Package 'bivarhr'

December 19, 2025

Title Bivariate Hurdle Regression with Bayesian Model Averaging

Version 0.1.5
Description Provides tools for fitting bivariate hurdle negative binomial models with horseshoe priors, Bayesian Model Averaging (BMA) via stacking, and comprehensive causal inference methods including G-computation, transfer entropy, Threshold Vector Autoregressive (TVAR) and Smooth Transition Autoregressive (STAR) models, Dynamic Bayesian Networks (DBN), Hidden Markov Models (HMM), and sensitivity analysis.
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.3
Depends R (>= $4.1.0$)
Imports stats, utils, grDevices, dplyr (>= 1.1.0), rlang, data.table (>= 1.14.0), tidyr, tibble, readr, cli, furrr, future, future.apply, posterior, loo (>= 2.5.0), progressr
Suggests cmdstanr, testthat (>= 3.0.0), MASS, RTransferEntropy, bnlearn, depmixS4, sensemakr, CausalImpact, bsts, vars, tsDyn, openxlsx, ggplot2, bayesplot, Rgraphviz
Additional_repositories https://stan-dev.r-universe.dev
Config/testthat/edition 3
NeedsCompilation no
Author José Mauricio Gómez Julián [aut, cre] (ORCID: https://orcid.org/0009-0000-2412-3150)
Maintainer José Mauricio Gómez Julián <isadore.nabi@pm.me></isadore.nabi@pm.me>
Repository CRAN
Date/Publication 2025-12-19 20:20:16 UTC
Contents
bivarhr-package

2 bivarhr-package

	add_qsig
	build_design
	contrafactual_ATE
	disc_terciles
	export_results
	fit_one
	get_hurdle_model
	load_saved_results
	make_lags
	placebo_temporal
	prewhiten_bin_glm
	prewhiten_count_glm
	prewhiten_rate_glm
	print_floor_smoketest
	read_bma_all
	rolling_oos
	run_dbn
	run_eba
	run_hmm
	run_sensemakr
	run_synth_bsts
	run_transfer_entropy
	run_varx
	select_by_bma
	smoketest_floor_elpd_invariance
	standardize_continuous
	standardize_continuous_in_place
	summarise_hurdle_top3_posthoc
	summarise_placebo_top3_posthoc
	summarise_te_top3_by_type_posthoc
	summarise_te_top3_posthoc
	summarise_tvarstar_posthoc
	summarise_varx_posthoc
Index	43
bivar	hr-package bivarhr: Bivariate Hurdle Regression

Description

Implements bivariate hurdle regression models using Stan/CmdStan with horseshoe priors, Bayesian Model Averaging via stacking, and comprehensive causal inference methods.

Author(s)

Maintainer: José Mauricio Gómez Julián <isadore.nabi@pm.me> (ORCID)

add_qsig 3

add_qsig

Add BH-adjusted q-values and significance stars

Description

Adds Benjamini-Hochberg adjusted q-values and a simple significance code column based on p-values contained in a data frame.

Usage

```
add_qsig(df)
```

Arguments

df

A data frame containing at least a numeric column p_value. If df is NULL or has zero rows, it is returned unchanged.

Details

The function:

- Computes q_value using p.adjust(method = "BH").
- Creates a sig column with significance codes:

```
- "***" for q_value <= 0.001</pre>
```

- "**" for 0.001 < q_value <= 0.01
- "*" for 0.01 < q_value <= 0.05</pre>
- "" otherwise

Value

The input data frame with added columns q_value and sig. If df is NULL or empty, it is returned as is.

build_design

Build Design Matrices for Bivariate Hurdle Model

Description

Constructs design matrices for the zero and count components of both outcome variables with crosslags, trends, regimes, transition dummies, and control variables.

4 contrafactual_ATE

Usage

```
build_design(
  DT,
  k,
  include_C_to_I = TRUE,
  include_I_to_C = TRUE,
  include_trend = TRUE,
  controls = character(0),
  include_regimes = TRUE,
  include_transitions = TRUE)
```

Arguments

DT A data.table with required columns.

k Integer; lag order.

include_C_to_I Logical; include C lags in I equations.

include_I_to_C Logical; include I lags in C equations.

include_trend Logical; include polynomial time trend.

controls Character vector of control variable names.

include_regimes

Logical; include regime dummies.

include_transitions

Logical; include transition dummies.

Value

A list containing design matrices and outcome vectors.

Description

Computes time-varying contrafactual Average Treatment Effects (ATE) for both series (I and C) from a fitted bivariate hurdle negative binomial model. For each time point and posterior draw, the function compares the expected outcome under the observed design matrix with a contrafactual scenario where cross-lag terms and transition covariates are set to zero.

```
contrafactual_ATE(fit_obj, compute_intervals = TRUE, ndraws = 1200, seed = 42)
```

contrafactual_ATE 5

Arguments

fit_obj A list returned by fit_one() (or an equivalent fitting function), containing at least:

- \$fit: a CmdStanR fit object.
- \$des: a list with design matrices X_pi_I, X_mu_I, X_pi_C, X_mu_C, a vector log_exposure50, and an index vector idx.

compute_intervals

Logical; if TRUE, returns posterior means and 95\ FALSE, only posterior means are returned.

ndraws Integer; maximum number of posterior draws to use. If ndraws exceeds the

number of available draws, it is truncated.

seed Integer; random seed used to subsample posterior draws.

Details

The function identifies in the design matrices:

- Cross-lag terms via column names containing "zC_L" / "C_L" (for I) and "zI_L" / "I_L" (for C).
- Transition covariates via column names starting with "trans_".

For each time point t and posterior draw s, the expected value under the observed design $(E[Y \mid X])$ is contrasted with a contrafactual design where these cross-lag and transition columns are set to zero $(E[Y \mid X_{cf}])$. The ATE at time t is defined as the posterior distribution of $E[Y \mid X] - E[Y \mid X_{cf}]$, computed separately for I and C.

Value

A tibble with one row per effective time index (length des\$idx). If compute_intervals = TRUE, the columns are:

- t: time index (from des\$idx).
- ATE_I_mean, ATE_I_low, ATE_I_high: posterior mean and 95\
- ATE_C_mean, ATE_C_low, ATE_C_high: posterior mean and 95\

If compute_intervals = FALSE, only ATE_I_mean and ATE_C_mean are returned (plus t).

Examples

```
if (interactive() && requireNamespace("cmdstanr", quietly = TRUE)) {
    n <- 120
    DT <- data.table::data.table(
        I = rpois(n, 5), C = rpois(n, 3),
        Regime = factor(sample(c("A","B","C"), n, TRUE)),
        trans_PS = c(rep(1,5), rep(0,n-5)),
        trans_SF = c(rep(0,60), rep(1,5), rep(0,n-65)),
        trans_FC = rep(0, n),
        log_exposure50 = log(runif(n, 40, 60))
)</pre>
```

6 export_results

```
fit_obj <- fit_one(DT, k = 1, spec = "C")
  ate_tab <- contrafactual_ATE(fit_obj, compute_intervals = TRUE)
  head(ate_tab)
}</pre>
```

disc_terciles

Discretize Numeric Vector into Terciles

Description

Converts a numeric vector into an ordered factor with three levels (low, medium, high) using deterministic percent ranks to break ties.

Usage

```
disc_terciles(x)
```

Arguments

Х

Numeric vector to discretize.

Value

An ordered factor with levels "low", "medium", "high".

