
Package ‘dtplyr’
February 11, 2026

Title Data Table Back-End for 'dplyr'

Version 1.3.3

Description Provides a data.table backend for 'dplyr'. The goal of
'dtplyr' is to allow you to write 'dplyr' code that is automatically
translated to the equivalent, but usually much faster, data.table
code.

License MIT + file LICENSE

URL https://dtplyr.tidyverse.org, https://github.com/tidyverse/dtplyr

BugReports https://github.com/tidyverse/dtplyr/issues

Depends R (>= 4.0)

Imports cli (>= 3.4.0), data.table (>= 1.13.0), dplyr (>= 1.1.0),
glue, lifecycle, rlang (>= 1.0.4), tibble, tidyselect (>=
1.2.0), vctrs (>= 0.4.1)

Suggests bench, covr, knitr, rmarkdown, testthat (>= 3.1.2), tidyr (>=
1.1.0), waldo (>= 0.3.1)

VignetteBuilder knitr

Config/Needs/website tidyverse/tidytemplate

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.3

NeedsCompilation no

Author Hadley Wickham [cre, aut],
Maximilian Girlich [aut],
Mark Fairbanks [aut],
Ryan Dickerson [aut],
Posit Software, PBC [cph, fnd]

Maintainer Hadley Wickham <hadley@posit.co>

Repository CRAN

Date/Publication 2026-02-11 06:10:52 UTC

1

https://dtplyr.tidyverse.org
https://github.com/tidyverse/dtplyr
https://github.com/tidyverse/dtplyr/issues

2 arrange.dtplyr_step

Contents
arrange.dtplyr_step . 2
collect.dtplyr_step . 3
complete.dtplyr_step . 4
count.dtplyr_step . 5
distinct.dtplyr_step . 6
drop_na.dtplyr_step . 7
expand.dtplyr_step . 8
fill.dtplyr_step . 9
filter.dtplyr_step . 10
group_by.dtplyr_step . 11
group_modify.dtplyr_step . 13
head.dtplyr_step . 14
intersect.dtplyr_step . 14
lazy_dt . 15
left_join.dtplyr_step . 16
mutate.dtplyr_step . 18
nest.dtplyr_step . 19
pivot_longer.dtplyr_step . 20
pivot_wider.dtplyr_step . 22
reframe.dtplyr_step . 24
relocate.dtplyr_step . 25
rename.dtplyr_step . 26
replace_na.dtplyr_step . 27
select.dtplyr_step . 27
separate.dtplyr_step . 28
slice.dtplyr_step . 29
summarise.dtplyr_step . 31
transmute.dtplyr_step . 32
unite.dtplyr_step . 33

Index 34

arrange.dtplyr_step Arrange rows by column values

Description

This is a method for dplyr generic dplyr::arrange(). It is translated to an order() call in the i
argument of [.data.table.

Usage

S3 method for class 'dtplyr_step'
arrange(.data, ..., .by_group = FALSE)

collect.dtplyr_step 3

Arguments

.data A lazy_dt().

... <data-masking> Variables, or functions of variables. Use desc() to sort a
variable in descending order.

.by_group If TRUE, will sort first by grouping variable. Applies to grouped data frames
only.

Examples

library(dplyr, warn.conflicts = FALSE)

dt <- lazy_dt(mtcars)
dt %>% arrange(vs, cyl)
dt %>% arrange(desc(vs), cyl)
dt %>% arrange(across(mpg:disp))

collect.dtplyr_step Force computation of a lazy data.table

Description

• collect() returns a tibble, grouped if needed.

• compute() generates an intermediate assignment in the translation.

• as.data.table() returns a data.table.

• as.data.frame() returns a data frame.

• as_tibble() returns a tibble.

Usage

S3 method for class 'dtplyr_step'
collect(x, ...)

S3 method for class 'dtplyr_step'
compute(x, name = unique_name(), ...)

S3 method for class 'dtplyr_step'
as.data.table(x, keep.rownames = FALSE, ...)

S3 method for class 'dtplyr_step'
as.data.frame(x, ...)

S3 method for class 'dtplyr_step'
as_tibble(x, ..., .name_repair = "check_unique")

4 complete.dtplyr_step

Arguments

x A lazy_dt

... Arguments used by other methods.

name Name of intermediate data.table.

keep.rownames Ignored as dplyr never preserves rownames.

.name_repair Treatment of problematic column names

Examples

library(dplyr, warn.conflicts = FALSE)

dt <- lazy_dt(mtcars)

Generate translation
avg_mpg <- dt %>%

filter(am == 1) %>%
group_by(cyl) %>%
summarise(mpg = mean(mpg))

Show translation and temporarily compute result
avg_mpg

compute and return tibble
avg_mpg_tb <- as_tibble(avg_mpg)
avg_mpg_tb

compute and return data.table
avg_mpg_dt <- data.table::as.data.table(avg_mpg)
avg_mpg_dt

modify translation to use intermediate assignment
compute(avg_mpg)

complete.dtplyr_step Complete a data frame with missing combinations of data

Description

This is a method for the tidyr complete() generic. This is a wrapper around dtplyr translations
for expand(), full_join(), and replace_na() that’s useful for completing missing combinations
of data.

Usage

S3 method for class 'dtplyr_step'
complete(data, ..., fill = list())

count.dtplyr_step 5

Arguments

data A lazy_dt().

... <data-masking> Specification of columns to expand or complete. Columns
can be atomic vectors or lists.

• To find all unique combinations of x, y and z, including those not present in
the data, supply each variable as a separate argument: expand(df, x, y,
z) or complete(df, x, y, z).

• To find only the combinations that occur in the data, use nesting: expand(df,
nesting(x, y, z)).

• You can combine the two forms. For example, expand(df, nesting(school_id,
student_id), date) would produce a row for each present school-student
combination for all possible dates.

When used with factors, expand() and complete() use the full set of levels,
not just those that appear in the data. If you want to use only the values seen in
the data, use forcats::fct_drop().
When used with continuous variables, you may need to fill in values that do not
appear in the data: to do so use expressions like year = 2010:2020 or year =
full_seq(year,1).

fill A named list that for each variable supplies a single value to use instead of NA
for missing combinations.

