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Abstract

The multivariate kernel regression provides a flexible way to estimate possible non-linear
relationship between a set of predictors and scalar-valued response. As with any type of kernel
regression, it requires an optimal selection of smoothing parameter, called bandwidth. In the
literature of multivariate kernel regression, bandwidth parameter is often selected by least square
cross validation. In this article, we present a Bayesian bandwidth estimation method that uses
the information about error density to help with the optimal selection of bandwidths in the
regression function. We first describe the proposed Bayesian method in a multivariate kernel
regression. Illustrated by a series of simulation studies, the Bayesian method is then implemented
using a readily-available R add-on package.

Keywords: bandwidth selection, Bayesian model selection, Nadaraya-Watson estimator, kernel-form
error density, marginal likelihood, adaptive random-walk Metropolis, simulation inefficiency factor.

1. Introduction

The aim of this article is to describe the R functions that are readily-available in the bbemkr package
(Shang and Zhang 2013) for estimating bandwidth parameters in a multivariate nonparametric
regression. In the literature of nonparametric regression, many developments focus on the estimation
of nonparametric regression function. Some commonly used nonparametric regression estimators
include: Nadaraya-Watson (NW) estimator (Bowman and Azzalini 1997), local linear estimator
(Simonoff 1996), k-nearest neighbour estimator (Wand and Jones 1995), and many others. Because
of simplicity and mathematical elegance, we consider the NW estimator in this paper.

In all of the aforementioned nonparametric estimators, the estimation accuracy of the conditional
mean crucially depend on the optimal selection of bandwidths. Commonly, the optimal bandwidths
are selected by the least-squares cross validation. Least-squares cross validation aims to minimise
L2 loss function and has the appealing feature that no estimation of error variance is required.
However, since residuals affect the estimation accuracy of regression function, least-squares cross
validation may select a sub-optimal bandwidth. This in turn leads to inferior estimation accuracy of
regression functions. As an alternative, we present a Bayesian bandwidth estimation method that
simultaneously estimates the optimal bandwidths in the regression function and kernel-form error
density by minimising the generalised loss function.

This article aims to draw close connection between the accurate estimations of error density and
regression function. The estimation of error density is important for assessing the goodness of fit of
a specific distribution (see for examples, Akritas and Van Keilegom 2001; Cheng and Sun 2008);
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the estimation of error density is also useful to test the symmetry of the residual distribution (see
for examples, Ahmad and Li 1997; Neumeyer and Dette 2007); the estimation of error density is
important to statistical inference, prediction and model validation (see for examples, Efromovich
2005; Muhsal and Neumeyer 2010); and the estimation of error density is also useful for the estimation
of the density of the response variable (see for an example, Escanciano and Jacho-Chávez 2012).
Therefore, being able to estimate the error density is as important as being able to estimate the
regression function.

Before introducing the Bayesian bandwidth estimation method, we first define the problem more
precisely. Let y = (y1, y2, . . . , yn)> be a vector of scalar responses, and xi = (x1i, . . . , xpi)

> for
i = 1, . . . , n be p-dimensional real-valued predictors, where > represents matrix transpose. We
consider the nonparametric regression model given by

yi = m(xi) + εi, i = 1, 2, . . . , n, (1)

where m(x) = E(y|x) is the conditional mean, and ε1, ε2, . . . , εn are independent and identically
distributed (iid) errors with an unknown probability density function, denoted as f(ε). We assume
that there is no correlation between the covariates in the regression function and errors, that is

E(εi|xi) = 0.

The flexibility of the nonparametric regression comes from the fact that the unknown regression
function m(·) does not need to have a specific parametric functional form. With some smoothness
properties, m(·) can be estimated by the kernel estimator, such as the Nadaraya-Watson estimator
given by

m̂(x;h) =

∑n
i=1Kh(x− xi)yi∑n
i=1Kh(x− xi)

,

where h = (h1, h2, . . . , hp)
> represents a vector of bandwidths.

This article proceeds as follows. The Bayesian bandwidth estimation method is first described and
its estimation accuracy is then compared based on the idea of marginal likelihood. Through a series
of simulation studies, the sampling algorithm is demonstrated using the R functions in the bbemkr
package. Conclusions will then be presented.

