
Package ‘fastQR’
February 13, 2026

Type Package

Title Fast QR Decomposition and Update

Version 1.1.4

Date 2026-02-10

Author Mauro Bernardi [aut, cre],
Claudio Busatto [aut],
Manuela Cattelan [aut]

Maintainer Mauro Bernardi <mauro.bernardi@unipd.it>

Description Efficient algorithms for performing, updating, and remov-
ing rows or columns from the QR decomposition, R decomposition, or the inverse of the R de-
composition of a matrix as rows or columns are added or removed. It also includes func-
tions for solving linear systems of equations, normal equations for linear regression mod-
els, and normal equations for linear regression with a RIDGE penalty. For a detailed introduc-
tion to these methods, the monograph Matrix Computations (2013, <doi:10.1007/978-3-319-
05089-8>) for complete introduction to the methods.

License GPL (>= 2)

Imports Rcpp (>= 1.0.10), RcppEigen, Rdpack

LinkingTo Rcpp, RcppArmadillo, RcppEigen

Encoding UTF-8

RoxygenNote 7.3.3

RdMacros Rdpack

SystemRequirements GNU make

NeedsCompilation yes

Repository CRAN

Date/Publication 2026-02-13 10:40:02 UTC

Contents
qr . 2
qrchol . 4

1

https://doi.org/10.1007/978-3-319-05089-8
https://doi.org/10.1007/978-3-319-05089-8

2 qr

qrdowndate . 4
qrls . 8
qrmls . 9
qrmridge . 10
qrmridge_cv . 12
qrridge . 13
qrridge_cv . 14
qrsolve . 16
qrupdate . 17
qr_coef . 20
qr_fast . 21
qr_fitted . 24
qr_lm . 26
qr_lse_coef . 27
qr_lse_fitted . 28
qr_lse_Qty . 29
qr_lse_Qy . 30
qr_lse_resid . 31
qr_pivot2perm . 32
qr_Q . 33
qr_Qty . 34
qr_Qy . 35
qr_Q_full . 36
qr_Q_reduced2full . 37
qr_R . 39
qr_resid . 40
qr_thin . 41
qr_X . 42
rchol . 44
rdowndate . 45
rupdate . 48

Index 52

qr The QR factorization of a matrix

Description

qr provides the QR factorization of the matrix X ∈ Rn×p with n > p. The QR factorization of the
matrix X returns the matrices Q ∈ Rn×n and R ∈ Rn×p such that X = QR. See Golub and Van
Loan (2013) for further details on the method.

qr 3

Arguments

X a n× p matrix.

type either "givens" or "householder".

nb integer. Defines the number of block in the block recursive QR decomposition.
See Golud and van Loan (2013).

complete logical expression of length 1. Indicates whether an arbitrary orthogonal com-
pletion of the Q matrix is to be made, or whether the R matrix is to be completed
by binding zero-value rows beneath the square upper triangle.

Value

A named list containing

Q the Q matrix.

R the R matrix.

References

Golub GH, Van Loan CF (2013). Matrix computations, Johns Hopkins Studies in the Mathematical
Sciences, Fourth edition. Johns Hopkins University Press, Baltimore, MD. ISBN 978-1-4214-0794-
4; 1-4214-0794-9; 978-1-4214-0859-0.

Björck Å (2015). Numerical methods in matrix computations, volume 59 of Texts in Applied Math-
ematics. Springer, Cham. ISBN 978-3-319-05088-1; 978-3-319-05098-8, doi:10.1007/9783319-
050898.

Björck Å (2024). Numerical Methods for Least Squares Problems: Second Edition. Society for In-
dustrial and Applied Mathematics, Philadelphia, PA. doi:10.1137/1.9781611977950, https://doi.org/10.1137/1.9781611977950.

Bernardi M, Busatto C, Cattelan M (2024). “Fast QR updating methods for statistical applications.”
2412.05905, https://arxiv.org/abs/2412.05905.

Examples

generate sample data
set.seed(1234)
n <- 10
p <- 6
X <- matrix(rnorm(n * p, 1), n, p)

QR factorization via Givens rotation
output <- qr(X, type = "givens", complete = TRUE)
Q <- output$Q
R <- output$R

check
round(Q %*% R - X, 5)
max(abs(Q %*% R - X))

QR factorization via Householder rotation
output <- qr(X, type = "householder", complete = TRUE)

https://doi.org/10.1007/978-3-319-05089-8
https://doi.org/10.1007/978-3-319-05089-8
https://doi.org/10.1137/1.9781611977950
https://arxiv.org/abs/2412.05905

4 qrdowndate

Q <- output$Q
R <- output$R

check
round(Q %*% R - X, 5)
max(abs(Q %*% R - X))

qrchol Cholesky decomposition via QR factorization.

Description

qrchol, provides the Cholesky decomposition of the symmetric and positive definite matrix X⊤X ∈
Rp×p, where X ∈ Rn×p is the input matrix.

Usage

qrchol(X, nb = NULL)

Arguments

X an (n× p) matrix.

nb number of blocks for the recursive block QR decomposition, default is NULL.