Examples

library(tidyr)
tbl <- tibble(x = 1:2, y = 1:2, z = 3:4)
dt <- lazy_dt(tbl)

dt %>%
complete(x, y)

dt %>%
complete(x, y, fill = list(z = 10L))

count.dtplyr_step Count observations by group

Description

This is a method for the dplyr dplyr::count() generic. It is translated using .N in the j argument,
and supplying groups to keyby as appropriate.

Usage

S3 method for class 'dtplyr_step'
count(x, ..., wt = NULL, sort = FALSE, name = NULL)

6 distinct.dtplyr_step

Arguments

x A lazy_dt()

... <data-masking> Variables to group by.

wt <data-masking> Frequency weights. Can be NULL or a variable:

• If NULL (the default), counts the number of rows in each group.
• If a variable, computes sum(wt) for each group.

sort If TRUE, will show the largest groups at the top.

name The name of the new column in the output.
If omitted, it will default to n. If there’s already a column called n, it will use
nn. If there’s a column called n and nn, it’ll use nnn, and so on, adding ns until
it gets a new name.

Examples

library(dplyr, warn.conflicts = FALSE)

dt <- lazy_dt(dplyr::starwars)
dt %>% count(species)
dt %>% count(species, sort = TRUE)
dt %>% count(species, wt = mass, sort = TRUE)

distinct.dtplyr_step Subset distinct/unique rows

Description

This is a method for the dplyr dplyr::distinct() generic. It is translated to data.table::unique.data.table().

Usage

S3 method for class 'dtplyr_step'
distinct(.data, ..., .keep_all = FALSE)

Arguments

.data A lazy_dt()

... <data-masking> Optional variables to use when determining uniqueness. If
there are multiple rows for a given combination of inputs, only the first row will
be preserved. If omitted, will use all variables in the data frame.

.keep_all If TRUE, keep all variables in .data. If a combination of ... is not distinct, this
keeps the first row of values.

drop_na.dtplyr_step 7

Examples

library(dplyr, warn.conflicts = FALSE)
df <- lazy_dt(data.frame(

x = sample(10, 100, replace = TRUE),
y = sample(10, 100, replace = TRUE)

))

df %>% distinct(x)
df %>% distinct(x, y)
df %>% distinct(x, .keep_all = TRUE)

drop_na.dtplyr_step Drop rows containing missing values

Description

This is a method for the tidyr drop_na() generic. It is translated to data.table::na.omit()

Usage

S3 method for class 'dtplyr_step'
drop_na(data, ...)

Arguments

data A lazy_dt().

... <tidy-select> Columns to inspect for missing values. If empty, all columns
are used.

Examples

library(dplyr)
library(tidyr)

dt <- lazy_dt(tibble(x = c(1, 2, NA), y = c("a", NA, "b")))
dt %>% drop_na()
dt %>% drop_na(x)

vars <- "y"
dt %>% drop_na(x, any_of(vars))

8 expand.dtplyr_step

expand.dtplyr_step Expand data frame to include all possible combinations of values.

Description

This is a method for the tidyr expand() generic. It is translated to data.table::CJ().

Usage

S3 method for class 'dtplyr_step'
expand(data, ..., .name_repair = "check_unique")

Arguments

data A lazy_dt().

... Specification of columns to expand. Columns can be atomic vectors or lists.

• To find all unique combinations of x, y and z, including those not present in
the data, supply each variable as a separate argument: expand(df, x, y,
z).

• To find only the combinations that occur in the data, use nesting: expand(df,
nesting(x, y, z)).

• You can combine the two forms. For example, expand(df, nesting(school_id,
student_id), date) would produce a row for each present school-student
combination for all possible dates.

Unlike the data.frame method, this method does not use the full set of levels,
just those that appear in the data.
When used with continuous variables, you may need to fill in values that do not
appear in the data: to do so use expressions like year = 2010:2020 or year =
full_seq(year,1).

.name_repair One of "check_unique", "unique", "universal", "minimal", "unique_quiet",
or "universal_quiet". See vec_as_names() for the meaning of these options.

Examples

library(tidyr)

fruits <- lazy_dt(tibble(
type = c("apple", "orange", "apple", "orange", "orange", "orange"),
year = c(2010, 2010, 2012, 2010, 2010, 2012),
size = factor(
c("XS", "S", "M", "S", "S", "M"),
levels = c("XS", "S", "M", "L")

),
weights = rnorm(6, as.numeric(size) + 2)

))

fill.dtplyr_step 9

All possible combinations ---------------------------------------
Note that only present levels of the factor variable `size` are retained.
fruits %>% expand(type)
fruits %>% expand(type, size)

This is different from the data frame behaviour:
fruits %>% dplyr::collect() %>% expand(type, size)

Other uses ---
fruits %>% expand(type, size, 2010:2012)

Use `anti_join()` to determine which observations are missing
all <- fruits %>% expand(type, size, year)
all
all %>% dplyr::anti_join(fruits)

Use with `right_join()` to fill in missing rows
fruits %>% dplyr::right_join(all)

fill.dtplyr_step Fill in missing values with previous or next value

Description

This is a method for the tidyr fill() generic. It is translated to data.table::nafill(). Note that
data.table::nafill() currently only works for integer and double columns.

Usage

S3 method for class 'dtplyr_step'
fill(data, ..., .direction = c("down", "up", "downup", "updown"))

Arguments

data A data frame.

... <tidy-select> Columns to fill.

.direction Direction in which to fill missing values. Currently either "down" (the default),
"up", "downup" (i.e. first down and then up) or "updown" (first up and then
down).

Examples

library(tidyr)

Value (year) is recorded only when it changes
sales <- lazy_dt(tibble::tribble(

~quarter, ~year, ~sales,
"Q1", 2000, 66013,
"Q2", NA, 69182,

10 filter.dtplyr_step

"Q3", NA, 53175,
"Q4", NA, 21001,
"Q1", 2001, 46036,
"Q2", NA, 58842,
"Q3", NA, 44568,
"Q4", NA, 50197,
"Q1", 2002, 39113,
"Q2", NA, 41668,
"Q3", NA, 30144,
"Q4", NA, 52897,
"Q1", 2004, 32129,
"Q2", NA, 67686,
"Q3", NA, 31768,
"Q4", NA, 49094

))

`fill()` defaults to replacing missing data from top to bottom
sales %>% fill(year)

Value (n_squirrels) is missing above and below within a group
squirrels <- lazy_dt(tibble::tribble(

