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Distribution based outlier detection in univariate
data

Mark P. J. van der Loo

Summary:

Two univariate outlier detection methods are introduced. In both methods, the

distribution of the bulk of observed data is approximated by regression of the

observed values on their estimated QQ plot positions using a model cumulative

distribution function. Having obtained a description of the bulk distribution,

we give two methods to determine if extreme observations are designated as

outliers. In Method I, we determine the value above which less than a certain

number of observations (say 0.5) are expected, given the total number of obser-

vations and the fitted distribution. In Method II, we devise a test statistic to

determine whether an extreme value can be drawn from the same distribution

as the bulk data. Both methods have been implemented in the “extremevalues”

R package which has been made available via the CRAN web archive. An out-

lier detection method based Method I using the lognormal distribution has been

implemented for the Structural Business Statistics at Statistics Netherlands.

Keywords:

Outliers, Extreme values, Test Statistic

1 Introduction

The detection and handling of outliers, either in sampled or administrative

numerical data is an important part of many estimation processes. An outlier

can indicate an observation or processing error, or a special element of the

population which needs to be treated differently from the bulk in the estimation

process.

One problem encountered in outlier detection is that many data which are anal-

ysed in practice are skewly distributed, even after a reasonable stratification.

Well known examples include economic data, such as turnover values or number

of employees per business establishment. Economic data such as turnovers are

often spread over several orders of magnitude, which makes the identification

of outliers more difficult. As an illustration, consider the distribution of Value

Added Tax turnover values in Figure 2, Section 3. The standard box-and-

whisker plots of the log10 of turnover values seem to give a reasonable outlier

detection on the right side of the distribution, since only a few isolated points

lie above the top whiskers. At the left side of the distribution however, the
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number of outliers seems unreasonable, at least to the eye. Also, it is easy to

see that the number of outliers depends here on the chosen data transformation.

Namely, in Figure 2, where a logarithmic transformation is applied, a number

of 2, 3, 2, 1 and 0 outliers are found in various size classes. If in stead a square

root transformation would be used, one would find 6, 7, 5, 5 and 0 outliers

respectively. Ideally, to identify outliers, one would like to use a transformation

based on the actual distribution of the bulk.

Barnett and Lewis (1994) define an outlier in a set of data as “an observation (or

subset of observations) which appears to be inconsistent with the remainder of

that set of data”. Although this seems intuitively appealing, it is not a useful

definition since it leaves the identification of an observation as an outlier a

matter of subjectivity. Here, we adhere to the view that outliers are generated

by a different distribution than the bulk observations. Hawkins (1980) labels

this outlier generation mechanism ii, as opposed to mechanism i, where all

observations are thought to be generated by a single distribution. Consequently

our method is an operationalisation of this definition.

Various outlier detection methods (often called discordancy tests) have been

reported in literature. Many of them are based on a test statistic which takes

into account the distance of an observation to a location parameter and the

spread of the sample. Examples include Dixon-type statistics (Dixon, 1950,

1953) and Grubbs’ statistic (Grubbs, 1950).

In the methods proposed here, the distribution of the bulk of observations is

estimated robustly by a suitable model distribution. Outliers are then defined

as observations which are unlikely to be generated by the bulk distribution

(with an explicit definition of the “degree of unlikelyness”). After obtaining

a robust estimate for the bulk distribution, we devise two test statistics. The

first is the untransformed observed value, the second is the residual of regression

used in the robust estimation procedure. The main advantage of this method

is that it gives very robust results once the right distribution is found. In this

paper, it is also shown how the correctness of the model distribution can be

assessed. The outlier detection methods described here have been implemented

as an R package (van der Loo, 2010) which is available from the CRAN website

(R Development Core Team, 2008).