Value

an upper triangular matrix of dimension p × p which represents the Cholesky decomposition of
X⊤X .

qrdowndate Fast downdating of the QR factorization

Description

qrdowndate provides the update of the QR factorization after the deletion of m > 1 rows or columns
to the matrix X ∈ Rn×p with n > p. The QR factorization of the matrix X ∈ Rn×p returns the
matrices Q ∈ Rn×n and R ∈ Rn×p such that X = QR. The Q and R matrices are factorized as

Q =
[
Q1 Q2

]
and R =

[
R1

R2

]
, with Q1 ∈ Rn×p, Q2 ∈ Rn×(n−p) such that Q⊤

1 Q2 = Q⊤
2 Q1 = 0

and R1 ∈ Rp×p upper triangular matrix and R2 ∈ R(n−p)×p. qrupdate accepts in input the matrices
Q and either the complete matrix R or the reduced one, R1. See Golub and Van Loan (2013) for
further details on the method.

Usage

qrdowndate(Q, R, k, m = NULL, type = NULL, fast = NULL, complete = NULL)

qrdowndate 5

Arguments

Q a n× n matrix.

R a n× p upper triangular matrix.

k position where the columns or the rows are removed.

m number of columns or rows to be removed. Default is m = 1.

type either ’row’ of ’column’, for deleting rows or columns. Default is ’column’.

fast fast mode: disable to check whether the provided matrices are valid inputs. De-
fault is FALSE.

complete logical expression of length 1. Indicates whether an arbitrary orthogonal com-
pletion of the Q matrix is to be made, or whether the R matrix is to be completed
by binding zero-value rows beneath the square upper triangle.

Value

A named list containing

Q the updated Q matrix.

R the updated R matrix.

References

Golub GH, Van Loan CF (2013). Matrix computations, Johns Hopkins Studies in the Mathematical
Sciences, Fourth edition. Johns Hopkins University Press, Baltimore, MD. ISBN 978-1-4214-0794-
4; 1-4214-0794-9; 978-1-4214-0859-0.

Björck Å (2015). Numerical methods in matrix computations, volume 59 of Texts in Applied Math-
ematics. Springer, Cham. ISBN 978-3-319-05088-1; 978-3-319-05098-8, doi:10.1007/9783319-
050898.

Björck Å (2024). Numerical Methods for Least Squares Problems: Second Edition. Society for In-
dustrial and Applied Mathematics, Philadelphia, PA. doi:10.1137/1.9781611977950, https://doi.org/10.1137/1.9781611977950.

Bernardi M, Busatto C, Cattelan M (2024). “Fast QR updating methods for statistical applications.”
2412.05905, https://arxiv.org/abs/2412.05905.

Examples

Remove one column
generate sample data
set.seed(10)
n <- 10
p <- 6
X <- matrix(rnorm(n * p, 1), n, p)

get the initial QR factorization
output <- fastQR::qr(X, type = "householder",

nb = NULL,
complete = TRUE)

Q <- output$Q
R <- output$R

https://doi.org/10.1007/978-3-319-05089-8
https://doi.org/10.1007/978-3-319-05089-8
https://doi.org/10.1137/1.9781611977950
https://arxiv.org/abs/2412.05905

6 qrdowndate

select the column to be deleted
from X and update X
k <- 2
X1 <- X[, -k]

downdate the QR decomposition
out <- fastQR::qrdowndate(Q = Q, R = R,

k = k, m = 1,
type = "column",
fast = FALSE,
complete = TRUE)

check
round(out$Q %*% out$R - X1, 5)
max(abs(out$Q %*% out$R - X1))

Remove m columns
generate sample data
set.seed(10)
n <- 10
p <- 6
X <- matrix(rnorm(n * p, 1), n, p)

get the initial QR factorization
output <- fastQR::qr(X, type = "householder",

nb = NULL,
complete = TRUE)

Q <- output$Q
R <- output$R

select the column to be deleted from X
and update X
m <- 2
k <- 2
X1 <- X[, -c(k,k+m-1)]

downdate the QR decomposition
out <- fastQR::qrdowndate(Q = Q, R = R,

k = k, m = 2,
type = "column",
fast = TRUE,
complete = FALSE)

check
round(out$Q %*% out$R - X1, 5)
max(abs(out$Q %*% out$R - X1))

Remove one row
generate sample data
set.seed(10)
n <- 10
p <- 6

qrdowndate 7

X <- matrix(rnorm(n * p, 1), n, p)

get the initial QR factorization
output <- fastQR::qr(X, type = "householder",

nb = NULL,
complete = TRUE)

Q <- output$Q
R <- output$R

select the row to be deleted from X and update X
k <- 5
X1 <- X[-k,]

downdate the QR decomposition
out <- fastQR::qrdowndate(Q = Q, R = R,

k = k, m = 1,
type = "row",
fast = FALSE,
complete = TRUE)

check
round(out$Q %*% out$R - X1, 5)
max(abs(out$Q %*% out$R - X1))

Remove m rows
generate sample data
set.seed(10)
n <- 10
p <- 6
X <- matrix(rnorm(n * p, 1), n, p)

get the initial QR factorization
output <- fastQR::qr(X, type = "householder",

nb = NULL,
complete = TRUE)

Q <- output$Q
R <- output$R

select the rows to be deleted from X and update X
k <- 5
m <- 2
X1 <- X[-c(k,k+1),]

downdate the QR decomposition
out <- fastQR::qrdowndate(Q = Q, R = R,

k = k, m = m,
type = "row",
fast = FALSE,
complete = TRUE)

check
round(out$Q %*% out$R - X1, 5)
max(abs(out$Q %*% out$R - X1))

8 qrls

qrls Ordinary least squares for the linear regression model

Description

qrls, or LS for linear regression models, solves the following optimization problem

minβ
1

2
∥y −Xβ∥22,

for y ∈ Rn and X ∈ Rn×p, to obtain a coefficient vector β̂ ∈ Rp. The design matrix X ∈ Rn×p

contains the observations for each regressor.