~group, ~name, ~role, ~n_squirrels,
1, "Sam", "Observer", NA,
1, "Mara", "Scorekeeper", 8,
1, "Jesse", "Observer", NA,
1, "Tom", "Observer", NA,
2, "Mike", "Observer", NA,
2, "Rachael", "Observer", NA,
2, "Sydekea", "Scorekeeper", 14,
2, "Gabriela", "Observer", NA,
3, "Derrick", "Observer", NA,
3, "Kara", "Scorekeeper", 9,
3, "Emily", "Observer", NA,
3, "Danielle", "Observer", NA

))

The values are inconsistently missing by position within the group
Use .direction = "downup" to fill missing values in both directions
squirrels %>%

dplyr::group_by(group) %>%
fill(n_squirrels, .direction = "downup") %>%
dplyr::ungroup()

Using `.direction = "updown"` accomplishes the same goal in this example

filter.dtplyr_step Subset rows using column values

group_by.dtplyr_step 11

Description

This is a method for the dplyr dplyr::arrange() generic. It is translated to the i argument of
[.data.table

Usage

S3 method for class 'dtplyr_step'
filter(.data, ..., .by = NULL, .preserve = FALSE)

Arguments

.data A lazy_dt().

... <data-masking> Expressions that return a logical vector, defined in terms of
the variables in .data. If multiple expressions are included, they are combined
with the & operator. To combine expressions using | instead, wrap them in
when_any(). Only rows for which all expressions evaluate to TRUE are kept (for
filter()) or dropped (for filter_out()).

.by <tidy-select> Optionally, a selection of columns to group by for just this op-
eration, functioning as an alternative to group_by(). For details and examples,
see ?dplyr_by.

.preserve Ignored

Examples

library(dplyr, warn.conflicts = FALSE)

dt <- lazy_dt(mtcars)
dt %>% filter(cyl == 4)
dt %>% filter(vs, am)

dt %>%
group_by(cyl) %>%
filter(mpg > mean(mpg))

group_by.dtplyr_step Group and ungroup

Description

These are methods for dplyr’s dplyr::group_by() and dplyr::ungroup() generics. Grouping
is translated to the either keyby and by argument of [.data.table depending on the value of the
arrange argument.

12 group_by.dtplyr_step

Usage

S3 method for class 'dtplyr_step'
group_by(.data, ..., .add = FALSE, arrange = TRUE)

S3 method for class 'dtplyr_step'
ungroup(x, ...)

Arguments

.data A lazy_dt()

... <data-masking> In group_by(), variables or computations to group by. Com-
putations are always done on the ungrouped data frame. To perform compu-
tations on the grouped data, you need to use a separate mutate() step before
the group_by(). Computations are not allowed in nest_by(). In ungroup(),
variables to remove from the grouping.

.add, add When FALSE, the default, group_by() will override existing groups. To add to
the existing groups, use .add = TRUE.

This argument was previously called add, but that prevented creating a new
grouping variable called add, and conflicts with our naming conventions.

arrange If TRUE, will automatically arrange the output of subsequent grouped opera-
tions by group. If FALSE, output order will be left unchanged. In the generated
data.table code this switches between using the keyby (TRUE) and by (FALSE)
arguments.

x A tbl()

Examples

library(dplyr, warn.conflicts = FALSE)
dt <- lazy_dt(mtcars)

group_by() is usually translated to `keyby` so that the groups
are ordered in the output
dt %>%
group_by(cyl) %>%
summarise(mpg = mean(mpg))

use `arrange = FALSE` to instead use `by` so the original order
or groups is preserved
dt %>%
group_by(cyl, arrange = FALSE) %>%
summarise(mpg = mean(mpg))

group_modify.dtplyr_step 13

group_modify.dtplyr_step

Apply a function to each group

Description

These are methods for the dplyr dplyr::group_map() and dplyr::group_modify() generics.
They are both translated to [.data.table.

Usage

S3 method for class 'dtplyr_step'
group_modify(.data, .f, ..., keep = FALSE)

S3 method for class 'dtplyr_step'
group_map(.data, .f, ..., keep = FALSE)

Arguments

.data A lazy_dt()

.f The name of a two argument function. The first argument is passed .SD,the
data.table representing the current group; the second argument is passed .BY,
a list giving the current values of the grouping variables. The function should
return a list or data.table.

... Additional arguments passed to .f

keep Not supported for lazy_dt.

Value

group_map() applies .f to each group, returning a list. group_modify() replaces each group with
the results of .f, returning a modified lazy_dt().

Examples

library(dplyr)

dt <- lazy_dt(mtcars)

dt %>%
group_by(cyl) %>%
group_modify(head, n = 2L)

dt %>%
group_by(cyl) %>%
group_map(head, n = 2L)

14 intersect.dtplyr_step

head.dtplyr_step Subset first or last rows

Description

These are methods for the base generics head() and tail(). They are not translated.

Usage

S3 method for class 'dtplyr_step'
head(x, n = 6L, ...)

S3 method for class 'dtplyr_step'
tail(x, n = 6L, ...)

Arguments

x A lazy_dt()

n Number of rows to select. Can use a negative number to instead drop rows from
the other end.

... Passed on to head()/tail().

Examples

library(dplyr, warn.conflicts = FALSE)
dt <- lazy_dt(data.frame(x = 1:10))

first three rows
head(dt, 3)
last three rows
tail(dt, 3)

drop first three rows
tail(dt, -3)

intersect.dtplyr_step Set operations

Description

These are methods for the dplyr generics generics::intersect(), generics::union(), dplyr::union_all(),
and generics::setdiff(). They are translated to data.table::fintersect(), data.table::funion(),
and data.table::fsetdiff().

lazy_dt 15

Usage

S3 method for class 'dtplyr_step'
intersect(x, y, ...)

S3 method for class 'dtplyr_step'
union(x, y, ...)

S3 method for class 'dtplyr_step'
union_all(x, y, ...)

S3 method for class 'dtplyr_step'
setdiff(x, y, ...)

Arguments

x, y A pair of lazy_dt()s.

... Ignored

Examples

dt1 <- lazy_dt(data.frame(x = 1:4))
dt2 <- lazy_dt(data.frame(x = c(2, 4, 6)))

intersect(dt1, dt2)
union(dt1, dt2)
setdiff(dt1, dt2)

lazy_dt Create a "lazy" data.table for use with dplyr verbs

Description

A lazy data.table captures the intent of dplyr verbs, only actually performing computation when re-
quested (with dplyr::collect(), dplyr::pull(), as.data.frame(), data.table::as.data.table(),
or tibble::as_tibble()). This allows dtplyr to convert dplyr verbs into as few data.table expres-
sions as possible, which leads to a high performance translation.