2. Bayesian bandwidth estimation

2.1. Estimation of error density

The unknown error density f(ε) can be approximated by a location-mixture of Gaussian densities
given by

f(ε; b) =
1

n

n∑
j=1

1

b
φ

(
ε− εj
b

)
, (2)

where φ(·) is the probability density function of the standard Gaussian distribution and the
component Gaussian densities have means at εj , for j = 1, 2, . . . , n and a common standard
deviation b. Equation (2) is simply a univariate kernel density estimator with Gaussian kernel and
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bandwidth b. Although error εj is unknown, it can be estimated by the NW estimator. Thus, the

density of yi is approximated by the estimated error density f̂(ε; b), expressed as

f̂(ε; b) =
1

n

n∑
j=1

1

b
φ

(
ε− ε̂j
b

)
,

where b represents residual bandwidth. In order to avoid the possible selection of b = 0, a leave-one-
out version of the kernel likelihood is often used, given by

f̂(ε̂i; b) =
1

n− 1

n∑
j=1
j 6=i

1

b
φ

(
ε̂i − ε̂j
b

)
,

where ε̂i = yi − m̂(xi;h) is the ith residual for i = 1, 2, . . . , n, in the multivariate nonparametric
regression. Given (h, b) and iid assumption of the errors, the leave-one-out version of the kernel
likelihood of y = (y1, y2, . . . , yn)> can be approximated by

L̂(y|h, b) =
n∏
i=1

[
1

n− 1

n∑
j=1
j 6=i

1

b
φ

(
ε̂i − ε̂j
b

)]
.

2.2. Prior density

We now discuss the issue of prior density for the bandwidths. Let π(h2) and π(b2) be the independent
prior of squared bandwidths h and b. Since h2 and b2 play the role of variance parameters in the
Gaussian densities, we assume that the priors of h2 and b2 are inverse Gamma density, denoted by
IG(αh, βh) and IG(αb, βb), respectively. Thus, the prior densities of h2 and b2 are given by

π(h2) =
(βh)αh

Γ(αh)

(
1

h2

)αh+1

exp

(
−βh
h2

)
,

π(b2) =
(βb)

αb

Γ(αb)

(
1

b2

)αb+1

exp

(
−βb
b2

)
,

where αh = αb = 1.0 and βh = βb = 0.05 are hyper-parameters. Sensitivity results studied in Zhang,
King, and Shang (2011) show that the choices of hyper-parameters and inverse Gamma densities do
not influence the estimation of posterior density.

2.3. Posterior density

Let θ = (h2, b2) be the parameter vector and y = (y1, y2, . . . , yn)> be the data. According to the
Bayes theorem, the posterior of θ is written by

π(θ|y) =
L̂(y|θ)

L(y)
, (3)
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where L̂(y|θ) is the approximated likelihood function with squared bandwidths and L(y) is the
marginal likelihood, which can be expressed as∫

L̂(y|θ)π(θ)dθ.

In practice, the posterior in (3) can be approximated by (up to a normalising constant):

π(θ|y) ∝ L̂(y|θ)π(θ).

We use the adaptive random-walk Metropolis algorithm to sample θ (see Garthwaite, Fan, and
Sisson 2010, for details). In order to assess the convergence of the Markov chain Monte Carlo
(MCMC) algorithm, we use the notion of simulation inefficiency factor (Meyer and Yu 2000). This
is a measure of autocorrelation among iterations and provides an indication of how many iterations
are required to have the iid draws from the posterior distributions. It is noteworthy that a full
range of diagnostic tools in the coda package (Plummer, Best, Cowles, and Vines 2006) can also be
applied to check the convergence of MCMC.

2.4. Adaptive estimation of error density

In kernel density estimator, it has been noted that the leave-one-out estimator may be heavily
affected by extreme observations in the data sample (see for example, Bowman 1984). Because of the
use of a global bandwidth, the leave-one-out kernel error density estimator is likely to overestimate
the tails of the density. To overcome this deficiency, it is possible to use localised bandwidths by
assigning small bandwidths to the residuals in the high density region and large bandwidths to the
residuals in the low density region. The localised error density estimator can be given by

f̂(ε̂i; b, τε) =
1

n− 1

n∑
j=1
j 6=i

1

b(1 + τε|ε̂j |)
φ

(
ε̂i − ε̂j

b(1 + τε|ε̂j |)

)
,

where b(1 + τε|ε̂j |) is the bandwidth assigned to residual ε̂j and the vector of parameter is now
(h, b, τε). Again, the adaptive random-walk Metropolis algorithm can be used to sample these
parameters, where the prior density of τε ∼ U(0, 1).

2.5. Sampling algorithm

We use the adaptive random-walk Metropolis algorithm of Garthwaite et al. (2010) to sample (h2, b2),
the sampling algorithm is briefly described below. For simplicity of notation, I shall let θ = (h2, b2)
to represent a vector of squared bandwidths.

Step 0 Specify a Gaussian proposal distribution, with an arbitrary starting point h2 and b2. The
starting points can be drawn from a uniform distribution U(0, 1).