Usage

qrls(y, X, X_test = NULL, type = NULL)

Arguments

y a vector of length-n response vector.

X an (n× p) full column rank matrix of predictors.

X_test an (q × p) full column rank matrix. Test set. By default it set to NULL.

type either "QR" or "R". Specifies the type of decomposition to use: "QR" for the
QR decomposition or "R" for the Cholesky factorization of A⊤A. The default
is "QR".

Value

A named list containing

coeff a length-p vector containing the solution for the parameters β.

fitted a length-n vector of fitted values, ŷ = Xβ̂.

residuals a length-n vector of residuals, ε = y − ŷ.

residuals_norm2 the L2-norm of the residuals, ∥ε∥22.
y_norm2 the L2-norm of the response variable. ∥y∥22.
XTX_Qmat Q matrix of the QR decomposition of the matrix X⊤X .

XTX_Rmat R matrix of the QR decomposition of the matrix X⊤X .

QXTy QX⊤y, where Q matrix of the QR decomposition of the matrix X⊤X .

R2 R2, coefficient of determination, measure of goodness-of-fit of the model.

predicted predicted values for the test set, Xtestβ̂. It is only available if X_test is not NULL.

qrmls 9

Examples

generate sample data
set.seed(10)
n <- 30
p <- 6
X <- matrix(rnorm(n * p, 1), n, p)
X[,1] <- 1
eps <- rnorm(n, sd = 0.5)
beta <- rep(0, p)
beta[1:3] <- 1
beta[4:5] <- 2
y <- X %*% beta + eps
X_test <- matrix(rnorm(5 * p, 1), 5, p)
output <- fastQR::qrls(y = y, X = X, X_test = X_test)
output$coeff

qrmls Ordinary least squares for the linear multivariate regression model

Description

qrmls, or LS for linear multivariate regression models, solves the following optimization problem

minβ
1

2
∥Y −XB∥22,

for Y ∈ Rn×q and X ∈ Rn×p, to obtain a coefficient matrix B̂ ∈ Rp×q . The design matrix
X ∈ Rn×p contains the observations for each regressor.

Arguments

Y a matrix of dimension (n× q response variables.

X an (n× p) full column rank matrix of predictors.

X_test an (q × p) full column rank matrix. Test set. By default it set to NULL.

type either "QR" or "R". Specifies the type of decomposition to use: "QR" for the
QR decomposition or "R" for the Cholesky factorization of A⊤A. The default
is "QR".

Value

A named list containing

coeff a matrix of dimension p× q containing the solution for the parameters B.

fitted a matrix of dimension n× q of fitted values, Ŷ = XB̂.

residuals a matrix of dimension n× q of residuals, ε = Y − Ŷ .

XTX the matrix X⊤X .

10 qrmridge

Sigma_hat a matrix of dimension q × q containing the estimated residual variance-covariance
matrix.

df degrees of freedom.

R R matrix of the QR decomposition of the matrix X⊤X .

XTy X⊤y.

R2 R2, coefficient of determination, measure of goodness-of-fit of the model.

predicted predicted values for the test set, XtestB̂. It is only available if X_test is not NULL.

PMSE

Examples

generate sample data
set.seed(10)
n <- 30
p <- 6
q <- 3
X <- matrix(rnorm(n * p, 1), n, p)
X[,1] <- 1
eps <- matrix(rnorm(n*q), n, q)
B <- matrix(0, p, q)
B[,1] <- rep(1, p)
B[,2] <- rep(2, p)
B[,3] <- rep(-1, p)
Y <- X %*% B + eps
X_test <- matrix(rnorm(5 * p, 1), 5, p)
output <- fastQR::qrmls(Y = Y, X = X, X_test = X_test, type = "QR")
output$coeff

qrmridge RIDGE estimator for the linear multivariate regression model

Description

qrmridge, or LS for linear multivariate regression models, solves the following optimization prob-
lem

minβ
1

2
∥Y −XB∥22,

for Y ∈ Rn×q and X ∈ Rn×p, to obtain a coefficient matrix B̂ ∈ Rp×q . The design matrix
X ∈ Rn×p contains the observations for each regressor.

Arguments

Y a matrix of dimension (n× q response variables.

X an (n× p) full column rank matrix of predictors.

lambda a vector of lambdas.

qrmridge 11

X_test an (q × p) full column rank matrix. Test set. By default it set to NULL.

type either "QR" or "R". Specifies the type of decomposition to use: "QR" for the
QR decomposition or "R" for the Cholesky factorization of A⊤A. The default
is "QR".

Value

A named list containing

coeff a matrix of dimension p× q containing the solution for the parameters B.

fitted a matrix of dimension n× q of fitted values, Ŷ = XB̂.

residuals a matrix of dimension n× q of residuals, ε = Y − Ŷ .

XTX the matrix X⊤X .

Sigma_hat a matrix of dimension q × q containing the estimated residual variance-covariance
matrix.

df degrees of freedom.

R R matrix of the QR decomposition of the matrix X⊤X .

XTy X⊤y.

R2 R2, coefficient of determination, measure of goodness-of-fit of the model.

predicted predicted values for the test set, XtestB̂. It is only available if X_test is not NULL.