See vignette("translation") for the details of the translation.

Usage

lazy_dt(x, name = NULL, immutable = TRUE, key_by = NULL)

16 left_join.dtplyr_step

Arguments

x A data table (or something can can be coerced to a data table).

name Optionally, supply a name to be used in generated expressions. For expert use
only.

immutable If TRUE, x is treated as immutable and will never be modified by any code gen-
erated by dtplyr. Alternatively, you can set immutable = FALSE to allow dtplyr
to modify the input object.

key_by Set keys for data frame, using dplyr::select() semantics (e.g. key_by =
c(key1, key2).
This uses data.table::setkey() to sort the table and build an index. This
will considerably improve performance for subsets, summaries, and joins that
use the keys.
See vignette("datatable-keys-fast-subset") for more details.

Examples

library(dplyr, warn.conflicts = FALSE)

mtcars2 <- lazy_dt(mtcars)
mtcars2
mtcars2 %>% select(mpg:cyl)
mtcars2 %>% select(x = mpg, y = cyl)
mtcars2 %>% filter(cyl == 4) %>% select(mpg)
mtcars2 %>% select(mpg, cyl) %>% filter(cyl == 4)
mtcars2 %>% mutate(cyl2 = cyl * 2, cyl4 = cyl2 * 2)
mtcars2 %>% transmute(cyl2 = cyl * 2, vs2 = vs * 2)
mtcars2 %>% filter(cyl == 8) %>% mutate(cyl2 = cyl * 2)

Learn more about translation in vignette("translation")
by_cyl <- mtcars2 %>% group_by(cyl)
by_cyl %>% summarise(mpg = mean(mpg))
by_cyl %>% mutate(mpg = mean(mpg))
by_cyl %>%

filter(mpg < mean(mpg)) %>%
summarise(hp = mean(hp))

left_join.dtplyr_step Join data tables

Description

These are methods for the dplyr generics dplyr::left_join(), dplyr::right_join(), dplyr::inner_join(),
dplyr::full_join(), dplyr::anti_join(), and dplyr::semi_join(). Left, right, inner, and
anti join are translated to the [.data.table equivalent, full joins to data.table::merge.data.table().
Left, right, and full joins are in some cases followed by calls to data.table::setcolorder() and
data.table::setnames() to ensure that column order and names match dplyr conventions. Semi-
joins don’t have a direct data.table equivalent.

left_join.dtplyr_step 17

Usage

S3 method for class 'dtplyr_step'
left_join(x, y, ..., by = NULL, copy = FALSE, suffix = c(".x", ".y"))

Arguments

x, y A pair of lazy_dt()s.

... Other parameters passed onto methods.

by A join specification created with join_by(), or a character vector of variables
to join by.
If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specification.
For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple ex-
pressions. For example, join_by(a == b, c == d) will match x$a to y$b and
x$c to y$d. If the column names are the same between x and y, you can shorten
this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap joins.
See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector of
variable names to join by. For example, by = c("a", "b") joins x$a to y$a and
x$b to y$b. If variable names differ between x and y, use a named character
vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

Examples

library(dplyr, warn.conflicts = FALSE)

band_dt <- lazy_dt(dplyr::band_members)
instrument_dt <- lazy_dt(dplyr::band_instruments)

band_dt %>% left_join(instrument_dt)
band_dt %>% right_join(instrument_dt)
band_dt %>% inner_join(instrument_dt)
band_dt %>% full_join(instrument_dt)

band_dt %>% semi_join(instrument_dt)
band_dt %>% anti_join(instrument_dt)

18 mutate.dtplyr_step

mutate.dtplyr_step Create and modify columns

Description

This is a method for the dplyr dplyr::mutate() generic. It is translated to the j argument of
[.data.table, using := to modify "in place". If .before or .after is provided, the new columns
are relocated with a call to data.table::setcolorder().

Usage

S3 method for class 'dtplyr_step'
mutate(
.data,
...,
.by = NULL,
.keep = c("all", "used", "unused", "none"),
.before = NULL,
.after = NULL

)

Arguments

.data A lazy_dt().

... <data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:

• A vector of length 1, which will be recycled to the correct length.
• A vector the same length as the current group (or the whole data frame if

ungrouped).
• NULL, to remove the column.
• A data frame or tibble, to create multiple columns in the output.

.by <tidy-select> Optionally, a selection of columns to group by for just this op-
eration, functioning as an alternative to group_by(). For details and examples,
see ?dplyr_by.

.keep Control which columns from .data are retained in the output. Grouping columns
and columns created by ... are always kept.

• "all" retains all columns from .data. This is the default.
• "used" retains only the columns used in ... to create new columns. This

is useful for checking your work, as it displays inputs and outputs side-by-
side.

• "unused" retains only the columns not used in ... to create new columns.
This is useful if you generate new columns, but no longer need the columns
used to generate them.

nest.dtplyr_step 19

• "none" doesn’t retain any extra columns from .data. Only the grouping
variables and columns created by ... are kept.

Note: With dtplyr .keep will only work with column names passed as symbols,
and won’t work with other workflows (e.g. eval(parse(text = "x + 1")))

.before, .after <tidy-select> Optionally, control where new columns should appear (the de-
fault is to add to the right hand side). See relocate() for more details.

Examples

library(dplyr, warn.conflicts = FALSE)

dt <- lazy_dt(data.frame(x = 1:5, y = 5:1))
dt %>%

mutate(a = (x + y) / 2, b = sqrt(x^2 + y^2))

It uses a more sophisticated translation when newly created variables
are used in the same expression
dt %>%

mutate(x1 = x + 1, x2 = x1 + 1)

nest.dtplyr_step Nest

Description

This is a method for the tidyr tidyr::nest() generic. It is translated using the non-nested variables
in the by argument and .SD in the j argument.

Usage

S3 method for class 'dtplyr_step'
nest(.data, ..., .names_sep = NULL, .key = deprecated())

Arguments

.data A data frame.

... <tidy-select> Columns to nest, specified using name-variable pairs of the
form new_col = c(col1, col2, col3). The right hand side can be any valid
tidy select expression.