Examples

```
x \leftarrow c(1, 2, 3, 4, 5, 6, 7, 8, 9)
disc_terciles(x)
```

export_results

Export Analysis Results

Description

Exports analysis results to Excel and/or CSV format.

```
export_results(results, output_dir, format = "xlsx", verbose = TRUE)
```

fit_one 7

Arguments

results Named list containing analysis results. Expected components include: hurdle, te, te_by_type (list with counts/rates/binary), placebo, tvarstar, varx, eba, dbn_arcs, hmm, sensemakr_I, sensemakr_C, oos, ate.

output_dir Directory path for output files. Created if it does not exist.

format Character; output format. One of "xlsx", "csv", or "both".

verbose Logical; if TRUE, print progress messages.

Value

Invisible path to output directory.

Examples

```
results <- list(
  hurdle = data.frame(model = "test", elpd = -100),
  te = data.frame(dir = "I->C", stat = 0.5, p_value = 0.01)
)
export_results(results, tempdir(), format = "both")
```

fit_one

Fit Single Bivariate Hurdle Model

Description

Fits a bivariate hurdle negative binomial model with horseshoe priors using Stan/CmdStan.

```
fit_one(
 DT,
  k,
  spec = c("A", "B", "C", "D"),
  controls = character(0),
 model = NULL,
  output_dir = NULL,
  iter_warmup = 1000,
  iter_sampling = 1200,
  chains = 4,
  seed = NULL,
  adapt_delta = 0.95,
 max_treedepth = 12,
  threads_per_chain = 1L,
  hs_tau0 = 0.5,
 hs_slab_scale = 5,
```

8 fit_one

```
hs_slab_df = 4,
verbose = TRUE
)
```

Arguments

DT A data.table with the data.

k Integer; lag order.

spec Character; model specification ("A", "B", "C", "D").

controls Character vector of control variable names.

model A compiled CmdStan model object. If NULL, the package default model is

loaded.

output_dir Directory for CmdStan output files. If NULL, uses a temporary directory.

threads_per_chain

Integer; threads per chain.

hs_tau0 Numeric; horseshoe tau0 parameter.

hs_slab_df Numeric; horseshoe slab degrees of freedom.

verbose Logical; print progress messages.

Value

A list with components:

fit The CmdStanMCMC fit object.

des The design matrices used. spec The model specification.

k The lag order.

hs_tau0, hs_slab_scale, hs_slab_df

Horseshoe hyperparameters.

controls Control variables used.

output_dir Directory with output files.

get_hurdle_model 9

	1 17	
get	hurdle.	model

Get Default Hurdle Model

Description

Loads and compiles the package's default Stan model.

Usage

```
get_hurdle_model()
```

Value

A compiled CmdStanModel object.

load_saved_results

Load Saved Results from Directory

Description

Loads previously saved .rds result files from a specified directory.

Usage

```
load_saved_results(
 dir_out,
 which = c("varx", "tsdyn", "bma", "dbn", "hmm", "sensemakr", "synth"),
  verbose = TRUE
)
```

Arguments

dir_out Directory containing saved .rds files. Character vector specifying which results to load. Valid options: "varx", "tswhich

dyn", "bma", "dbn", "hmm", "sensemakr", "synth". Default loads all available.

verbose Logical; if TRUE, print messages about loaded files.

Value

Named list of loaded objects. Components not found are NULL.

10 placebo_temporal

Examples

```
# 1. Create a temporary directory (CRAN safe)
tmp_dir <- file.path(tempdir(), "test_results")
dir.create(tmp_dir, showWarnings = FALSE)

# 2. Create dummy data files matching the names expected by the function
saveRDS(list(aic = 100), file.path(tmp_dir, "varx_fit.rds"))
saveRDS(list(model = "BMA"), file.path(tmp_dir, "best_fit_bma.rds"))

# 3. Load the results (this will now work correctly)
results <- load_saved_results(tmp_dir, which = c("varx", "bma"))

# 4. Clean up
unlink(tmp_dir, recursive = TRUE)</pre>
```

make_lags

Create Lag Matrix

Description

Creates a matrix of lagged values for a numeric vector.

Usage

```
make_lags(x, k)
```

Arguments

x Numeric vector.

k Integer; maximum lag order.

Value

A matrix with k columns containing lags 1 through k.

placebo_temporal

Temporal Placebo Test via Time-Index Permutations

Description

Implements a temporal placebo test for the bivariate hurdle model by randomly permuting the time ordering of DT, re-estimating the model on each permuted dataset, and comparing the PSIS-LOO ELPD of the original fit against the permuted fits.

placebo_temporal 11

Usage

```
placebo_temporal(
  DT,
  spec = "C",
  k = 2,
  controls = character(0),
  n_perm = 10,
  seed = 999,
  dir_csv = NULL
)
```

Arguments

DT	A data.table (or data.frame) containing the data used by fit_one().
spec	Character scalar; model specification (e.g. "A", "B", "C", "D") passed to fit_one().
k	<pre>Integer; lag order passed to fit_one().</pre>
controls	Character vector of control variable names passed to fit_one().
n_perm	Integer; number of temporal permutations (placebo datasets) to run.
seed	Integer; base random seed used for reproducibility of the original fit and the permutations.
dir_csv	Character scalar; directory path to save the summary CSV. If NULL (default), the CSV is not saved to disk.

Details

The function:

- Fits the model on the original DT via fit_one(), extracts "log_lik_joint" and computes PSIS-LOO (with moment_match = TRUE).
- For each of n_perm iterations, permutes the row order of DT, refits the model on the permuted data, recomputes PSIS-LOO, and stores the permuted ELPD.
- Reports, for each permutation, the original ELPD, the permuted ELPD, and their difference (elpd_orig elpd_perm).

This procedure evaluates whether the temporal structure captured by the model is informative: if the model is exploiting genuine time dependence, the original ELPD should typically be higher than that of the permuted (time-scrambled) datasets.

The function assumes that fit_one() is available in the search path.

Value

A data. frame with one row per permutation and columns:

- perm: permutation index $(1, \ldots, n_perm)$.
- elpd_orig: ELPD of the original (non-permuted) fit.
- elpd_perm: ELPD of the model fit on the permuted data.
- diff: difference elpd_orig elpd_perm.

prewhiten_bin_glm

Examples

```
# 1. Create a temporary directory for output
tmp_dir <- file.path(tempdir(), "placebo_out")</pre>
dir.create(tmp_dir, showWarnings = FALSE)
# 2. Create dummy data (DT)
# Needed because R CMD check runs in a clean environment
N <- 50
DT <- data.frame(</pre>
  time = 1:N,
  y = rpois(N, lambda = 4),
  X1 = rnorm(N),
  X2 = rnorm(N)
)
# Ensure it's a data.table if fit_one expects it, or leave as DF
# (The function internally ensures data.table behavior)
# 3. Define auxiliary parameters
k_grid <- 0:1
# 4. Run the function
# We use a small n_perm for the example to run faster
  out_placebo <- placebo_temporal(DT, spec = "C", k = 1,</pre>
                                   controls = c("X1", "X2"),
                                   n_{perm} = 2, seed = 999,
                                   dir_csv = tmp_dir)
  head(out_placebo)
})
# 5. Cleanup
unlink(tmp_dir, recursive = TRUE)
```

prewhiten_bin_glm

Pre-whiten binary series with logistic GLM

Description

Fits a logistic regression (binomial GLM with logit link) to a binary 0/1 response and returns Pearson residuals as a pre-whitened series.

```
prewhiten_bin_glm(DT, yname)
```

prewhiten_count_glm 13

Arguments

DT

A data. frame or data. table containing the binary response and covariates. It must include at least:

- The binary variable named by yname (values 0/1).
- t_norm: normalized time index.
- Regime, EconCycle, PopDensity, Epidemics, Climate, War.

yname

Character scalar; name of the binary response column in DT. The function checks that all values are in c(0, 1) and stops otherwise.

Value

A numeric vector of Pearson residuals (one per row in DT used in the fit).