Step 1 At the kth iteration, the current state b2(k) is updated as b2(k) = b2(k−1) + τ(k−1)ε, where

ε ∼ N(0, 1), and τ(k−1) is an adaptive tuning parameter with an arbitrary initial value τ(0).
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Step 2 The updated b2(k) is accepted with probability min

{
π
(
b2
(k)
,h2

(k−1)
|y
)

π
(
b2
(k−1)

,h2
(k−1)

|y
) , 1
}

, where π represents

the posterior density.

Step 3 By using the stochastic search algorithm of Robbins and Monro (1951), the tuning parameter
is

τ(k) =

{
τ(k−1) + c(1− p)/k if b2(k) is accepted;

τ(k−1) − cp/k if b2(k) is rejected.

where c =
τ(k−1)

p(1−p) is a varying constant, and p = 0.44 is the optimal acceptance probability
for drawing one parameter while p = 0.234 is the optimal acceptance probability for drawing
multiple parameters (Roberts and Rosenthal 2009).

Step 4 Repeat Steps 1-3 for h2(k), conditional on b2(k) and y.

Step 5 Repeat Steps 1-4 for M + N times, discard
(
h2(0), b

2
(0)

)
,
(
h2(1), b

2
(1)

)
, . . . ,

(
h2(M), b

2
(M)

)
for

burn-in in order to let the effects of the transients wear off, estimate ĥ2 =

∑M+N
k=M+1 h

2
(k)

N and

b̂2 =

∑M+N
k=M+1 b

2
(k)

N . The burn-in period is taken to be M = 1, 000 iterations, and the number of
iterations after burn-in period is N = 10, 000 iterations. The analytical form of the kernel-form
error density can be derived based on h2 and b2. It is noteworthy that a similar error density
result can be obtained by taking the average of the kernel-form error densities computed at all
iterations, but at the cost of much slower computational speed.

2.6. Bayesian model selection

How could the Bayesian model selection be useful in multivariate kernel regression? The answer
lies in the comparison of different error-density assumptions. Under the normal and student-t error
densities, marginal likelihood can be used to compare the kernel-form error density and assumed
Gaussian error density.

In Bayesian inference, model selection or averaging is calculated through the Bayes factor of the
model of interest against a competing model. The Bayes factor reflects a summary of evidence
provided by the data supporting the model as opposed to its competing model. The Bayes factor
is defined as the expectation of likelihood with respect to the prior of parameters. It is seldom
computed as the integral of the product of the likelihood and prior of parameters, but instead is
often computed numerically (Gelfand and Dey 1994; Newton and Raftery 1994; Chib 1995; Kass
and Raftery 1995; Geweke 1999).

Chib (1995) showed that the marginal likelihood under error-density assumption A is expressed as

LA(y) =
L̂A(y|θ)πA(θ)

πA(θ|y)
,

where L̂A(y|θ), πA(θ) and πA(θ|y) denote the kernel likelihood, prior and posterior under error-
density assumption A, respectively. LA(y) is often computed at the posterior estimate of θ. The
numerator has a closed form and can be computed analytically, but the denominator can be
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approximated by the MCMC posterior draws. However, for relatively small number of parameters,
the denominator can be estimated by its kernel density estimator based on the simulated chain of θ
through a posterior sampler.

The Bayes factor of error-density assumption A against error-density assumption B is defined as

LA(y)

LB(y)
.

Based on the Bayes factor, we can determine which model is more superior than a competing model
with different levels of evidence (see Kass and Raftery 1995, for more details).

3. Simulation study

Consider the relationship between y and x = (x1, x2, x3)
> given by

yi = sin(2πx1,i) + 4(1− x2,i)(1 + x2,i) +
2x3,i

1 + 0.8x23,i
+ εi, (4)

for i = 1, 2, . . . , n. A sample of 100 observations was generated by drawing x1,i, x2,i and x3,i
independently from U(0, 1), and εi from either a normal distribution N

(
0, 0.92

)
or the student

distribution with four degrees of freedom t4.