.names_sep If NULL, the default, the inner names will come from the former outer names. If
a string, the new inner names will use the outer names with names_sep auto-
matically stripped. This makes names_sep roughly symmetric between nesting
and unnesting.

.key Not supported.

data A lazy_dt().

20 pivot_longer.dtplyr_step

Examples

if (require("tidyr", quietly = TRUE)) {
dt <- lazy_dt(tibble(x = c(1, 2, 1), y = c("a", "a", "b")))
dt %>% nest(data = y)

dt %>% dplyr::group_by(x) %>% nest()
}

pivot_longer.dtplyr_step

Pivot data from wide to long

Description

This is a method for the tidyr pivot_longer() generic. It is translated to data.table::melt()

Usage

S3 method for class 'dtplyr_step'
pivot_longer(
data,
cols,
names_to = "name",
names_prefix = NULL,
names_sep = NULL,
names_pattern = NULL,
names_ptypes = NULL,
names_transform = NULL,
names_repair = "check_unique",
values_to = "value",
values_drop_na = FALSE,
values_ptypes = NULL,
values_transform = NULL,
...

)

Arguments

data A lazy_dt().

cols <tidy-select> Columns to pivot into longer format.

names_to A character vector specifying the new column or columns to create from the
information stored in the column names of data specified by cols.

• If length 0, or if NULL is supplied, no columns will be created.
• If length 1, a single column will be created which will contain the column

names specified by cols.

pivot_longer.dtplyr_step 21

• If length >1, multiple columns will be created. In this case, one of names_sep
or names_pattern must be supplied to specify how the column names
should be split. There are also two additional character values you can
take advantage of:

– NA will discard the corresponding component of the column name.
– ".value" indicates that the corresponding component of the column

name defines the name of the output column containing the cell values,
overriding values_to entirely.

names_prefix A regular expression used to remove matching text from the start of each vari-
able name.

names_sep, names_pattern
If names_to contains multiple values, these arguments control how the column
name is broken up.
names_sep takes the same specification as separate(), and can either be a
numeric vector (specifying positions to break on), or a single string (specifying
a regular expression to split on).
names_pattern takes the same specification as extract(), a regular expression
containing matching groups (()).
If these arguments do not give you enough control, use pivot_longer_spec()
to create a spec object and process manually as needed.

names_ptypes, names_transform, values_ptypes, values_transform
Not currently supported by dtplyr.

names_repair What happens if the output has invalid column names? The default, "check_unique"
is to error if the columns are duplicated. Use "minimal" to allow duplicates
in the output, or "unique" to de-duplicated by adding numeric suffixes. See
vctrs::vec_as_names() for more options.

values_to A string specifying the name of the column to create from the data stored in cell
values. If names_to is a character containing the special .value sentinel, this
value will be ignored, and the name of the value column will be derived from
part of the existing column names.

values_drop_na If TRUE, will drop rows that contain only NAs in the values_to column. This ef-
fectively converts explicit missing values to implicit missing values, and should
generally be used only when missing values in data were created by its struc-
ture.

... Additional arguments passed on to methods.

Examples

library(tidyr)

Simplest case where column names are character data
relig_income_dt <- lazy_dt(relig_income)
relig_income_dt %>%

pivot_longer(!religion, names_to = "income", values_to = "count")

Slightly more complex case where columns have common prefix,
and missing missings are structural so should be dropped.

22 pivot_wider.dtplyr_step

billboard_dt <- lazy_dt(billboard)
billboard %>%
pivot_longer(
cols = starts_with("wk"),
names_to = "week",
names_prefix = "wk",
values_to = "rank",
values_drop_na = TRUE

)

Multiple variables stored in column names
lazy_dt(who) %>%

pivot_longer(
cols = new_sp_m014:newrel_f65,
names_to = c("diagnosis", "gender", "age"),
names_pattern = "new_?(.*)_(.)(.*)",
values_to = "count"

)

Multiple observations per row
anscombe_dt <- lazy_dt(anscombe)
anscombe_dt %>%
pivot_longer(

everything(),
names_to = c(".value", "set"),
names_pattern = "(.)(.)"

)

pivot_wider.dtplyr_step

Pivot data from long to wide

Description

This is a method for the tidyr pivot_wider() generic. It is translated to data.table::dcast()

Usage

S3 method for class 'dtplyr_step'
pivot_wider(
data,
id_cols = NULL,
names_from = name,
names_prefix = "",
names_sep = "_",
names_glue = NULL,
names_sort = FALSE,
names_repair = "check_unique",
values_from = value,

pivot_wider.dtplyr_step 23

values_fill = NULL,
values_fn = NULL,
...

)

Arguments

data A lazy_dt().

id_cols <tidy-select> A set of columns that uniquely identify each observation. Typ-
ically used when you have redundant variables, i.e. variables whose values are
perfectly correlated with existing variables.
Defaults to all columns in data except for the columns specified through names_from
and values_from. If a tidyselect expression is supplied, it will be evaluated on
data after removing the columns specified through names_from and values_from.

names_from, values_from
<tidy-select> A pair of arguments describing which column (or columns)
to get the name of the output column (names_from), and which column (or
columns) to get the cell values from (values_from).
If values_from contains multiple values, the value will be added to the front of
the output column.

names_prefix String added to the start of every variable name. This is particularly useful
if names_from is a numeric vector and you want to create syntactic variable
names.

names_sep If names_from or values_from contains multiple variables, this will be used to
join their values together into a single string to use as a column name.

names_glue Instead of names_sep and names_prefix, you can supply a glue specification
that uses the names_from columns (and special .value) to create custom col-
umn names.

names_sort Should the column names be sorted? If FALSE, the default, column names are
ordered by first appearance.

names_repair What happens if the output has invalid column names? The default, "check_unique"
is to error if the columns are duplicated. Use "minimal" to allow duplicates
in the output, or "unique" to de-duplicated by adding numeric suffixes. See
vctrs::vec_as_names() for more options.

values_fill Optionally, a (scalar) value that specifies what each value should be filled in
with when missing.
This can be a named list if you want to apply different fill values to different
value columns.

values_fn A function, the default is length(). Note this is different behavior than tidyr::pivot_wider(),
which returns a list column by default.

... Additional arguments passed on to methods.