PMSE

Examples

generate sample data
set.seed(10)
n <- 30
p <- 6
q <- 3
X <- matrix(rnorm(n * p, 1), n, p)
X[,1] <- 1
eps <- matrix(rnorm(n*q), n, q)
B <- matrix(0, p, q)
B[,1] <- rep(1, p)
B[,2] <- rep(2, p)
B[,3] <- rep(-1, p)
Y <- X %*% B + eps
X_test <- matrix(rnorm(5 * p, 1), 5, p)
output <- fastQR::qrmridge(Y = Y, X = X, lambda = 1, X_test = X_test, type = "QR")
output$coeff

12 qrmridge_cv

qrmridge_cv Cross-validation of the RIDGE estimator for the linear multivariate
regression model

Description

qrmridge_cv, or LS for linear multivariate regression models, solves the following optimization
problem

minβ
1

2
∥Y −XB∥22,

for Y ∈ Rn×q and X ∈ Rn×p, to obtain a coefficient matrix B̂ ∈ Rp×q . The design matrix
X ∈ Rn×p contains the observations for each regressor.

Arguments

Y a matrix of dimension (n× q response variables.

X an (n× p) full column rank matrix of predictors.

lambda a vector of lambdas.

k an integer vector defining the number of groups for CV.

seed ad integer number defining the seed for random number generation.

X_test an (q × p) full column rank matrix. Test set. By default it set to NULL.

type either "QR" or "R". Specifies the type of decomposition to use: "QR" for the
QR decomposition or "R" for the Cholesky factorization of A⊤A. The default
is "QR".

Value

A named list containing

coeff a matrix of dimension p× q containing the solution for the parameters B.

fitted a matrix of dimension n× q of fitted values, Ŷ = XB̂.

residuals a matrix of dimension n× q of residuals, ε = Y − Ŷ .

XTX the matrix X⊤X .

Sigma_hat a matrix of dimension q × q containing the estimated residual variance-covariance
matrix.

df degrees of freedom.

R R matrix of the QR decomposition of the matrix X⊤X .

XTy X⊤y.

R2 R2, coefficient of determination, measure of goodness-of-fit of the model.

predicted predicted values for the test set, XtestB̂. It is only available if X_test is not NULL.

PMSE

qrridge 13

Examples

generate sample data
set.seed(10)
n <- 30
p <- 6
q <- 3
X <- matrix(rnorm(n * p, 1), n, p)
X[,1] <- 1
eps <- matrix(rnorm(n*q), n, q)
B <- matrix(0, p, q)
B[,1] <- rep(1, p)
B[,2] <- rep(2, p)
B[,3] <- rep(-1, p)
Y <- X %*% B + eps
X_test <- matrix(rnorm(5 * p, 1), 5, p)
output <- fastQR::qrmridge_cv(Y = Y, X = X, lambda = c(1,2),

k = 5, seed = 12, X_test = X_test, type = "QR")
output$coeff

qrridge RIDGE estimation for the linear regression model

Description

lmridge, or RIDGE for linear regression models, solves the following penalized optimization prob-
lem

minβ
1

n
∥y −Xβ∥22 + λ∥β∥22,

to obtain a coefficient vector β̂ ∈ Rp. The design matrix X ∈ Rn×p contains the observations for
each regressor.

Usage

qrridge(y, X, lambda, X_test = NULL, type = NULL)

Arguments

y a vector of length-n response vector.

X an (n× p) matrix of predictors.

lambda a vector of lambdas.

X_test an (q × p) full column rank matrix. Test set. By default it set to NULL.

type either "QR" or "R". Specifies the type of decomposition to use: "QR" for the
QR decomposition or "R" for the Cholesky factorization of A⊤A. The default
is "QR".

14 qrridge_cv

Value

A named list containing

mean_y mean of the response variable.
mean_X a length-p vector containing the mean of each column of the design matrix.
path the whole path of estimated regression coefficients.
ess explained sum of squares for the whole path of estimated coefficients.
GCV generalized cross-validation for the whole path of lambdas.
GCV_min minimum value of GCV.
GCV_idx inded corresponding to the minimum values of GCV.
coeff a length-p vector containing the solution for the parameters β which corresponds to the min-

imum of GCV.
lambda the vector of lambdas.
scales the vector of standard deviations of each column of the design matrix.

Examples

generate sample data
set.seed(10)
n <- 30
p <- 6
X <- matrix(rnorm(n * p, 1), n, p)
X[,1] <- 1
eps <- rnorm(n, sd = 0.5)
beta <- rep(0, p)
beta[1:3] <- 1
beta[4:5] <- 2
y <- X %*% beta + eps
X_test <- matrix(rnorm(5 * p, 1), 5, p)
output <- fastQR::qrridge(y = y, X = X,

lambda = 0.2,
X_test = X_test)

output$coeff

qrridge_cv Cross-validation of the RIDGE estimator for the linear regression
model

Description

qrridge_cv, or LS for linear multivariate regression models, solves the following optimization prob-
lem

minβ
1

2
∥Y −XB∥22,

for Y ∈ Rn×q and X ∈ Rn×p, to obtain a coefficient matrix B̂ ∈ Rp×q . The design matrix
X ∈ Rn×p contains the observations for each regressor.

qrridge_cv 15

Arguments

y a vector of length-n response vector.
X an (n× p) full column rank matrix of predictors.
lambda a vector of lambdas.
k an integer vector defining the number of groups for CV.
seed ad integer number defining the seed for random number generation.
X_test an (q × p) full column rank matrix. Test set. By default it set to NULL.
type either "QR" or "R". Specifies the type of decomposition to use: "QR" for the

QR decomposition or "R" for the Cholesky factorization of A⊤A. The default
is "QR".