The rest of this paper is organized as follows: In section 2 the theory of the

method is explained in detail, and an illustration based on artificial data is

given. In section 3 the method is applied to Dutch Value Added Tax data and

the results are analysed in more detail. Section 4 summarizes our conclusions.
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2 Theory

Throughout this paper a real random variable Y is assumed, of which N reali-

sations yi have been obtained and ordered so that y1 ≤ y2 ≤ . . . ≤ yN .

2.1 Parameter estimation by regression on QQ plot positions

For the purpose of outlier detection, assume that the observations yi are gen-

erated by a model probability density, with cumulative density function (cdf)

F (Y |θ) where θ is a vector of parameters specifying F . The value of θ can be

estimated robustly from the bulk of the observations by minimizing the sum of

squares:

θ̂ = argmin
θ

∑

i∈Λ
[g(yi)− g(F−1(F̂i|θ))]2, (1)

where Λ indexes a subset of the observations yi and g is a monotonic function,

differentiable on the range of Y . Here, we use

Λ = {i ∈ {1, 2, . . . , N} |Fmin ≤ F̂i ≤ Fmax}, (2)

where 0 ≤ Fmin < Fmax ≤ 1 are to be determined by the user and F̂i are

plot positions as used in quantile-quantile (QQ) plots, based on the sorted

observations. The above equation is based on the notion that the plot positions

F̂i can be considered estimates of the cumulative probability value at a given

yi. The plotting positions can be calculated as [see Makkonen (2008)]

F̂i =
i

N + 1
. (3)

The method was implemented for the exponential, Weibull, lognormal, Pareto

and normal distribution. With the exception of the exponential distribution,

solving Eq. (1) with a suitable transformation g yields linear regression equa-

tions of the form

b = (A′A)−1A′x, (4)

where b is a 2-dimensional vector containing functions of the distribution pa-

rameters, A is a |Λ| × 2 matrix containing functions of F̂i and x is a |Λ|-
dimensional vector containing functions of yi. Table 1 shows the result for all

five distributions.
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Table 1. Results of solving Eq. (1) for various model distributions. The first and second column

give the name and variable range of the models. The third column shows the function g from Eq.

(1). The fourth column shows the form of the cdf of the model and the subsequent column shows the

interpretation of the symbols in Eq. 4 for various models. We use the notations F̂ = (F̂i|i ∈ Λ),

y = (yi|i ∈ Λ), ||x|| for the Euclidean vector norm of x and · for the standard inner product. All

functions work elementwise on vectors, Id is the identity function, ln the natural logarithm and erf

the error function as defined in Abramowitz and Stegun (1972).

Model range g cdf b A x

Normal |y| < ∞ Id 1
2 + 1

2erf{(y − µ)2/
√
2σ)} (µ̂, σ̂)′ [1,

√
2erf−1(2F̂− 1)] y

Lognrm. y > 0 ln 1
2 + 1

2erf{(ln y − µ)2/
√
2σ)} (µ̂, σ̂)′ [1,

√
2erf−1(2F̂− 1)] lny

Weibull y ≥ 0 ln 1− exp{−(y/λ)k} (ln λ̂, k̂−1)′ [1, ln ln(1− F̂)−1] lny

Pareto y ≥ ym ln 1− (ymy )α (ln λ̂,− ˆα−1)′ [1, ln(1− F̂)] lny

Exp. y ≥ 0 Id 1− exp{−λy} λ̂ = −|| ln(1− F̂)||2/ ln(1− F̂)′ · y
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Table 2. Calculation of the outlier detection limit

for Method I. Note that δ∓ = 1− δ±.