Examples

```
if (interactive()) {
    n <- 100
    DT <- data.frame(
        t_norm = seq_len(n) / n,
        I_zero = rbinom(n, 1, 0.3),
        Regime = factor(sample(c("A","B"), n, TRUE)),
        EconCycle = rnorm(n), PopDensity = runif(n),
        Epidemics = rbinom(n, 1, 0.1), Climate = rnorm(n), War = rbinom(n, 1, 0.05)
)
    r_I_zero <- prewhiten_bin_glm(DT, "I_zero")
    head(r_I_zero)
}</pre>
```

prewhiten_count_glm

Pre-whiten count series with GLM / NegBin model

Description

Fits a generalized linear model for count data using either a negative binomial model with log link and offset, or a Poisson fallback, and returns Pearson residuals to be used as a pre-whitened series.

Usage

```
prewhiten_count_glm(DT, yname)
```

Arguments

DT

A data.frame or data.table containing the response and covariates. It must include at least:

- The count variable named by yname.
- t_norm: normalized time index.

14 prewhiten_rate_glm

- Regime, EconCycle, PopDensity, Epidemics, Climate, War.
- log_exposure50: log exposure (offset).

yname

Character scalar; name of the count response column in DT.

Details

The function first attempts to fit a negative binomial GLM via MASS::glm.nb() with a log link and log_exposure50 as an offset. If the fit fails (e.g., due to convergence issues), it falls back to a Poisson GLM via glm(family = poisson()) with the same formula and offset.

Value

A numeric vector of Pearson residuals (one per row in DT used in the fit).

Examples

```
if (interactive()) {
  n <- 100
  DT <- data.frame(
    t_norm = seq_len(n) / n,
    I = rpois(n, 5),
    Regime = factor(sample(c("A","B"), n, TRUE)),
    EconCycle = rnorm(n), PopDensity = runif(n),
    Epidemics = rbinom(n, 1, 0.1), Climate = rnorm(n), War = rbinom(n, 1, 0.05),
    log_exposure50 = log(runif(n, 40, 60))
  )
  r_I <- prewhiten_count_glm(DT, "I")
  head(r_I)
}</pre>
```

prewhiten_rate_glm

Pre-whiten rate series with log-link Gaussian GLM

Description

Fits a Gaussian GLM with log link to a rate variable (count/exposure) without offset, applying a small lower bound to avoid zeros, and returns Pearson residuals as a pre-whitened series.

```
prewhiten_rate_glm(DT, yname)
```

print_floor_smoketest 15

Arguments

DT

A data.frame or data.table containing the rate variable and covariates. It must include at least:

- The rate variable named by yname.
- t_norm: normalized time index.
- Regime, EconCycle, PopDensity, Epidemics, Climate, War.

yname

Character scalar; name of the rate response column in DT.

Details

The response y is first sanitized via y_safe <- pmax(y, 1e-8) to avoid taking logs of zero. The model is then fit with glm(family = gaussian(link = "log")).

Value

A numeric vector of Pearson residuals (one per row in DT used in the fit).

Examples

```
if (interactive()) {
    n <- 100
    DT <- data.frame(
        t_norm = seq_len(n) / n,
        I_rate = rgamma(n, 2, 1),
        Regime = factor(sample(c("A","B"), n, TRUE)),
        EconCycle = rnorm(n), PopDensity = runif(n),
        Epidemics = rbinom(n, 1, 0.1), Climate = rnorm(n), War = rbinom(n, 1, 0.05)
    )
    r_I_rate <- prewhiten_rate_glm(DT, "I_rate")
    head(r_I_rate)
}</pre>
```

print_floor_smoketest Print summary of FLOOR smoke test (ELPD ranking invariance)

Description

Nicely prints a summary of the FLOOR smoke test produced by smoketest_floor_elpd_invariance, indicating whether the ELPD-based ranking of models is invariant across different FLOOR constants and listing the combined results.

```
print_floor_smoketest(st)
```

16 read_bma_all

Arguments

st

A list returned by smoketest_floor_elpd_invariance, containing at least:

- same_order: logical flag indicating whether the ELPD ranking is identical for all FLOOR values.
- combined: data frame or tibble with columns FLOOR, fit_id, elpd, elpd_se, and rank_elpd, among others.

Details

The function uses **cli** to print a section header and an info message stating whether the ELPD ranking is invariant across values of FLOOR. It then arranges the combined table by FLOOR and decreasing elpd, selects a subset of columns, and prints it to the console.

This is a convenience/reporting helper and does not modify st.

Value

Invisibly returns the input object st, so it can be used in pipes if desired.

Examples

```
# 1. Define dummy data inside the example so it runs on CRAN checks
st_dummy <- list(</pre>
 same_order = TRUE,
 combined = data.frame(
             = rep(c(-1e6, -1e4), each = 2),
   FLOOR
   fit_id
              = rep(c("model_1", "model_2"), 2),
   elpd
             = c(-100.1, -101.3, -100.1, -101.3),
   elpd_se = c(1.2, 1.3, 1.2, 1.3),
    rank_elpd = c(1L, 2L, 1L, 2L)
 )
)
# 2. Run the function
print_floor_smoketest(st_dummy)
```

read_bma_all

Read and consolidate BMA weight tables

Description

Searches for BMA weight CSV files produced by the Hurdle-NB model, reads them using automatic delimiter detection, and returns a single stacked data frame with normalized column names and a combo identifier.

rolling_oos 17

Usage

```
read_bma_all(dir_csv, dir_out, stop_if_empty = TRUE, verbose = TRUE)
```

Arguments

dir_csv	Character scalar; directory where BMA CSV files are expected (for example "bma_weights_specC_ctrl*.csv").
dir_out	Character scalar; output directory used during the experiment, which may contain BMA files or a fallback RDS object.
stop_if_empty	Logical; if TRUE, an informative error is thrown when no valid BMA tables are found. If FALSE, a warning is issued and an empty tibble is returned.
verbose	Logical; if TRUE, prints diagnostic messages about the search paths, files found, and detected ELPD column.

Details

The function:

- Looks for CSV files matching the pattern "bma_weights_specC_ctrl*.csv" in dir_csv, and if none are found, searches recursively in dir_out.
- Reads each candidate file via rc_auto() and keeps only non-empty data frames.
- If no CSV files are usable, optionally falls back to an RDS file "experimento_mejorado_all.rds" under dir_out and tries to extract BMA tables from allobj\$bma.
- Normalizes column names with normalize_names(), ensures a combo column exists, detects the ELPD column, and sorts rows by decreasing ELPD.

Value

A data frame with all BMA tables stacked and an added combo_id column (source identifier) and a combo column (control combo). If nothing is found and stop_if_empty = FALSE, an empty tibble is returned.

rolling_oos	Rolling Out-of-Sample Forecast Evaluation	

Description

Computes rolling out-of-sample (OOS) forecast accuracy for the selected bivariate hurdle model by repeatedly truncating the sample at different cut points Tcut, generating multi-step-ahead predictive distributions, and summarizing them via RMSE for I and C.

18 rolling_oos

Usage

```
rolling_oos(
  best_fit,
  DT,
  h = 5,
  cuts = seq(round(0.6 * nrow(DT)), round(0.9 * nrow(DT)), length.out = 5)
)
```

Arguments

best_fit A fitted model object as returned by fit_one(), containing at least:

- \$fit: CmdStanR fit object with posterior draws.
- \$des: design matrices used by the model.
- \$k: lag order used in the fit.

This object is passed directly to predict_multistep().

DT A data. frame or data. table containing the original time series and covariates

used to fit the model, including at least columns I and C.

Integer; maximum forecast horizon (number of steps ahead) requested at each

cut. For a given Tcut, the effective horizon is min(h, nrow(DT) - Tcut).

