-Martin, B. (2019) Tutorial: Understanding and using the ‘ausplotsR’ package and AusPlots data. Terrestrial Ecology Research Network. Version 2019.04.0, April 2019. https://github.com/ternaustralia/TERN-Data-Skills/
Sparrow, B., Foulkes, J., Wardle, G., Leitch, E., Caddy-Retalic, S., van Leeuwen, S., Tokmakoff, A., Thurgate, N., Guerin, G.R. and Lowe, A.J. (2020) A vegetation and soil survey method for surveillance monitoring of rangeland environments. Frontiers in Ecology and Evolution, 8:157.