Examples

library(tidyr)

24 reframe.dtplyr_step

fish_encounters_dt <- lazy_dt(fish_encounters)
fish_encounters_dt
fish_encounters_dt %>%

pivot_wider(names_from = station, values_from = seen)
Fill in missing values
fish_encounters_dt %>%

pivot_wider(names_from = station, values_from = seen, values_fill = 0)

Generate column names from multiple variables
us_rent_income_dt <- lazy_dt(us_rent_income)
us_rent_income_dt
us_rent_income_dt %>%

pivot_wider(names_from = variable, values_from = c(estimate, moe))

When there are multiple `names_from` or `values_from`, you can use
use `names_sep` or `names_glue` to control the output variable names
us_rent_income_dt %>%

pivot_wider(
names_from = variable,
names_sep = ".",
values_from = c(estimate, moe)

)

Can perform aggregation with values_fn
warpbreaks_dt <- lazy_dt(as_tibble(warpbreaks[c("wool", "tension", "breaks")]))
warpbreaks_dt
warpbreaks_dt %>%

pivot_wider(
names_from = wool,
values_from = breaks,
values_fn = mean

)

reframe.dtplyr_step Summarise each group to one row

Description

This is a method for the dplyr dplyr::reframe() generic. It is translated to the j argument of
[.data.table.

Usage

S3 method for class 'dtplyr_step'
reframe(.data, ..., .by = NULL)

Arguments

.data A lazy_dt().

relocate.dtplyr_step 25

... <data-masking>
Name-value pairs of functions. The name will be the name of the variable in the
result. The value can be a vector of any length.
Unnamed data frame values add multiple columns from a single expression.

.by <tidy-select> Optionally, a selection of columns to group by for just this op-
eration, functioning as an alternative to group_by(). For details and examples,
see ?dplyr_by.

Examples

library(dplyr, warn.conflicts = FALSE)

dt <- lazy_dt(mtcars)

dt %>%
reframe(qs = quantile(disp, c(0.25, 0.75)),

prob = c(0.25, 0.75),
.by = cyl)

dt %>%
group_by(cyl) %>%
reframe(qs = quantile(disp, c(0.25, 0.75)),

prob = c(0.25, 0.75))

relocate.dtplyr_step Relocate variables using their names

Description

This is a method for the dplyr dplyr::relocate() generic. It is translated to the j argument of
[.data.table.

Usage

S3 method for class 'dtplyr_step'
relocate(.data, ..., .before = NULL, .after = NULL)

Arguments

.data A lazy_dt().

... <tidy-select> Columns to move.

.before, .after <tidy-select> Destination of columns selected by Supplying neither will
move columns to the left-hand side; specifying both is an error.

26 rename.dtplyr_step

Examples

library(dplyr, warn.conflicts = FALSE)

dt <- lazy_dt(data.frame(x = 1, y = 2, z = 3))

dt %>% relocate(z)
dt %>% relocate(y, .before = x)
dt %>% relocate(y, .after = y)

rename.dtplyr_step Rename columns using their names

Description

These are methods for the dplyr generics dplyr::rename() and dplyr::rename_with(). They
are both translated to data.table::setnames().

Usage

S3 method for class 'dtplyr_step'
rename(.data, ...)

S3 method for class 'dtplyr_step'
rename_with(.data, .fn, .cols = everything(), ...)

Arguments

.data A lazy_dt()

... For rename(): <tidy-select> Use new_name = old_name to rename selected
variables.
For rename_with(): additional arguments passed onto .fn.

.fn A function used to transform the selected .cols. Should return a character
vector the same length as the input.

.cols <tidy-select> Columns to rename; defaults to all columns.

Examples

library(dplyr, warn.conflicts = FALSE)
dt <- lazy_dt(data.frame(x = 1, y = 2, z = 3))
dt %>% rename(new_x = x, new_y = y)
dt %>% rename_with(toupper)

replace_na.dtplyr_step 27

replace_na.dtplyr_step

Replace NAs with specified values

Description

This is a method for the tidyr replace_na() generic. It is translated to data.table::fcoalesce().

Note that unlike tidyr::replace_na(), data.table::fcoalesce() cannot replace NULL values
in lists.

Usage

S3 method for class 'dtplyr_step'
replace_na(data, replace = list())

Arguments

data A lazy_dt().

replace If data is a data frame, replace takes a named list of values, with one value for
each column that has missing values to be replaced. Each value in replace will
be cast to the type of the column in data that it being used as a replacement in.
If data is a vector, replace takes a single value. This single value replaces all
of the missing values in the vector. replace will be cast to the type of data.

Examples

library(tidyr)

Replace NAs in a data frame
dt <- lazy_dt(tibble(x = c(1, 2, NA), y = c("a", NA, "b")))
dt %>% replace_na(list(x = 0, y = "unknown"))

Replace NAs using `dplyr::mutate()`
dt %>% dplyr::mutate(x = replace_na(x, 0))

select.dtplyr_step Subset columns using their names

Description

This is a method for the dplyr dplyr::select() generic. It is translated to the j argument of
[.data.table.

28 separate.dtplyr_step

Usage

S3 method for class 'dtplyr_step'
select(.data, ...)

Arguments

.data A lazy_dt().

... <tidy-select> One or more unquoted expressions separated by commas. Vari-
able names can be used as if they were positions in the data frame, so expressions
like x:y can be used to select a range of variables.

Examples

library(dplyr, warn.conflicts = FALSE)

dt <- lazy_dt(data.frame(x1 = 1, x2 = 2, y1 = 3, y2 = 4))

dt %>% select(starts_with("x"))
dt %>% select(ends_with("2"))
dt %>% select(z1 = x1, z2 = x2)

separate.dtplyr_step Separate a character column into multiple columns with a regular ex-
pression or numeric locations

Description

This is a method for the tidyr::separate() generic. It is translated to data.table::tstrsplit()
in the j argument of [.data.table.

Usage

S3 method for class 'dtplyr_step'
separate(
data,
col,
into,
sep = "[^[:alnum:]]+",
remove = TRUE,
convert = FALSE,
...

)

slice.dtplyr_step 29

Arguments

data A lazy_dt().

col Column name or position.
This argument is passed by expression and supports quasiquotation (you can
unquote column names or column positions).

into Names of new variables to create as character vector. Use NA to omit the variable
in the output.

sep Separator between columns. The default value is a regular expression that matches
any sequence of non-alphanumeric values.

remove If TRUE, remove the input column from the output data frame.

convert If TRUE, will run type.convert() with as.is = TRUE on new columns. This is
useful if the component columns are integer, numeric or logical.
NB: this will cause string "NA"s to be converted to NAs.