Numeric vector of time indices (training end points) at which to perform the

Numeric vector of time indices (training end points) at which to perform the rolling evaluation. By default, a grid of five equally spaced cut points between 60\used: seq(round(0.6 * nrow(DT)), round(0.9 * nrow(DT)), length.out

= 5).

Details

h

For each Tcut in cuts, the function:

- Calls predict_multistep() with fit_obj = best_fit, the full DT, lag k = best_fit\$k, and horizon h_eff = min(h, nrow(DT) Tcut) to obtain posterior predictive paths pred_I and pred_C.
- 2. Computes the posterior-mean forecast for each step (mI, mC) as the column means of pred_I and pred_C.
- 3. Extracts the realized outcomes $yI = I[(Tcut + 1): (Tcut + h_eff)]$ and analogously for yC.
- 4. Computes RMSE for each series: RMSE_I = sqrt(mean((yI mI)^2)), RMSE_C = sqrt(mean((yC mC)^2)).

Progress is reported via **progressr**. The resulting table is written as "rolling_oos.csv" in the directory specified by a global character scalar dir_csv.

Value

A data. frame with one row per Tcut and columns:

- Tcut: training end index.
- RMSE_I: rolling OOS RMSE for series I.
- RMSE_C: rolling OOS RMSE for series C.

run_dbn

Examples

```
# Minimal synthetic example illustrating the expected data structure:
set.seed(123)
DT <- data.frame(
  id = rep(1:10, each = 2),
  t = rep(1:2, times = 10),
  I = rpois(20, lambda = 0.5),
  C = rpois(20, lambda = 1.0)
)
# Directory for CSV output (in practice, use a persistent path chosen
# by the user):
dir_csv <- file.path(tempdir(), "bivarhr_oos_csv")</pre>
# Typical workflow (commented out to avoid heavy computation and
# external dependencies such as CmdStan during R CMD check):
# best_fit <- fit_one(</pre>
#
    data = DT,
   k = 2,
#
   spec = "C"
# )
# oos_res <- rolling_oos(</pre>
   fit
            = best_fit,
   data
            = DT,
            = 6.
   dir_csv = dir_csv
#)
# print(oos_res)
```

run_dbn

Fit a Two-Slice Dynamic Bayesian Network (DBN) for I, C, and Regime

Description

Constructs and estimates a simple two-slice Dynamic Bayesian Network (DBN) over discretized versions of I, C, and Regime using **bnlearn**. The network includes current and lag-1 nodes for each variable, with structural constraints enforcing the DBN topology.

```
run_dbn(DT)
```

20 run_dbn

Arguments

DT

A data. frame or data. table containing at least:

- I_cat, C_cat: discretized (e.g., tercile) versions of I and C.
- Regime: categorical regime indicator.

The function internally renames these to Ic, Cc, and R, constructs their lag-1 counterparts, and drops rows with missing lags.

Details

The DBN is defined on the nodes Ic, Cc, R, Ic_l1, Cc_l1, R_l1. A blacklist is used to forbid arrows from current to lagged nodes, while a whitelist ensures arrows from lagged to current nodes:

```
    Blacklist: Ic → Ic_11, Cc → Cc_11, R → R_11.
    Whitelist: Ic_11 → Ic, Cc_11 → Cc, R_11 → R.
```

The structure is learned via hill-climbing (bnlearn::hc()) with BDe score (score = "bde") and imaginary sample size iss = 10. Parameters are then estimated via bnlearn::bn.fit() using Bayesian estimation with the same iss.

If **Rgraphviz** is available, a graph of the learned DAG is produced and saved as "dbn_graph.png" in the directory specified by a global object dir_figs (character scalar). The preprocessed data used to fit the DBN are written to "dbn_data.csv" in dir_csv, and the fitted objects are saved as "dbn_fit.rds" in dir_out.

The function assumes that dir_csv, dir_out, and (optionally) dir_figs exist as global character scalars specifying output directories.

Value

A list with components:

- dag: the learned Bayesian network structure (bnlearn "bn" object).
- fit: the fitted DBN ("bn.fit" object).
- data: the processed data frame (Ic, Cc, R, and their lag-1 versions) used to learn/fit the DBN.

Examples

```
library(data.table)
# 1. Create dummy data (Fixed: wrapped in factor() for bnlearn)
DT <- data.table(
    I_cat = factor(sample(c("Low", "Medium", "High"), 100, replace = TRUE)),
    C_cat = factor(sample(c("Low", "Medium", "High"), 100, replace = TRUE)),
    Regime = factor(sample(c("Growth", "Crisis"), 100, replace = TRUE))
)

# 2. Define global paths using tempdir()
tmp_dir <- tempdir()
dir_csv <- file.path(tmp_dir, "csv")
dir_out <- file.path(tmp_dir, "dbn")</pre>
```

run_eba 21

```
dir_figs <- file.path(tmp_dir, "figs")

dir.create(dir_csv, showWarnings = FALSE, recursive = TRUE)
dir.create(dir_out, showWarnings = FALSE, recursive = TRUE)
dir.create(dir_figs, showWarnings = FALSE, recursive = TRUE)

# 3. Run the function
dbn_res <- run_dbn(DT)

# Inspect the result
print(dbn_res$dag)</pre>
```

run_eba

Extreme-Bounds Analysis (EBA) over Control-Variable Combinations

Description

Runs an Extreme-Bounds Analysis (EBA) over a predefined set of control variable combinations, fitting (or re-fitting) the bivariate hurdle model for each combination and extracting posterior mean coefficients for all regression blocks (mu_I, pi_I, mu_C, pi_C).

Usage

```
run_eba(DT, spec = "C", k_bma_table = NULL, seed = 123)
```

Arguments

DT A data.table or data.frame with the data passed to fit_one().

spec Character scalar; model specification (e.g.\ "A", "B", "C", "D") passed to fit_one().

k_bma_table Optional object (typically a named list or list-like structure) indexed by control-

combination tags that indicates for which combinations a BMA selection table already exists. If $k_bma_table[[tag]]$ is NULL or $bma_weights_* CSV$ is missing, the function falls back to a default fit with k=2 and default horseshoe

hyperparameters.

seed Integer; base random seed for the fits. For different control combinations, the

seed is jittered to avoid identical pseudo-random sequences.

Details

The function assumes the existence of:

- control_combos: a named object whose names are control tags (e.g.\ "None", "X1+X2", "X1+X3+X4"), defining which control sets to explore.
- dir_csv: a character scalar with the directory where CSV files will be read/written.
- fit_one(): a function that fits a single bivariate hurdle model and returns at least \$fit (Cmd-StanR fit) and \$des (design matrices).

22 run_eba

For each control-combination tag tag:

• If a BMA weights file "bma_weights_spec<spec>_ctrl<tag>.csv" exists in dir_csv and k_bma_table[[tag]] is not NULL, the top-weighted row (highest weight) is used to select k and horseshoe hyperparameters (hs_tau0, hs_slab_scale, hs_slab_df) for the fit.

- Otherwise, the model is fit with k = 2 and default horseshoe hyperparameters.
- Posterior means of the regression coefficients with prefixes "b_mu_I", "b_pi_I", "b_mu_C",
 "b_pi_C" are extracted and mapped back to the corresponding column names of the design
 matrices.

All coefficient summaries are stacked into a single table and written to "eba_coefficients.csv" in dir_csv.

Value

A data. frame with the columns:

- name: name of the covariate (design-matrix column).
- mean: posterior mean of the corresponding coefficient.
- block: block identifier ("mu_I", "pi_I", "mu_C", "pi_C").
- combo: control-combination tag used for that fit.