Value

A named list containing

coeff a length-p vector containing the solution for the parameters β.

fitted a length-n vector of fitted values, ŷ = Xβ̂.
residuals a length-n vector of residuals, ε = y − ŷ.
residuals_norm2 the L2-norm of the residuals, ∥ε∥22.
y_norm2 the L2-norm of the response variable. ∥y∥22.
XTX the matrix X⊤X .
XTy X⊤y.
sigma_hat estimated residual variance.
df degrees of freedom.
Q Q matrix of the QR decomposition of the matrix X⊤X .
R R matrix of the QR decomposition of the matrix X⊤X .
QXTy QX⊤y, where Q matrix of the QR decomposition of the matrix X⊤X .
R2 R2, coefficient of determination, measure of goodness-of-fit of the model.

predicted predicted values for the test set, Xtestβ̂. It is only available if X_test is not NULL.

Examples

generate sample data
set.seed(10)
n <- 30
p <- 6
X <- matrix(rnorm(n * p, 1), n, p)
X[,1] <- 1
eps <- rnorm(n)
beta <- rep(1, p)
y <- X %*% beta + eps
X_test <- matrix(rnorm(5 * p, 1), 5, p)
output <- fastQR::qrridge_cv(y = y, X = X, lambda = c(1,2),

k = 5, seed = 12, X_test = X_test, type = "QR")
output$coeff

16 qrsolve

qrsolve Solution of linear system of equations, via the QR decomposition.

Description

solves systems of equations Ax = b, for A ∈ Rn×p and b ∈ Rn, via the QR decomposition.

Usage

qrsolve(A, b, type = NULL, nb = NULL)

Arguments

A an (n× p) full column rank matrix.

b a vector of dimension n.

type either "QR" or "R". Specifies the type of decomposition to use: "QR" for the
QR decomposition or "R" for the Cholesky factorization of A⊤A. The default
is "QR".

nb number of blocks for the recursive block QR decomposition, default is NULL.

Value

x a vector of dimension p that satisfies Ax = b.

References

Golub GH, Van Loan CF (2013). Matrix computations, Johns Hopkins Studies in the Mathematical
Sciences, Fourth edition. Johns Hopkins University Press, Baltimore, MD. ISBN 978-1-4214-0794-
4; 1-4214-0794-9; 978-1-4214-0859-0.

Björck Å (2015). Numerical methods in matrix computations, volume 59 of Texts in Applied Math-
ematics. Springer, Cham. ISBN 978-3-319-05088-1; 978-3-319-05098-8, doi:10.1007/9783319-
050898.

Björck Å (2024). Numerical Methods for Least Squares Problems: Second Edition. Society for In-
dustrial and Applied Mathematics, Philadelphia, PA. doi:10.1137/1.9781611977950, https://doi.org/10.1137/1.9781611977950.

Bernardi M, Busatto C, Cattelan M (2024). “Fast QR updating methods for statistical applications.”
2412.05905, https://arxiv.org/abs/2412.05905.

Examples

generate sample data
set.seed(1234)
n <- 10
p <- 4
A <- matrix(rnorm(n * p, 1), n, p)
b <- rnorm(n)

https://doi.org/10.1007/978-3-319-05089-8
https://doi.org/10.1007/978-3-319-05089-8
https://doi.org/10.1137/1.9781611977950
https://arxiv.org/abs/2412.05905

qrupdate 17

solve the system of linear equations using qr
x1 <- fastQR::qrsolve(A = A, b = b)
x1

solve the system of linear equations using rb qr
x2 <- fastQR::qrsolve(A = A, b = b, nb = 2)
x2

check
round(x1 - solve(crossprod(A)) %*% crossprod(A, b), 5)
round(x2 - solve(crossprod(A)) %*% crossprod(A, b), 5)

qrupdate Fast updating of the QR factorization

Description

qrupdate provides the update of the QR factorization after the addition of m > 1 rows or columns to
the matrix X ∈ Rn×p with n > p. The QR factorization of the matrix X returns the matrices Q ∈
Rn×n and R ∈ Rn×p such that X = QR. The Q and R matrices are factorized as Q =

[
Q1 Q2

]
and R =

[
R1

R2

]
, with Q1 ∈ Rn×p, Q2 ∈ Rn×(n−p) such that Q⊤

1 Q2 = Q⊤
2 Q1 = 0 and R1 ∈ Rp×p

upper triangular matrix and R2 ∈ R(n−p)×p. qrupdate accepts in input the matrices Q and either
the complete matrix R or the reduced one, R1. See Golub and Van Loan (2013) for further details
on the method.

Usage

qrupdate(Q, R, k, U, type = NULL, fast = NULL, complete = NULL)

Arguments

Q a n× p matrix.

R a p× p upper triangular matrix.

k position where the columns or the rows are added.

U either a n×m matrix or a p×m matrix of columns or rows to be added.

type either ’row’ of ’column’, for adding rows or columns. Default is ’column’.

fast fast mode: disable to check whether the provided matrices are valid inputs. De-
fault is FALSE.

complete logical expression of length 1. Indicates whether an arbitrary orthogonal com-
pletion of the Q matrix is to be made, or whether the R matrix is to be completed
by binding zero-value rows beneath the square upper triangle.