F `±ρ
Normal

√
2σerf−1[±(1− 2ρ±/N)] + µ

Lognrm. exp
{√

2σerf−1[±(1− 2ρ±/N)] + µ
}

Weibull λ[− ln(δ∓ ∓N/ρ±)]1/k

Pareto ym(δ∓ ∓ ρ±/N)−1/α

Exp. −λ−1 ln(δ∓ ∓ ρ±/N)

2.2 Detection Method I

Given a model distribution with parameters θ, the expected number of obser-

vations ρ± above (+) or below (−) a value `± is given by

ρ± = N [δ± ∓ F (`±|θ)], (5)

where δ± = 1 for the upper symbol and 0 for the lower. Mindful of Eq. (5) the

following definition of an outlier is suggested: given the distribution parameters

θ, an observation will be called an outlier with respect to ρ± when it is above (+)

or below (−) the value where less then ρ± observations are expected, conditional

on the total number of observations N .

Solving `± from Eq. (5) and replacing θ with its estimate, we get

`±ρ = F−1
(
δ± ∓ ρ±

N

∣∣∣θ̂
)
, (6)

The label ρ is added to distinguish the limit from the limit defined in the next

section. Since F is non-decreasing, the value of `+ρ (`−ρ ) decreases (increases)

with increasing ρ, and therefore less observations will be identified as outlier

when ρ increases. If one chooses ρ± < 1, then `±ρ represents the value above

(below) which less than 1 observation is expected. In Table 2 the limits are

calculated for various distributions used here.

2.3 Detection Method II

Based on the estimation method discussed in Subsection 2.1, we can deduce

a second outlier definition as follows. Given a model distribution F with es-

timated θ̂ and an observation yj , where j 6∈ Λ. Assume the following null

hypothesis:

H0 : yj is generated by F (Y |θ̂). (7)

The largest and smallest values for whichH0 is rejected are identified as outliers.

To make this precise, we use the test statistic E whose realizations ε are given

7



by

εj = g(yj)− g(F−1(F̂j |θ̂)), (8)

with g as in Eq. (1). A large observation yk, with k > max{Λ} is called an

outlier with respect to α+ if

εk ≥ `+α = F−1
E (1− α+|φ̂) and

k = N or yk+1 is also an outlier. (9)

Here, FE is the cdf for the residual distribution with parameters φ, estimated

using observations indexed with Λ. The second condition ensures that an ob-

servation is only identified as an outlier when all larger observations are outliers

too. Similarly, a small value yi with i < min{Λ} is called an outlier with respect

to α− when

εi ≤ `−α = F−1
E (α−|φ̂) and

i = 1 or yi−1 is also an outlier. (10)

Assuming that the residuals are normal distributed with mean 0 and variance

σ2
E , we get for the upper and lower limits

`±α =
√
2σ̂Eerf

−1{±(1− 2α±)} (11)

with σ̂2
E = |Λ|−1

∑
j∈Λ ε2j . and erf−1 the inverse of the error function. In

this formulation, more observations on both the left and right-hand side of the

distribution will be identified as outliers as α decreases.

2.4 An illustration

To illustrate the detection methods, a set of 100 log−N (µ = 0, σ = 1) dis-

tributed numbers were generated, the realized mean and standard deviation

being −0.317 and 1.199 respectively (Note that for the lognormal distribution,

µ(Y ) = E(lnY ) and σ2(Y ) = Var(lnY )). Two outliers were added to the

random numbers: the first set to 0.1 times the smallest random number, the

second set to 10 times the largest random number, yielding values of 0.007889

and 104.8071 respectively. Next, using all 102 “observations”, the values F̂i

were calculated, and µ̂ and σ̂ were estimated using Fmin = 0.1 and Fmax = 0.9.

In this case we found µ̂ = −0.331 and σ̂ = 1.230, close to the realized value of

the random sample. This is also reflected in the corresponding R2 value which

equals 0.9950.

Next, outliers were determined with both methods. For Method I we used

ρ+ = ρ− = 1, yielding `−ρ=1 = 0.04073 and `+ρ=1 = 12.6568. The top panel of
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Figure 1. Results of outlier detection with Method II on simulated lognormal

distributed data with two added outliers. Filled points indicate data used in

the fit. Outliers are indicated with a ×+. Upper panel: observed values versus

predicted values, the continuous line indicating the perfect fit. Lower pane:

residuals against observed values. The grey areas indicate the outlier region.

