Fits from simple regression to highly customizable deep neural networks either with gradient descent or metaheuristic, using automatic hyper parameters tuning and custom cost function. A mix inspired by the common tricks on Deep Learning and Particle Swarm Optimization.
Version: | 1.3.2 |
Imports: | stats, utils, parallel |
Suggests: | datasets |
Published: | 2020-01-16 |
DOI: | 10.32614/CRAN.package.automl |
Author: | Alex Boulangé [aut, cre] |
Maintainer: | Alex Boulangé <aboul at free.fr> |
BugReports: | https://github.com/aboulaboul/automl/issues |
License: | GPL-2 | GPL-3 [expanded from: GNU General Public License] |
URL: | https://aboulaboul.github.io/automl https://github.com/aboulaboul/automl |
NeedsCompilation: | no |
Materials: | README NEWS |
CRAN checks: | automl results |
Reference manual: | automl.pdf |
Vignettes: |
howto_automl.pdf |
Package source: | automl_1.3.2.tar.gz |
Windows binaries: | r-devel: automl_1.3.2.zip, r-release: automl_1.3.2.zip, r-oldrel: automl_1.3.2.zip |
macOS binaries: | r-release (arm64): automl_1.3.2.tgz, r-oldrel (arm64): automl_1.3.2.tgz, r-release (x86_64): automl_1.3.2.tgz, r-oldrel (x86_64): automl_1.3.2.tgz |
Old sources: | automl archive |
Please use the canonical form https://CRAN.R-project.org/package=automl to link to this page.