18 qrupdate

Value

A named list containing

Q the updated Q matrix.

R the updated R matrix.

References

Golub GH, Van Loan CF (2013). Matrix computations, Johns Hopkins Studies in the Mathematical
Sciences, Fourth edition. Johns Hopkins University Press, Baltimore, MD. ISBN 978-1-4214-0794-
4; 1-4214-0794-9; 978-1-4214-0859-0.

Björck Å (2015). Numerical methods in matrix computations, volume 59 of Texts in Applied Math-
ematics. Springer, Cham. ISBN 978-3-319-05088-1; 978-3-319-05098-8, doi:10.1007/9783319-
050898.

Björck Å (2024). Numerical Methods for Least Squares Problems: Second Edition. Society for In-
dustrial and Applied Mathematics, Philadelphia, PA. doi:10.1137/1.9781611977950, https://doi.org/10.1137/1.9781611977950.

Bernardi M, Busatto C, Cattelan M (2024). “Fast QR updating methods for statistical applications.”
2412.05905, https://arxiv.org/abs/2412.05905.

Examples

Add one column
generate sample data
set.seed(1234)
n <- 12
p <- 5
X <- matrix(rnorm(n * p, 1), n, p)

get the initial QR factorization
output <- qr(X, complete = TRUE)
Q <- output$Q
R <- output$R

create column u to be added
k <- p+1
u <- matrix(rnorm(n), n, 1)
X1 <- cbind(X, u)

update the QR decomposition
out <- fastQR::qrupdate(Q = Q, R = R,

k = k, U = u,
type = "column",
fast = FALSE,
complete = TRUE)

check
round(out$Q %*% out$R - X1, 5)
max(abs(out$Q %*% out$R - X1))

Add m columns

https://doi.org/10.1007/978-3-319-05089-8
https://doi.org/10.1007/978-3-319-05089-8
https://doi.org/10.1137/1.9781611977950
https://arxiv.org/abs/2412.05905

qrupdate 19

create data: n > p
set.seed(1234)
n <- 10
p <- 5
X <- matrix(rnorm(n * p, 1), n, p)

get the initial QR factorization
output <- fastQR::qr(X, complete = TRUE)
Q <- output$Q
R <- output$R

create the matrix of two columns to be added
in position 2
k <- 2
m <- 2
U <- matrix(rnorm(n*m), n, m)
X1 <- cbind(X[,1:(k-1)], U, X[,k:p])

update the QR decomposition
out <- fastQR::qrupdate(Q = Q, R = R,

k = k, U = U, type = "column",
fast = FALSE, complete = TRUE)

check
round(out$Q %*% out$R - X1, 5)
max(abs(out$Q %*% out$R - X1))

Add one row
create data: n > p
set.seed(1234)
n <- 12
p <- 5
X <- matrix(rnorm(n * p, 1), n, p)

get the initial QR factorization
output <- fastQR::qr(X, complete = TRUE)
Q <- output$Q
R <- output$R
R1 <- R[1:p,]

create the row u to be added
u <- matrix(data = rnorm(p), p, 1)
k <- n+1
if (k<=n) {

X1 <- rbind(rbind(X[1:(k-1),], t(u)), X[k:n,])
} else {

X1 <- rbind(rbind(X, t(u)))
}

update the QR decomposition
out <- fastQR::qrupdate(Q = Q, R = R,

k = k, U = u,
type = "row",

20 qr_coef

complete = TRUE)

check
round(out$Q %*% out$R - X1, 5)
max(abs(out$Q %*% out$R - X1))

Add m rows
create data: n > p
set.seed(1234)
n <- 12
p <- 5
X <- matrix(rnorm(n * p, 1), n, p)

get the initial QR factorization
output <- fastQR::qr(X, complete = TRUE)
Q <- output$Q
R <- output$R
R1 <- R[1:p,]

create the matrix of rows U to be added:
two rows in position 5
m <- 2
U <- matrix(data = rnorm(p*m), p, m)
k <- 5
if (k<=n) {

X1 <- rbind(rbind(X[1:(k-1),], t(U)), X[k:n,])
} else {

X1 <- rbind(rbind(X, t(U)))
}

update the QR decomposition
out <- fastQR::qrupdate(Q = Q, R = R,

k = k, U = U,
type = "row",
complete = FALSE)

check
round(out$Q %*% out$R - X1, 5)
max(abs(out$Q %*% out$R - X1))

qr_coef Compute least-squares coefficients from a QR decomposition

Description

Computes the coefficient vector β̂ solving the least-squares problem minβ ∥y −Xβ∥2, using a QR
decomposition stored in compact (Householder) form.

qr_fast 21

Usage

qr_coef(qr, tau, y, pivot = NULL, rank = NULL)

Arguments

qr numeric matrix containing the QR decomposition of X in compact form (as
returned by qr_fast()).

tau numeric vector of Householder coefficients.

y numeric response vector of length n.

pivot optional integer vector of length p containing the 1-based column permutation
used during the QR factorization. If supplied, the returned coefficients are re-
ordered to match the original column order.

rank optional integer specifying the numerical rank of X . If supplied, only the lead-
ing rank components are used in the triangular solve.

Details

The coefficients are obtained by first computing Q⊤y and then solving the resulting upper-triangular
system involving the matrix R. The orthogonal matrix Q is never formed explicitly.

Value

a numeric vector of regression coefficients.