... Arguments passed on to methods

Examples

library(tidyr)
If you want to split by any non-alphanumeric value (the default):
df <- lazy_dt(data.frame(x = c(NA, "x.y", "x.z", "y.z")), "DT")
df %>% separate(x, c("A", "B"))

If you just want the second variable:
df %>% separate(x, c(NA, "B"))

Use regular expressions to separate on multiple characters:
df <- lazy_dt(data.frame(x = c(NA, "x?y", "x.z", "y:z")), "DT")
df %>% separate(x, c("A","B"), sep = "([.?:])")

convert = TRUE detects column classes:
df <- lazy_dt(data.frame(x = c("x:1", "x:2", "y:4", "z", NA)), "DT")
df %>% separate(x, c("key","value"), ":") %>% str
df %>% separate(x, c("key","value"), ":", convert = TRUE) %>% str

slice.dtplyr_step Subset rows using their positions

Description

These are methods for the dplyr dplyr::slice(), slice_head(), slice_tail(), slice_min(),
slice_max() and slice_sample() generics. They are translated to the i argument of [.data.table.

Unlike dplyr, slice() (and slice() alone) returns the same number of rows per group, regardless
of whether or not the indices appear in each group.

30 slice.dtplyr_step

Usage

S3 method for class 'dtplyr_step'
slice(.data, ..., .by = NULL)

S3 method for class 'dtplyr_step'
slice_head(.data, ..., n, prop, by = NULL)

S3 method for class 'dtplyr_step'
slice_tail(.data, ..., n, prop, by = NULL)

S3 method for class 'dtplyr_step'
slice_min(.data, order_by, ..., n, prop, by = NULL, with_ties = TRUE)

S3 method for class 'dtplyr_step'
slice_max(.data, order_by, ..., n, prop, by = NULL, with_ties = TRUE)

Arguments

.data A lazy_dt().

... For slice(): <data-masking> Integer row values.
Provide either positive values to keep, or negative values to drop. The values
provided must be either all positive or all negative. Indices beyond the number
of rows in the input are silently ignored.
For slice_*(), these arguments are passed on to methods.

.by, by <tidy-select> Optionally, a selection of columns to group by for just this op-
eration, functioning as an alternative to group_by(). For details and examples,
see ?dplyr_by.

n, prop Provide either n, the number of rows, or prop, the proportion of rows to select.
If neither are supplied, n = 1 will be used. If n is greater than the number of rows
in the group (or prop > 1), the result will be silently truncated to the group size.
prop will be rounded towards zero to generate an integer number of rows.
A negative value of n or prop will be subtracted from the group size. For exam-
ple, n = -2 with a group of 5 rows will select 5 - 2 = 3 rows; prop = -0.25 with
8 rows will select 8 * (1 - 0.25) = 6 rows.

order_by <data-masking> Variable or function of variables to order by. To order by
multiple variables, wrap them in a data frame or tibble.

with_ties Should ties be kept together? The default, TRUE, may return more rows than you
request. Use FALSE to ignore ties, and return the first n rows.

Examples

library(dplyr, warn.conflicts = FALSE)

dt <- lazy_dt(mtcars)
dt %>% slice(1, 5, 10)
dt %>% slice(-(1:4))

summarise.dtplyr_step 31

First and last rows based on existing order
dt %>% slice_head(n = 5)
dt %>% slice_tail(n = 5)

Rows with minimum and maximum values of a variable
dt %>% slice_min(mpg, n = 5)
dt %>% slice_max(mpg, n = 5)

slice_min() and slice_max() may return more rows than requested
in the presence of ties. Use with_ties = FALSE to suppress
dt %>% slice_min(cyl, n = 1)
dt %>% slice_min(cyl, n = 1, with_ties = FALSE)

slice_sample() allows you to random select with or without replacement
dt %>% slice_sample(n = 5)
dt %>% slice_sample(n = 5, replace = TRUE)

you can optionally weight by a variable - this code weights by the
physical weight of the cars, so heavy cars are more likely to get
selected
dt %>% slice_sample(weight_by = wt, n = 5)

summarise.dtplyr_step Summarise each group to one row

Description

This is a method for the dplyr dplyr::summarise() generic. It is translated to the j argument of
[.data.table.

Usage

S3 method for class 'dtplyr_step'
summarise(.data, ..., .by = NULL, .groups = NULL)

Arguments

.data A lazy_dt().

... <data-masking> Name-value pairs of summary functions. The name will be
the name of the variable in the result.
The value can be:

• A vector of length 1, e.g. min(x), n(), or sum(is.na(y)).
• A data frame with 1 row, to add multiple columns from a single expression.

.by <tidy-select> Optionally, a selection of columns to group by for just this op-
eration, functioning as an alternative to group_by(). For details and examples,
see ?dplyr_by.

.groups [Experimental] Grouping structure of the result.

32 transmute.dtplyr_step

• "drop_last": drops the last level of grouping. This was the only supported
option before version 1.0.0.

• "drop": All levels of grouping are dropped.
• "keep": Same grouping structure as .data.
• "rowwise": Each row is its own group.

When .groups is not specified, it is set to "drop_last" for a grouped data
frame, and "keep" for a rowwise data frame. In addition, a message informs
you of how the result will be grouped unless the result is ungrouped, the option
"dplyr.summarise.inform" is set to FALSE, or when summarise() is called
from a function in a package.

Examples

library(dplyr, warn.conflicts = FALSE)

dt <- lazy_dt(mtcars)

dt %>%
group_by(cyl) %>%
summarise(vs = mean(vs))

dt %>%
group_by(cyl) %>%
summarise(across(disp:wt, mean))

transmute.dtplyr_step Create new columns, dropping old

Description

This is a method for the dplyr dplyr::transmute() generic. It is translated to the j argument of
[.data.table.

Usage

S3 method for class 'dtplyr_step'
transmute(.data, ...)

Arguments

.data A lazy_dt().

... <data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:

• A vector of length 1, which will be recycled to the correct length.
• A vector the same length as the current group (or the whole data frame if

ungrouped).
• NULL, to remove the column.
• A data frame or tibble, to create multiple columns in the output.

unite.dtplyr_step 33

Examples

library(dplyr, warn.conflicts = FALSE)

dt <- lazy_dt(dplyr::starwars)
dt %>% transmute(name, sh = paste0(species, "/", homeworld))

unite.dtplyr_step Unite multiple columns into one by pasting strings together.