Examples

```
library(data.table)
# 1. Create a COMPLETE dummy dataset
# This satisfies ALL requirements of build_design() and fit_one()
DT <- data.table(
  year = 2000:2020,
  # Dependent variables (Raw)
  I = rpois(21, lambda = 4),
  C = rpois(21, lambda = 3),
  # Dependent variables (Standardized/Transformed - required by build_design)
  zI = rnorm(21),
  zC = rnorm(21),
  # Trend variables (required if include_trend=TRUE)
  t_norm = seq(-1, 1, length.out = 21),
  t_{poly2} = seq(-1, 1, length.out = 21)^2,
  # Regime (required if include_regimes=TRUE)
  Regime = factor(sample(c("A", "B"), 21, replace = TRUE)),
  # Transition dummies (required if include_transitions=TRUE)
  # Specifically: trans_PS, trans_SF, trans_FC
  trans_PS = sample(0:1, 21, replace = TRUE),
  trans_SF = sample(0:1, 21, replace = TRUE),
  trans_FC = sample(0:1, 21, replace = TRUE),
  # Exposure offset (required by fit_one)
  log_exposure50 = rep(0, 21),
  # Control variables (used in this specific example)
  X1 = rnorm(21),
  X2 = rnorm(21),
```

run_hmm 23

```
X3 = rnorm(21)
# 2. Define global objects required by run_eba
control_combos <- list(</pre>
  None
          = character(0),
  "X1+X2" = c("X1", "X2"),
  "X1+X2+X3"= c("X1", "X2", "X3")
)
# 3. Define global paths using tempdir()
tmp_dir <- tempdir()</pre>
dir_csv <- file.path(tmp_dir, "csv")</pre>
if (!dir.exists(dir_csv)) dir.create(dir_csv, recursive = TRUE)
# 4. Run the function
# Note: This will attempt to run Stan. If CmdStan is not configured,
# it might fail later, but the DATA error is fixed.
  eba_tab <- run_eba(DT, spec = "C", k_bma_table = list(), seed = 123)</pre>
  print(head(eba_tab))
})
```

run_hmm

Hidden Markov Model (HMM) for Path Dependence (Counts I and C)

Description

Fits a univariate time-series Hidden Markov Model (HMM) with Poisson emissions for the count variables I and C using **depmixS4**. The estimated state sequence is exported and the fit object is saved to disk.

Usage

```
run_hmm(DT, nstates = 3, seed = NULL)
```

Arguments

DT	A data.frame or data.table containing at least the columns I and C, interpreted as non-negative count series observed over time.
nstates	Integer; number of latent Markov states to fit in the HMM (default is 3).
seed	Integer or NULL; optional seed for reproducibility. If NULL (default), no seed is set and results may vary between runs.

24 run_hmm

Details

The model is specified via depmixS4::depmix() as a multivariate Poisson HMM with two observed series:

- I ~ 1
- C~1

and nstates hidden regimes. The function:

- 1. Builds a data frame with columns I and C.
- 2. Constructs the HMM with Poisson emission distributions for both series.
- 3. Optionally sets a random seed if the seed argument is provided.
- 4. Fits the model with fit(mod, verbose = FALSE) wrapped in try() to avoid stopping on optimization failures.
- 5. If fitting succeeds, extracts the posterior state sequence via depmixS4::posterior().

The function assumes that two global character scalars are defined:

- dir_csv: directory where the state sequence CSV will be written.
- dir_out: directory where the fitted HMM object RDS will be saved.

A CSV file named "hmm_states.csv" is written to dir_csv with columns t (time index) and state (most probable state). The fitted HMM object is saved as "hmm_fit.rds" in dir_out.

Value

If the optimization succeeds, a list with components:

- fit: the fitted "depmix" model object.
- states: integer vector of inferred latent states (one per time point).

If fitting fails (e.g., non-convergence), the function returns NULL.

Examples

```
library(data.table)
# 1. Create dummy data (Only 'I' and 'C' counts are required by this function)
DT <- data.table(
    I = rpois(50, lambda = 4),
    C = rpois(50, lambda = 3)
)

# 2. Define global paths using tempdir() (Fixes CRAN policy)
# run_hmm expects these variables to exist in the global environment
tmp_dir <- tempdir()
dir_csv <- file.path(tmp_dir, "csv")
dir_out <- file.path(tmp_dir, "hmm")

dir.create(dir_csv, showWarnings = FALSE, recursive = TRUE)</pre>
```

run_sensemakr 25

```
dir.create(dir_out, showWarnings = FALSE, recursive = TRUE)
# 3. Run the function
# Using nstates=2 for a faster example check
res_hmm <- run_hmm(DT, nstates = 2)
# Inspect result if successful
if (!is.null(res_hmm)) {
   print(table(res_hmm$states))
}</pre>
```

run_sensemakr

Sensitivity Analysis to Unobserved Confounding (sensemakr)

Description

Performs the Cinelli & Hazlett style sensitivity analysis using **sensemakr** for two linear models:

```
• I ~ trans_FC + t_norm + PopDensity + War
```

• C ~ trans_FC + t_norm + PopDensity + War

treating trans_FC as the exposure of interest and using PopDensity and War as benchmark covariates.

Usage

```
run_sensemakr(DT)
```

Arguments

DT

A data.frame or data.table containing at least the columns I, C, trans_FC, t_norm , PopDensity, and War.

Details

For each outcome (I and C), an OLS model is estimated and passed to sensemakr::sensemakr() with:

```
• treatment = "trans_FC"
```

• benchmark_covariates = c("PopDensity", "War")

The resulting sensemakr objects are summarized via summary(), converted to data frames, and written to CSV files:

```
• "sensemakr_I_FC.csv" for outcome I.
```

• "sensemakr_C_FC.csv" for outcome C.

The function assumes that a global character scalar dir_csv is defined and points to the directory where CSV outputs should be saved.

26 run_synth_bsts

Value

A list with components:

- I: the sensemakr object for the model with outcome I.
- C: the sensemakr object for the model with outcome C.

Examples

```
library(data.table)
\# 1. Create dummy data with ALL columns required by the lm() formulas
DT <- data.table(</pre>
  I = rpois(30, lambda = 5),
  C = rpois(30, lambda = 3),
  trans_FC = sample(0:1, 30, replace = TRUE),  # Treatment
  t_norm = rnorm(30),
                                                  # Trend/Time
  PopDensity = rnorm(30),
                                                 # Benchmark Covariate
  War = sample(0:1, 30, replace = TRUE)
                                                # Benchmark Covariate
)
# 2. Define global path using tempdir() (Fixes CRAN policy)
# run_sensemakr writes output to 'dir_csv', so it must be defined.
tmp_dir <- tempdir()</pre>
dir_csv <- file.path(tmp_dir, "csv")</pre>
if (!dir.exists(dir_csv)) dir.create(dir_csv, recursive = TRUE)
# 3. Run the function
# This requires the 'sensemakr' package to be installed.
res_sense <- run_sensemakr(DT)</pre>
# Inspect results
if (!is.null(res_sense$I)) {
  print(summary(res_sense$I))
}
```

run_synth_bsts

Synthetic Control via BSTS (CausalImpact)

Description

Builds a simple synthetic-control-style analysis using **CausalImpact**/BSTS for either I or C as the outcome, with treatment defined endogenously by a high level of a chosen control variable.

```
run_synth_bsts(DT, outcome = c("I", "C"), control_var, seed = 123)
```

run_synth_bsts 27

Arguments

DT A data. frame or data. table containing at least:

• I, C: outcome candidates (counts or rates).

• EconCycle, PopDensity, Epidemics, Climate, War, t_norm: predictors used to build the synthetic control.

• The column named in control_var, used to define the treated period.

Character; which outcome series to use as the response, one of "I" or "C".

control_var Character scalar; name of a column in DT whose high values define the treated

period (e.g., intensity of some intervention or shock proxy).

seed Integer; random seed for reproducibility of the BSTS fit.