Examples

set.seed(1)
n <- 10; p <- 4
X <- matrix(rnorm(n * p), n, p)
y <- rnorm(n)

qr_res <- fastQR::qr_fast(X)
coef1 <- fastQR::qr_coef(qr = qr_res$qr, tau = qr_res$qraux, y = y)

reference computation
coef2 <- base::qr.coef(base::qr(X), y)

max(abs(coef1 - coef2))

qr_fast Fast full QR decomposition

Description

qr_fast provides the fast QR factorization of the matrix X ∈ Rn×p with n > p. The full QR
factorization of the matrix X returns the matrices Q ∈ Rn×p and the upper triangular matrix
R ∈ Rp×p such that X = QR. See Golub and Van Loan (2013) for further details on the method.

22 qr_fast

Usage

qr_fast(X, tol = NULL, pivot = NULL)

Arguments

X a n× p matrix with n > p.

tol the tolerance for detecting linear dependencies in the columns of X .

pivot a logical value indicating whether to pivot the columns of X . Defaults to FALSE,
meaning no pivoting is performed.

Details

The QR decomposition plays an important role in many statistical techniques. In particular it can
be used to solve the equation Ax = b for given matrix A ∈ Rn×p and vectors x ∈ Rp and b ∈ Rn.
It is useful for computing regression coefficients and in applying the Newton-Raphson algorithm.

Value

A named list containing

qr a matrix with the same dimensions as X . The upper triangle contains the R of the decomposition
and the lower triangle contains information on the Q of the decomposition (stored in compact
form).

qraux a vector of length ncol(x) which contains additional information on Q.

rank the rank of X as computed by the decomposition.

pivot information on the pivoting strategy used during the decomposition.

pivoted a boolean variable returning one if the pivoting has been performed and zero otherwise.

References

Golub GH, Van Loan CF (2013). Matrix computations, Johns Hopkins Studies in the Mathematical
Sciences, Fourth edition. Johns Hopkins University Press, Baltimore, MD. ISBN 978-1-4214-0794-
4; 1-4214-0794-9; 978-1-4214-0859-0.

Björck Å (2015). Numerical methods in matrix computations, volume 59 of Texts in Applied Math-
ematics. Springer, Cham. ISBN 978-3-319-05088-1; 978-3-319-05098-8, doi:10.1007/9783319-
050898.

Björck Å (2024). Numerical Methods for Least Squares Problems: Second Edition. Society for In-
dustrial and Applied Mathematics, Philadelphia, PA. doi:10.1137/1.9781611977950, https://doi.org/10.1137/1.9781611977950.

Bernardi M, Busatto C, Cattelan M (2024). “Fast QR updating methods for statistical applications.”
2412.05905, https://arxiv.org/abs/2412.05905.

Examples

generate sample data
set.seed(1234)
n <- 12
p <- 5

https://doi.org/10.1007/978-3-319-05089-8
https://doi.org/10.1007/978-3-319-05089-8
https://doi.org/10.1137/1.9781611977950
https://arxiv.org/abs/2412.05905

qr_fast 23

X <- matrix(rnorm(n * p), n, p)

get the full QR decomposition with pivot
qr_res <- fastQR::qr_fast(X = X,

tol = sqrt(.Machine$double.eps),
pivot = TRUE)

reconstruct the reduced Q and R matrices
reduced Q matrix
Q1 <- qr_Q(qr = qr_res$qr, tau = qr_res$qraux,

rank = qr_res$rank, complete = FALSE)
Q1

check the Q matrix (orthogonality)
max(abs(crossprod(Q1)-diag(1, p)))

complete Q matrix
Q2 <- qr_Q(qr = qr_res$qr, tau = qr_res$qraux,

rank = NULL, complete = TRUE)
Q2

check the Q matrix (orthogonality)
max(abs(crossprod(Q2)-diag(1, n)))

reduced R matrix
R1 <- qr_R(qr = qr_res$qr,

rank = NULL,
complete = FALSE)

check that X^TX = R^TR
get the permutation matrix
P <- qr_pivot2perm(pivot = qr_res$pivot)
max(abs(crossprod(R1 %*% P) - crossprod(X)))
max(abs(crossprod(R1) - crossprod(X %*% t(P))))

complete R matrix
R2 <- qr_R(qr = qr_res$qr,

rank = NULL,
complete = TRUE)

check that X^TX = R^TR
get the permutation matrix
P <- qr_pivot2perm(pivot = qr_res$pivot)
max(abs(crossprod(R2 %*% P) - crossprod(X)))
max(abs(crossprod(R2) - crossprod(X %*% t(P))))

check that X = Q %*% R
max(abs(Q2 %*% R2 %*% P - X))
max(abs(Q1 %*% R1 %*% P - X))

create data: n > p
set.seed(1234)
n <- 120

24 qr_fitted

p <- 75
X <- matrix(rnorm(n * p), n, p)

get the full QR decomposition with pivot
qr_res <- fastQR::qr_fast(X = X, pivot = FALSE)

reconstruct the reduced Q and R matrices
reduced Q matrix
Q1 <- qr_Q(qr = qr_res$qr, tau = qr_res$qraux,

rank = p,
complete = FALSE)

check the Q matrix (orthogonality)
max(abs(crossprod(Q1)-diag(1, p)))

complete Q matrix
Q2 <- qr_Q(qr = qr_res$qr, tau = qr_res$qraux,

rank = NULL, complete = TRUE)

check the Q matrix (orthogonality)
max(abs(crossprod(Q2)-diag(1, n)))