The smooth and non-linear relationship between yi and xi can be modelled by the nonparametric
regression, where bandwidths are estimated through the Bayesian sampling algorithm under the
two error-density assumptions. When the true error density is Gaussian, we find that the Bayesian
sampling algorithm with the Gaussian error density performs better than the one with kernel-form
error density, as measured by the marginal likelihood using Geweke’s method. This can be obtained
as follows:

# install and load the R package

R> install.packages("bbemkr")

R> require(bbemkr)

# set random seed

R> set.seed(123456)

# initial bandwidths obtained from the normal reference rule

x = log(nrr(data_x = data_x, logband = FALSE)^2)

# Initial cost function

inicost = cost_gaussian(x = x, data_x = data_x, data_y = data_ynorm, prior_p = 2, prior_st = 1)

# Burn-in period (error density is Gaussian)

warmup_res = warmup_gaussian(x = x, inicost = inicost, mutsizp = 1.0, data_x = data_x,

data_y = data_ynorm, warm = 1000)
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# MCMC recording period (error density is Gaussian)

mcmc_res = mcmcrecord_gaussian(x = warmup_res$x, inicost = warmup_res$cost,

mutsizp = warmup_res$mutsizplast, data_x = data_x,

data_y = data_ynorm, xm = xm, warm = 1000, M = 1000)

# initial bandwidths obtained from the normal reference rule

x = c(log(nrr(data_x = data_x, logband = FALSE)^2),2)

# Initial cost function

nicost = cost_admkr(x = x, data_x = data_x, data_y = data_ynorm)

# Burn-in period (error density is the kernel-form)

warmup_res_admkr = warmup_admkr(x = x, inicost = inicost, mutsizp = 1.0, errorsizp = 1.0,

data_x = data_x, data_y = data_ynorm, warm=1000)

# MCMC recording period (error density is the kernel-form)

mcmc_res_admkr = mcmcrecord_admkr(x = warmup_res_admkr$x, inicost = warmup_res_admkr$cost,

mutsizp = warmup_res_admkr$mutsizp, errorsizp = warmup_res_admkr$errorsizp,

data_x = data_x, data_y = data_ynorm, xm = xm, warm = 1000, M = 1000)

# marginal likelihoods for both error-density assumptions

round(mcmc_res$marginalike, 2)

round(mcmc_res_admkr$marginalike, 2)

When the error density is t4, we find that the Bayesian sampling algorithm with the kernel-from
error density performs better than the one with Gaussian error density, as measured by the marginal
likelihoods using Chib’s and Geweke’s methods. This can be obtained as follows:

# initial bandwidths obtained from the normal reference rule

x = log(nrr(data_x = data_x, logband = FALSE)^2)

# Initial cost function

inicost = cost_gaussian(x = x, data_x = data_x, data_y = data_yt, prior_p = 2, prior_st = 1)

# set random seed

set.seed(123456)

# Burn-in period (error density is Gaussian)

warmup_res = warmup_gaussian(x = x, inicost = inicost, mutsizp = 1.0, data_x = data_x,

data_y = data_yt, warm = 1000)
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# MCMC recording period (error density is Gaussian)

mcmc_res = mcmcrecord_gaussian(x = warmup_res$x, inicost = warmup_res$cost,

mutsizp = warmup_res$mutsizplast, data_x = data_x,

data_y = data_yt, xm = xm, warm = 1000, M = 1000)

# initial bandwidths obtained from the normal reference rule

x = c(log(nrr(data_x = data_x, logband = FALSE)^2), 2)

# Initial cost function

inicost = cost_admkr(x = x, data_x = data_x, data_y = data_yt)

# set random seed

set.seed(123456)

# Burn-in period (error density is the kernel-form)

warmup_res_admkr = warmup_admkr(x = x, inicost = inicost, mutsizp = 1.0, errorsizp = 1.0,

data_x = data_x, data_y = data_yt, warm = 1000)

# MCMC recording period (error density is the kernel-form)

mcmc_res_admkr = mcmcrecord_admkr(x = warmup_res_admkr$x, inicost = warmup_res_admkr$cost,

mutsizp = warmup_res_admkr$mutsizp,

errorsizp = warmup_res_admkr$errorsizp,

data_x = data_x, data_y = data_yt, xm = xm, warm = 1000, M = 1000)

# marginal likelihoods for both error-density assumptions

round(mcmc_res$marginalike, 2)

round(mcmc_res_admkr$marginalike, 2)

4. Conclusion

This article describes the Bayesian bandwidth estimation method in a multivariate nonparametric
regression, using the R functions that are readily-available in the bbemkr package. The method
allows us to simultaneously estimate optimal bandwidths in the regression function approximated
by the NW estimator and kernel-form error density. Illustrated by a series of simulation studies, we
found that when the error density is correctly specified, the Bayesian method with kernel-form error
density is sub-optimal; when the error density is wrongly specified, the proposed method performs
the best. In practice, given the error density is often unknown, the proposed method provides a
robust approach towards bandwidth estimation.

In future, the Bayesian method described may be extended to other nonparametric estimators for
estimating regression function, such as local linear estimator (Simonoff 1996).
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