Details

The function:

outcome

1. Selects the outcome series y <- DT[[outcome]].

- 2. Builds the predictor matrix from EconCycle, PopDensity, Epidemics, Climate, War, and t_norm.
- 3. Uses control_var to define a treated period as observations where control_var is in the top third (>= 2/3 quantile). If fewer than 5 treated observations are found, the function returns NULL.
- 4. Sets the intervention start time t0 as one period before the first treated index (with a minimum of 10 observations in the pre-period). The pre- and post-intervention windows are: pre.period = c(1, t0) and post.period = c(t0 + 1, length(y)).
- 5. Calls CausalImpact::CausalImpact() on the combined cbind(y, preds) matrix, with model.args = list(nseasons = 1).

From the resulting impact object, the function extracts the average absolute and relative effects from impact\$summary and stores them in a small summary table with two rows: "abs_effect_mean" and "rel_effect_mean".

A CSV file named "causalimpact_<control_var>_on_<outcome>.csv" is written to the directory specified by a global character scalar dir_csv. If CausalImpact() fails, the function returns NULL.

Value

On success, a list with components:

- impact: the full CausalImpact object.
- summary: a data.frame with the mean absolute and relative effects.

If the treated period is too short or the model fit fails, the function returns NULL.

28 run_transfer_entropy

Examples

```
library(data.table)
# 1. Create dummy data with ALL required predictors
# The function explicitly selects: EconCycle, PopDensity, Epidemics, Climate, War, t_norm
DT <- data.table(
  year = 2000:2029,
  I = rpois(30, lambda = 10),
  C = rpois(30, lambda = 8),
  # Predictors required by run_synth_bsts internal selection
  EconCycle = rnorm(30),
  PopDensity = rnorm(30),
  Epidemics = rnorm(30),
  Climate = rnorm(30),
  War = rnorm(30),
  t_norm = seq(-1, 1, length.out = 30)
# 2. Define global paths using tempdir() (Fixes CRAN policy)
# run_synth_bsts writes output to 'dir_csv'
tmp_dir <- tempdir()</pre>
dir_csv <- file.path(tmp_dir, "csv")</pre>
if (!dir.exists(dir_csv)) dir.create(dir_csv, recursive = TRUE)
# 3. Run the function
# We use "War" as the control variable to define the treatment period
res_I <- run_synth_bsts(DT, outcome = "I", control_var = "War", seed = 123)</pre>
# Inspect results if successful (might return NULL if fit fails or not enough data)
if (!is.null(res_I)) {
  print(res_I$summary)
```

Description

Computes pairwise transfer entropy between I and C for three transformations of the data: raw counts, rates (count/exposure), and binary presence/absence. Each series is first pre-whitened via a GLM and transfer entropy is then estimated for a grid of lags using **RTransferEntropy**. Results are written to separate CSV files and to a combined summary.

```
run_transfer_entropy(
   DT,
```

run_transfer_entropy 29

```
lags = 1:3,
shuffles = 1000,
seed = 123,
use_progress = TRUE
)
```

Arguments

DT A data. table or data. frame containing at least the following columns:

- I, C: count variables (non-negative integers).
- exposure 50: exposure used to form rates (must be strictly positive).
- log_exposure50: log of the exposure (offset).
- t_norm, Regime, EconCycle, PopDensity, Epidemics, Climate, War: covariates used by the pre-whitening GLMs.

lags Integer vector of lag orders L for which transfer entropy is computed (passed to

lx and ly in RTransferEntropy::transfer_entropy()).

shuffles Integer; number of shuffle replications for the surrogate-distribution-based sig-

nificance test in transfer_entropy().

seed Integer; base random seed used for reproducibility of the pre-whitening and

transfer entropy computations.

use_progress Logical; reserved for future use to toggle progress reporting. Currently not used.

Details

The function proceeds in four steps:

- 1. **Counts**: I and C are pre-whitened via prewhiten_count_glm (Negative Binomial with offset and Poisson fallback). Transfer entropy is computed in both directions (I→C and C→I) for each lag in lags. Results are saved to "transfer_entropy_counts.csv".
- 2. **Rates**: I and C are divided by exposure50, pre-whitened via prewhiten_rate_glm, and transfer entropy is recomputed. Results are saved to "transfer_entropy_rates.csv". A check is performed to ensure exposure50 > 0 for all observations.
- 3. **Binary**: I and C are recoded as 0/1 presence/absence indicators and pre-whitened via prewhiten_bin_glm. Transfer entropy is computed again and results are saved to "transfer_entropy_binary.csv".
- 4. **Combined**: All tables are stacked into a single data frame with a type column ("counts", "rates", "binary") and written to "transfer_entropy.csv".

Internally, the helpers .get_stat and .get_pval are used to extract the transfer entropy statistic and p-value from the objects returned by RTransferEntropy::transfer_entropy(). The function assumes a global dir_csv object (character scalar) indicating the output directory for CSV files.

Value

A data. frame with one row per lag and type, and columns:

• lag: lag order used in transfer_entropy().

run_varx

- TE_ItoC, p_ItoC: transfer entropy and p-value from I to C.
- TE_CtoI, p_CtoI: transfer entropy and p-value from C to I.
- type: transformation used ("counts", "rates", or "binary").

Examples

```
library(data.table)
# 1. Create dummy data with ALL covariates required by prewhiten_*_glm()
# The internal GLM formulas likely include:
# I ~ t_norm + Regime + EconCycle + PopDensity + Epidemics + Climate + War
DT <- data.table(
  year = 2000:2029,
  I = rpois(30, lambda = 10),
  C = rpois(30, lambda = 8),
  exposure50 = runif(30, 100, 200),
  log_{exposure50} = log(runif(30, 100, 200)),
  # Covariates
  t_norm = seq(-1, 1, length.out = 30),
  Regime = factor(sample(c("A", "B"), 30, replace = TRUE)),
  EconCycle = rnorm(30),
  PopDensity = rnorm(30),
  Epidemics = rnorm(30),
  Climate = rnorm(30),
  War = rnorm(30)
)
# 2. Define global paths using tempdir() (Fixes CRAN policy)
# run_transfer_entropy writes output to 'dir_csv'
tmp_dir <- tempdir()</pre>
dir_csv <- file.path(tmp_dir, "csv")</pre>
if (!dir.exists(dir_csv)) dir.create(dir_csv, recursive = TRUE)
# 3. Run the function
# Using fewer shuffles for a faster example check
te_tab <- run_transfer_entropy(DT, lags = 1, shuffles = 10, seed = 123)</pre>
# Inspect results
if (!is.null(te_tab)) {
  print(subset(te_tab, type == "counts"))
}
```

run_varx 31

Description

Estimates a bivariate VAR model for I and C with exogenous covariates (VARX), and computes a set of standard diagnostics (stability, serial correlation, normality, ARCH). The fitted model and diagnostics are saved to disk and also returned.

Usage

```
run_varx(DT, p = 2)
```

Arguments

DT

A data.table (or data.frame) containing at least the following columns:

- I, C: endogenous variables for the VAR.
- EconCycle, PopDensity, Epidemics, Climate, War, t_norm: exogenous regressors included in the VARX.

p Integer; lag order of the VAR part (number of lags for I and C).

Details

The endogenous vector is $y_t = (I_t, C_t)'$ and the exogenous regressors are: EconCycle, PopDensity, Epidemics, Climate, War, t_norm. The model is fit using vars::VAR() with type = "const" and the exogenous matrix passed via exogen.