Description

This is a method for the tidyr unite() generic.

Usage

S3 method for class 'dtplyr_step'
unite(data, col, ..., sep = "_", remove = TRUE, na.rm = FALSE)

Arguments

data A data frame.

col The name of the new column, as a string or symbol.
This argument is passed by expression and supports quasiquotation (you can
unquote strings and symbols). The name is captured from the expression with
rlang::ensym() (note that this kind of interface where symbols do not repre-
sent actual objects is now discouraged in the tidyverse; we support it here for
backward compatibility).

... <tidy-select> Columns to unite

sep Separator to use between values.

remove If TRUE, remove input columns from output data frame.

na.rm If TRUE, missing values will be removed prior to uniting each value.

Examples

library(tidyr)

df <- lazy_dt(expand_grid(x = c("a", NA), y = c("b", NA)))
df

df %>% unite("z", x:y, remove = FALSE)

Separate is almost the complement of unite
df %>%

unite("xy", x:y) %>%
separate(xy, c("x", "y"))

(but note `x` and `y` contain now "NA" not NA)

Index

?dplyr_by, 11, 18, 25, 30, 31
?join_by, 17

arrange.dtplyr_step, 2
as.data.frame(), 15
as.data.frame.dtplyr_step

(collect.dtplyr_step), 3
as.data.table.dtplyr_step

(collect.dtplyr_step), 3
as_tibble.dtplyr_step

(collect.dtplyr_step), 3

collect.dtplyr_step, 3
complete(), 5
complete.dtplyr_step, 4
compute.dtplyr_step

(collect.dtplyr_step), 3
count.dtplyr_step, 5
cross_join(), 17

data.table::as.data.table(), 15
data.table::CJ(), 8
data.table::dcast(), 22
data.table::fcoalesce(), 27
data.table::fintersect(), 14
data.table::fsetdiff(), 14
data.table::funion(), 14
data.table::melt(), 20
data.table::merge.data.table(), 16
data.table::nafill(), 9
data.table::setcolorder(), 16, 18
data.table::setkey(), 16
data.table::setnames(), 16, 26
data.table::tstrsplit(), 28
data.table::unique.data.table(), 6
desc(), 3
distinct.dtplyr_step, 6
dplyr::anti_join(), 16
dplyr::arrange(), 2, 11
dplyr::collect(), 15

dplyr::count(), 5
dplyr::distinct(), 6
dplyr::full_join(), 16
dplyr::group_by(), 11
dplyr::group_map(), 13
dplyr::group_modify(), 13
dplyr::inner_join(), 16
dplyr::left_join(), 16
dplyr::mutate(), 18
dplyr::pull(), 15
dplyr::reframe(), 24
dplyr::relocate(), 25
dplyr::rename(), 26
dplyr::rename_with(), 26
dplyr::right_join(), 16
dplyr::select(), 16, 27
dplyr::semi_join(), 16
dplyr::slice(), 29
dplyr::summarise(), 31
dplyr::transmute(), 32
dplyr::ungroup(), 11
dplyr::union_all(), 14
drop_na.dtplyr_step, 7

expand(), 5
expand.dtplyr_step, 8
extract(), 21

fill.dtplyr_step, 9
filter.dtplyr_step, 10

generics::intersect(), 14
generics::setdiff(), 14
generics::union(), 14
group_by(), 11, 18, 25, 30, 31
group_by.dtplyr_step, 11
group_map.dtplyr_step

(group_modify.dtplyr_step), 13
group_modify.dtplyr_step, 13
grouped_dt (lazy_dt), 15

34

INDEX 35

head(), 14
head.dtplyr_step, 14

intersect.dtplyr_step, 14

join_by(), 17

lazy_dt, 4, 13, 15
lazy_dt(), 3, 5–8, 11–15, 17–20, 23–32
left_join.dtplyr_step, 16

mutate.dtplyr_step, 18

nest.dtplyr_step, 19

order(), 2

pivot_longer.dtplyr_step, 20
pivot_wider.dtplyr_step, 22

quasiquotation, 33

reframe.dtplyr_step, 24
relocate(), 19
relocate.dtplyr_step, 25
rename.dtplyr_step, 26
rename_with.dtplyr_step

(rename.dtplyr_step), 26
replace_na.dtplyr_step, 27
rlang::ensym(), 33

select.dtplyr_step, 27
separate(), 21
separate.dtplyr_step, 28
setdiff.dtplyr_step

(intersect.dtplyr_step), 14
slice.dtplyr_step, 29
slice_head.dtplyr_step

(slice.dtplyr_step), 29
slice_max.dtplyr_step

(slice.dtplyr_step), 29
slice_min.dtplyr_step

(slice.dtplyr_step), 29
slice_tail.dtplyr_step

(slice.dtplyr_step), 29
summarise.dtplyr_step, 31

tail(), 14
tail.dtplyr_step (head.dtplyr_step), 14
tbl(), 12
tbl_dt (lazy_dt), 15

tibble::as_tibble(), 15
tidyr::nest(), 19
tidyr::separate(), 28
transmute.dtplyr_step, 32

ungroup.dtplyr_step
(group_by.dtplyr_step), 11

union.dtplyr_step
(intersect.dtplyr_step), 14

union_all.dtplyr_step
(intersect.dtplyr_step), 14

unite.dtplyr_step, 33

vctrs::vec_as_names(), 21, 23
vec_as_names(), 8

when_any(), 11

	arrange.dtplyr_step
	collect.dtplyr_step
	complete.dtplyr_step
	count.dtplyr_step
	distinct.dtplyr_step
	drop_na.dtplyr_step
	expand.dtplyr_step
	fill.dtplyr_step
	filter.dtplyr_step
	group_by.dtplyr_step
	group_modify.dtplyr_step
	head.dtplyr_step
	intersect.dtplyr_step
	lazy_dt
	left_join.dtplyr_step
	mutate.dtplyr_step
	nest.dtplyr_step
	pivot_longer.dtplyr_step
	pivot_wider.dtplyr_step
	reframe.dtplyr_step
	relocate.dtplyr_step
	rename.dtplyr_step
	replace_na.dtplyr_step
	select.dtplyr_step
	separate.dtplyr_step
	slice.dtplyr_step
	summarise.dtplyr_step
	transmute.dtplyr_step
	unite.dtplyr_step
	Index