Points between the vertical dashed lines were used in the fit, The horizontal

dashed lines indicate the levels `±α .

Figure 1, shows the result of Method I outlier detection as well as an overview of

fit quality by means of a QQ-plot. Points between the dashed vertical lines were

used in the fit. The dashed horizontal lines indicate the levels `±ρ=1 and points

above (below) the dashed horizontal lines are classified as outliers (indicated
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with ×+).

For Method II we used α+ = α− = 0.05. The bottom panel of Figure 1 combines

an overview of the detection results as well as the fitting quality by means of a

residual plot. As in the top panel, data points between vertical lines were used

in the fit. Based on these data we find φ̂ = (µ̂E , σ̂E) = (0.000, 0.0659) giving

`±α=0.05 = ±0.153. The horizontal dashed lines in the lower pane of Figure 1

indicate the levels `±α=0.05, and the gray areas indicate where outliers can occur.

The artificially added outliers are indeed classified as such by the method and

are marked with a ×+. The values in the upper left rectangle in the lower pane

have residuals larger than `+0.05, but they are no outliers since they are situated

on the left side of the distribution (i.e. they are small even though they have

large residuals). Similarly, values in the bottom right rectangle have residuals

lower than `−0.05, but are not identified as extremely small values since they are

on the right side of the distribution.

3 Application to Dutch VAT data

To further test the methods, they were applied to monthly Value Added Tax

data of Dutch supermarkets (SBI code 47.11, see also SBI08 (2008)). VAT

data is used by Statistics Netherlands in estimation processes for economic

growth and the Structural Business Statistics, amongst others. Here, only

outliers on the right side of the distribution (called “right outliers”) are treated.

For technical reasons, such as deductions, some VAT values can be negative.

After removing records with nonpositive values from the dataset, 14880 records

remained which were further devided into five size classes h = 1, 2, . . . , 5 of sizes

463, 443, 297, 223, and 119 respectively. The size classification is based on the

number of employees and enterprizes in higher size class have more employees.

In Figure 2 an overview of the data is given in the form of box-and-whisker

plots of the log10 of the turnover values.

Next, right outliers were identified with the two methods using all five model

distributions. In each case we used Fmin = 0.1, Fmax = 0.9. In the case of

Method I, the outlier detection limit `+ρ was determined by ρ = 0.5. In the

case of Method II, the maximum residual `+α was determined by α = 0.05. The

parameters were equal for all five size classes. The resulting number of outliers

for the different detection methods are shown in table 3. The variation of

number of outliers as the method is varied from Method I to Method II is not the

same for every used distribution. When the normal or Weibull distributions are

used, Method II yields more outliers than Method I, while the lognormal, Pareto

and exponential distributions are relatively insensitive to the used detection

method.
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Figure 2. Boxplots of the logarithm (in base 10) of montly VAT turnover of

1545 Dutch supermarkets diveded into size classes.

The number of detected outlier depends strongly on the used distribution. If

the normal or Weibull distribution is used, the number of outliers varies from 0

to 46 over the size classes while no outliers are detected at all when the Pareto

distribution is used. Roughly, the number of detected outliers decreases in the

order normal - Weibull - exponential - lognormal - Pareto distribution. Note

that for Method I, where the value of `+ρ depends directly on the shape of the

tail, this is consistent with the fact that for large enough y, the density distri-

butions obey F ′
nrm < F ′

exp < F ′
lnrm < F ′

pto (Explicitly, writing y = ln z, one can

show that lnF ′
nrm → −e2z, lnF ′

exp → −ez, lnF ′
nrm → −z2,and lnF ′

pto → −z).