After estimation, the following diagnostics from vars are (attempted to be) computed:

- vars::stability(fit, type = "OLS-CUSUM") for stability.
- vars::serial.test(fit, lags.pt = 10, type = "PT.asymptotic") for serial correlation.
- vars::normality.test(fit) for residual normality.
- vars::arch.test(fit, lags.multi = 5) for ARCH effects.

Each diagnostic call is wrapped in try(), so if a diagnostic fails, the corresponding element in the output will contain a "try-error" instead of stopping the function.

The result is saved as an RDS file named "varx_fit.rds" in the directory specified by a global object dir_out (character scalar).

Value

A list with components:

- fit: the estimated VAR model (vars object).
- stability: result of vars::stability() (or "try-error" on failure).
- serial: result of vars::serial.test() (or "try-error" on failure).
- normal: result of vars::normality.test() (or "try-error" on failure).
- arch: result of vars::arch.test() (or "try-error" on failure).

32 select_by_bma

Examples

```
library(data.table)
# 1. Create dummy data with ALL required columns for VARX
# The function explicitly requires these specific exogenous variables
DT <- data.table(
  year = 2000:2049, # 50 obs to ensure diagnostics (lags.pt=10) don't fail
  I = rpois(50, lambda = 10),
  C = rpois(50, lambda = 8),
  # Exogenous regressors required by the function
  EconCycle = rnorm(50),
  PopDensity = rnorm(50),
  Epidemics = rnorm(50),
  Climate = rnorm(50),
  War = rnorm(50),
  t_norm = seq(-1, 1, length.out = 50)
# 2. Define global output directory using tempdir() (Fixes CRAN policy)
# run_varx looks for 'dir_out' in the global environment
tmp_dir <- tempdir()</pre>
dir_out <- file.path(tmp_dir, "varx")</pre>
if (!dir.exists(dir_out)) dir.create(dir_out, recursive = TRUE)
# 3. Run the function
# We use p=1 to keep it fast and stable for the example check
res_varx <- run_varx(DT, p = 1)</pre>
# Inspect the fitted VAR object if it didn't fail
if (!inherits(res_varx$fit, "try-error")) {
  print(res_varx$fit)
```

select_by_bma

Select Best Model via Bayesian Model Averaging

Description

Fits multiple bivariate hurdle models across a grid of lag orders and horseshoe hyperparameters, then performs model selection using LOO-CV and stacking weights.

```
select_by_bma(
  DT,
  spec = "C",
  controls = character(0),
```

select_by_bma 33

```
k_grid = 0:3,
hs_grid = data.frame(hs_tau0 = c(0.1, 0.5, 1), hs_slab_scale = c(1, 5, 1, 5, 1, 5),
    hs_slab_df = 4, stringsAsFactors = FALSE),
model = NULL,
output_base_dir = NULL,
iter_warmup = 900,
iter_sampling = 1200,
chains = 4,
seed = 123,
use_parallel = TRUE,
verbose = TRUE
```

Arguments

DT A data.table with the data.

spec Character; model specification ("A", "B", "C", "D").

controls Character vector of control variable names.

k_grid Integer vector of lag orders to evaluate.

hs_grid Data.frame with columns hs_tau0, hs_slab_scale, hs_slab_df defining the horse-

shoe hyperparameter grid.

model A compiled CmdStan model. If NULL, loads the default.

output_base_dir

Base directory for output files. If NULL, uses tempdir().

iter_warmup Integer; warmup iterations.iter_sampling Integer; sampling iterations.chains Integer; number of chains.seed Integer; random seed.

use_parallel Logical; if TRUE and furrr is available, fits models in parallel.

verbose Logical; print progress messages.

Value

A list with components:

fits List of fitted model objects.

loos List of LOO objects.

weights Numeric vector of stacking weights.

table Data.frame with results sorted by ELPD.

Examples

```
library(data.table)
# 1. Create a COMPLETE dummy dataset
# select_by_bma -> fit_one -> build_design requires ALL these columns:
DT <- data.table(
  year = 2000:2020,
  I = rpois(21, lambda = 4),
  C = rpois(21, lambda = 3),
  zI = rnorm(21),
  zC = rnorm(21),
  t_norm = seq(-1, 1, length.out = 21),
  t_{poly2} = seq(-1, 1, length.out = 21)^2,
  Regime = factor(sample(c("A", "B"), 21, replace = TRUE)),
  trans_PS = sample(0:1, 21, replace = TRUE),
  trans_SF = sample(0:1, 21, replace = TRUE),
  trans_FC = sample(0:1, 21, replace = TRUE),
  log_exposure50 = rep(0, 21)
)
# 2. Run the function
# IMPORTANT: use_parallel = FALSE to avoid complexity/errors in CRAN checks
# We reduce the grid size (k_grid=0) for speed in this example
  result <- select_by_bma(</pre>
   DT,
    spec = "C",
    k_grid = 0,
   hs_grid = data.frame(hs_tau0=0.5, hs_slab_scale=1, hs_slab_df=4),
   use_parallel = FALSE,
    iter_warmup = 100, iter_sampling = 100, chains = 1 # Minimal MCMC for speed
  if (!is.null(result$table)) {
    print(result$table)
  }
})
```

Description

Tests that the ELPD ranking is invariant to different FLOOR penalty values in the Stan model.

Usage

```
smoketest_floor_elpd_invariance(
    DT,
    stan_code,
    floors = c(-1e+06, -1e+08, -10000),
    spec = "C",
    controls = character(0),
    k_grid = 0:1,
    hs_grid = data.frame(hs_tau0 = c(0.1, 0.5), hs_slab_scale = c(1, 5), hs_slab_df = 4),
    hs_rows = 1:2,
    iter_warmup = 200,
    iter_sampling = 200,
    chains = 2,
    seed = 123,
    verbose = TRUE
)
```

Arguments

DT Data.table with the data. stan_code Character; Stan model code.

floors Numeric vector of FLOOR values to test.

spec Character; model specification.

controls Character vector of control variables. k_grid Integer vector of lag values to test.

hs_grid Data.frame with horseshoe hyperparameter grid. hs_rows Integer vector; which rows of hs_grid to use.

iter_warmup Integer; warmup iterations.
iter_sampling Integer; sampling iterations.
chains Integer; number of chains.
seed Integer; random seed.

verbose Logical; print progress messages.

Value

A list with components:

same_order Logical; TRUE if ranking is identical across all FLOOR values.

floors The tested FLOOR values.

tables List of result tables for each FLOOR. combined Combined data.frame of all results.

rank_signatures

Character vector of ranking signatures.

```
standardize_continuous
```

Standardize Continuous Columns

Description

Standardizes selected numeric columns using z-score or robust (median/MAD) methods. Binary columns (0/1) are left unchanged.

Usage

```
standardize_continuous(
   DT,
   cols,
   method = c("zscore", "robust"),
   center = TRUE,
   scale = TRUE
)
```

Arguments

DT A data.table or data.frame.

cols Character vector of column names to standardize.

method Character; either "zscore" or "robust".
center Logical; whether to center the data.
scale Logical; whether to scale the data.

Value

A list with components:

DT The standardized data.table.

scalers A list of scaling parameters for each column.

standardize_continuous_in_place

Standardize Continuous Columns In Place

Description

Standardizes selected numeric columns of a data.table in place using a z-score transformation. The function modifies DT by reference and stores the means and standard deviations used in an attribute called "standardization".

Usage

```
standardize_continuous_in_place(DT, cols, center = TRUE, scale = TRUE)
```

Arguments

DT A data. table. It is modified by reference.

cols Character vector of column names to standardize. Columns that are not present

in DT or are not numeric are silently skipped.

center Logical; whether to subtract the column mean.

scale Logical; whether to divide by the column standard deviation.

Value

The modified data.table DT (invisibly), with an attribute "standardization" containing the means, standard deviations, and names of the standardized columns.

Examples

```
library(data.table)
DT <- data.table(x = rnorm(10), y = runif(10), z = 0:9)
standardize_continuous_in_place(DT, c("x", "y"))
attr(DT, "standardization")</pre>
```

```
summarise_hurdle_top3_posthoc
```

Summarise top-3 Hurdle-NB models across control combos

Description

Extracts and summarises the top three Hurdle-NB specifications (by estimated ELPD) from BMA selection tables, either taken from an in-memory list of results or read from CSV files on disk.

Usage

```
summarise_hurdle_top3_posthoc(bma_per_combo, dir_csv)
```

Arguments

bma_per_combo Optional named list of BMA results by control combination, where each element

contains a component \$table with columns such as elpd, elpd_se, weight, k,

hs_tau0, hs_slab_scale, hs_slab_df, etc.

dir_csv Character scalar; directory where BMA weight CSV files "bma_weights_specC_ctrl*.csv"

are stored if bma_per_combo is NULL or empty.

Details

If bma_per_combo is provided and non-empty, the function uses its \$table components. Otherwise, it scans dir_csv for BMA weight files matching the pattern "bma_weights_specC_ctrl*.csv" and reads them.

All valid rows are combined, ordered by decreasing elpd, and the top three models are retained. For each, a human-readable configuration string summarising k, the horseshoe hyperparameters and the control combo is constructed.

Value

A data frame with up to three rows and columns:

- model: constant string "Hurdle-NB".
- config: textual description of the specification.
- elpd, elpd_se, weight: selection metrics from the BMA table.
- k, hs_tau0, hs_slab_scale, hs_slab_df, combo: numeric tuning parameters and control-combo tag.

If no valid tables are found, a single-row data frame with NA entries is returned.

```
summarise_placebo_top3_posthoc
```

Summarise top-3 temporal placebo results

Description

Summarises the three strongest temporal placebo results (based on the difference between original and permuted ELPD) from a temporal permutation test.

Usage

```
summarise_placebo_top3_posthoc(placebo_tab, dir_csv)
```

Arguments

placebo_tab	Optional data frame with placebo results, typically containing columns perm,
	elpd_orig, elpd_perm, and diff. If NULL or empty, the function attempts to
	<pre>read "placebo_temporal.csv" from dir_csv.</pre>
dir_csv	Character scalar; directory where the placebo CSV file is stored.

Details

The table is ordered by decreasing diff (ELPD gain of the original fit over the permuted fit), and the top three permutations are retained.

Value

A data frame with up to three rows and columns:

- model: constant string "PlaceboTemporal".
- config: text of the form "perm=<id>".
- elpd_orig, elpd_perm, diff: original ELPD, permuted ELPD, and their difference.

If no data are available, a single-row data frame with NA entries is returned.

Description

Produces a list of small tables with the three most significant transfer entropy estimates for each data type (counts, rates, binary) separately.

Usage

```
summarise_te_top3_by_type_posthoc(te_tab, dir_csv)
```

Arguments

te_tab	Optional data frame with transfer entropy results, including a type column and at least lag, TE_ItoC, TE_CtoI, p_ItoC, p_CtoI. If NULL or empty, the function attempts to read the data from CSV files via .read_te_all().
dir_csv	Character scalar; directory where the transfer entropy CSV files are stored (used when te_tab is missing).

Details

For each type in c("counts", "rates", "binary"), the function ranks all direction-lag combinations by p-value and retains the top three. Types with no valid rows remain NULL in the output list.

Value

A named list with up to three elements:

• \$counts, \$rates, \$binary: each is a data frame with columns model, type, config (direction and lag), stat, and p_value, or NULL if no results for that type.

summarise_te_top3_posthoc

Summarise top-3 transfer entropy results (global)

Description

Produces a compact summary of the three most statistically significant transfer entropy estimates across directions and lags, optionally combining information from counts, rates, and binary specifications.

Usage

```
summarise_te_top3_posthoc(te_tab, dir_csv)
```

Arguments

te_tab	Optional data frame with transfer entropy results, containing at least columns lag, TE_ItoC, TE_CtoI, p_ItoC, p_CtoI, and optionally type. If NULL or empty, the function attempts to read the data from CSV files via the internal helper .read_te_all().
dir_csv	Character scalar; directory where the transfer entropy CSV files are stored (used when te_tab is missing).

Details

The function reshapes te_tab into a long format with directions "I->C" and "C->I", orders by p-value (ascending) and lag, and keeps the three rows with the smallest p-values.

Value

A data frame with up to three rows and columns:

- model: constant string "TransferEntropy".
- config: textual description of direction, lag, and, if available, type (counts, rates, binary).
- stat: transfer entropy estimate.
- p_value: associated p-value.

If no results are available, a single-row data frame with NA entries is returned.

summarise_tvarstar_posthoc

Summarise nonlinear time-series models (TVAR and LSTAR)

Description

Produces a small summary table for nonlinear time-series models such as TVAR and LSTAR, focusing on model status and AIC.

Usage

```
summarise_tvarstar_posthoc(tsdyn_res)
```

Arguments

tsdyn_res

A list of model objects, typically with elements \$TVAR, \$LSTAR_I, \$LSTAR_C, as returned by a fitting routine based on the **tsDyn** package.

Details

For each of the three models (TVAR, LSTAR for I, LSTAR for C), the function extracts:

- A textual status (class names of the object).
- The AIC, if stats::AIC() can be computed.

If tsdyn_res is NULL, default rows with NA values are returned.

Value

A data frame with one row per model and columns:

- model: "TVAR", "LSTAR_I", "LSTAR_C".
- status: model class string or NA.
- aic: numeric AIC value or NA.

summarise_varx_posthoc

Summarise VARX model fit and diagnostics

Description

Produces a compact summary of a VARX model, including information about lag order, exogenous variables, information criteria, and selected diagnostic p-values.

Usage

```
summarise_varx_posthoc(varx_res)
```

Arguments

varx_res A list returned by run_varx(), typically containing elements \$fit, \$serial, \$normal, and \$arch.

Details

The function extracts:

- Lag order p from fit\$p, if available.
- AIC and BIC via stats::AIC() and stats::BIC().
- P-values from serial correlation, normality, and ARCH tests using the helper .first_pvalue().

If varx_res or varx_res\$fit is NULL, a default row with NA values is returned.

Value

A data frame with one row and columns:

- model: constant string "VARX".
- config: textual description of the lag order and exogenous variables.
- AIC, BIC: information criteria.
- p_serial, p_normal, p_arch: p-values from diagnostic tests.

Index

```
.get_pval, 29
.get_stat, 29
add_qsig, 3
bivarhr (bivarhr-package), 2
bivarhr-package, 2
build_design, 3
contrafactual_ATE, 4
disc_terciles, 6
export_results, 6
fit_one, 7
get_hurdle_model, 9
load_saved_results, 9
make_lags, 10
placebo_temporal, 10
predict_multistep, 18
prewhiten_bin_glm, 12, 29
prewhiten_count_glm, 13, 29
prewhiten_rate_glm, 14, 29
print_floor_smoketest, 15
read_bma_all, 16
rolling_oos, 17
run_dbn, 19
run_eba, 21
run_hmm, 23
run_sensemakr, 25
run_synth_bsts, 26
run_transfer_entropy, 28
run_varx, 30, 42
select_by_bma, 32
```

```
smoketest_floor_elpd_invariance, 15, 16, 34
standardize_continuous, 36
standardize_continuous_in_place, 36
summarise_hurdle_top3_posthoc, 37
summarise_placebo_top3_posthoc, 38
summarise_te_top3_by_type_posthoc, 39
summarise_te_top3_posthoc, 40
summarise_tvarstar_posthoc, 41
summarise_varx_posthoc, 41
```