The only exception to this is the Weibull distribution, which has asymptotic

behaviour similar to the exponential distribution. As shown further on, this is

due to the fact that the Weibull distribution overfits the observed data. The

above observations, as well as the question which distribution to use in practice,

can be explained by investigating the robustness of the methods for the param-

eter settings. In the top panel of Figure 3 the R2 values of the model fits are

plotted against the maximum bulk QQ plot position Fmax for observations in

size class 3. In the lower panel, the number of outliers resulting from different

Fmax values are plotted. Remember that a lower Fmax implies that less values

are used in the fit.

The reliability of the outlier detection methods described here, depends on the

adequacy of the model distribution, as well as on the robustness of the outlier

numbers as a function of fit parameters. For example, it can be seen that the

Weibull distribution gives fairly good fits for all tested Fmax values, with R2-
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Table 3. Right outliers in VAT turnover data,

determined using Methods I and II, and vari-

ous model distribuitions. Outliers were deter-

mined using Fmin = 0.1, Fmax = 0.9 ρ+ = 0.5

(Method I), and α+ = 0.05 (Method II).

nrm lnrm wbl pto exp

h I II I II I II I II I II

1 17 46 2 2 7 30 0 0 4 7

2 14 44 2 3 5 44 0 0 3 5

3 9 30 2 4 5 30 0 0 3 5

4 8 22 1 1 5 14 0 0 1 3

5 1 3 0 0 0 0 0 0 0 0

values wich are second only to that of the lognormal distribution. However, it

can be seen in the lower panel of Figure 3 that the number of outliers increases

drastically when Fmax is lowered from 0.9 to 0.6, especially for Method II. This

indicates that the Weibull distribution is too flexible, giving a good fit at the

used bulk observations but with bad extrapolation properties to higher lying

observations. When Method II is used together with the Weibull distribution,

basically all points which are not used in the fit are identified as outliers since

they have large residuals. This can be considered an overfitting by the Weibull

distribution. The normal distribution shows similar behaviour, although with

lower overall R2-values.

Both the Pareto distribution and the exponential distribution yield a fairly

constant number of outliers as a function of Fmax. However, both have R2-

values which depend strongly on Fmax. This indicates that neither of these

distributions can be seen as a proper description of the bulk distribution, since

for perfectly Pareto (exponentially) distributed variables even the use of a few

F̂i-values should give a reasonable estimate.

The only distribution for which both the quality of fit and the number of iden-

tified outliers is (almost) independent of the chosen Fmax value is the lognormal

distribution. In fact, the number of detected outliers is completely independent

of Fmax in this case and the lognormal distribution yields the highest R2-values

for the whole range of Fmax values. Finally, we note that tests involving business

types different from supermarkets gave similar results.

It is therefore concluded that 1) the lognormal distribution yields a reasonable

description for the right-hand side of the distribution of Dutch VAT turnover

values and 2) the values which are identified as outliers are indeed outliers in

the sense that they are unlikely to be drawn from the same distribution as the
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Figure 3. Dependence of R2 values (upper panel) and number of detected out-

liers (lower panel) on the value of the bulk upper limit Fmax for various methods

and distributions applied to VAT data in size class 3.

bulk.

4 Conclusion

An outlier detection method is shown which uses a model distribution to de-

scribe the bulk, and identifies outliers as observations which are unlikely to

be drawn from the same distribution. Also, a method to approximate model

parameters based on regression on the QQ plot positions is pointed out. The
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methods have proven to be robust against chosen parameter settings once the

right model distribution is chosen and similar parameter settings can be used

for different size classes and business types. Also, the methods offer conceptual

advantage since the technical definition of an outlier used here is a close transla-

tion of the concept of “not belonging to the bulk”. Finally we mention that an

outlier detection method based on Method I with the lognormal distribution,

is now implemented as part of the new production process for the Structural

Business Statistics at Statistics Netherlands. An implementation of this work

has been submitted to the CRAN archive as the R package “extremevalues”

(version 2.0).
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