reduced R matrix
R1 <- qr_R(qr = qr_res$qr,

rank = NULL,
complete = FALSE)

check that X^TX = R^TR
max(abs(crossprod(R1) - crossprod(X)))

complete R matrix
R2 <- qr_R(qr = qr_res$qr,

rank = NULL,
complete = TRUE)

check that X^TX = R^TR
max(abs(crossprod(R2) - crossprod(X)))

check that X^TX = R^TR
max(abs(crossprod(R2) - crossprod(X)))
max(abs(crossprod(R2) - crossprod(X)))
max(abs(crossprod(R1) - crossprod(X)))

check that X = Q %*% R
max(abs(Q2 %*% R2 - X))
max(abs(Q1 %*% R1 - X))

qr_fitted Compute fitted values from a QR decomposition

qr_fitted 25

Description

Computes the fitted values ŷ = Xβ̂ for a linear least-squares problem using a QR decomposition
stored in compact (Householder) form.

Usage

qr_fitted(qr, tau, y)

Arguments

qr Numeric matrix containing the QR decomposition of X in compact form (as
returned by qr_fast()).

tau numeric vector of Householder coefficients.

y numeric response vector of length n.

Details

The fitted values are computed as

ŷ = QQ⊤y

without explicitly forming the orthogonal matrix Q. The computation relies on the Householder
reflectors stored in qr and tau.

Value

a numeric vector of fitted values ŷ.

Examples

set.seed(1)
n <- 10; p <- 4
X <- matrix(rnorm(n * p), n, p)
y <- rnorm(n)

qr_res <- fastQR::qr_fast(X)
yhat1 <- fastQR::qr_fitted(qr = qr_res$qr, tau = qr_res$qraux, y = y)

reference computation
yhat2 <- base::qr.fitted(base::qr(X), y)

max(abs(yhat1 - yhat2))

26 qr_lm

qr_lm Ordinary least squares for the linear regression model

Description

qr_lm, or LS for linear regression models, solves the following optimization problem

minβ
1

2
∥y −Xβ∥22,

for y ∈ Rn and X ∈ Rn×p witn n > p, to obtain a coefficient vector β̂ ∈ Rp. The design matrix
X ∈ Rn×p contains the observations for each regressor.

Usage

qr_lm(y, X, X_test = NULL)

Arguments

y a vector of length-n response vector.

X an (n× p) full column rank matrix of predictors.

X_test an (q × p) full column rank matrix. Test set. By default it set to NULL.

Value

A named list containing

coeff a length-p vector containing the solution for the parameters β.

coeff.se a length-p vector containing the standard errors for the estimated regression parameters β.

fitted a length-n vector of fitted values, ŷ = Xβ̂.

residuals a length-n vector of residuals, ε = y − ŷ.

residuals_norm2 the squared L2-norm of the residuals, ∥ε∥22.
y_norm2 the squared L2-norm of the response variable, ∥y∥22.
R the R ∈ Rp×p upper triangular matrix of the QR decomposition.

L the inverse of the R ∈ Rp×p upper triangular matrix of the QR decomposition L = R−1.

XTX the Gram matrix X⊤X ∈ Rp×p of the least squares problem.

XTX_INV the inverse of the Gram matrix X⊤X ∈ Rp×p of the least squares problem (X⊤X)−1.

XTy A vector equal to X⊤y, the cross-product of the design matrix X with the response vector y.

sigma2_hat An estimate of the error variance σ2, computed as the residual sum of squares divided
by the residual degrees of freedom σ̂2 =

∥y−Xβ̂∥2
2

df

df The residual degrees of freedom, given by n − p, where n is the number of observations and p
is the number of estimated parameters.

R2 R2, coefficient of determination, measure of goodness-of-fit of the model.

predicted predicted values for the test set, Xtestβ̂. It is only available if X_test is not NULL.

qr_lse_coef 27

Examples

generate sample data
create data: n > p
set.seed(1234)
n <- 12
n0 <- 3
p <- 7
X <- matrix(rnorm(n * p), n, p)
b <- rep(1, p)
sig2 <- 0.25
y <- X %*% b + sqrt(sig2) * rnorm(n)
summary(lm(y~X))

test
X_test <- matrix(rnorm(n0 * p), n0, p)

lm
qr_lm(y = y, X = X, X_test = X_test)
qr_lm(y = y, X = X)

qr_lse_coef Compute least-squares coefficients using QR decomposition

Description

Computes the coefficient vector β̂ solving the least-squares problem minβ ∥y −Xβ∥2, using a QR
decomposition computed internally.

Usage

qr_lse_coef(X, y)

Arguments

X numeric matrix of dimension n× p.

y numeric response vector of length n.

Details

The QR decomposition of X is computed internally. The coefficients are obtained by first com-
puting Q⊤y and then solving the resulting upper-triangular system involving the matrix R. The
orthogonal matrix Q is never formed explicitly.

This function is intended as a convenience wrapper for least-squares estimation when the explicit
QR factors are not required.

Value

a numeric vector of regression coefficients.

28 qr_lse_fitted

Examples

set.seed(1)
n <- 10; p <- 4
X <- matrix(rnorm(n * p), n, p)
y <- rnorm(n)

coef1 <- fastQR::qr_lse_coef(X, y)

reference computation
coef2 <- base::qr.coef(base::qr(X), y)

max(abs(coef1 - coef2))

qr_lse_fitted Compute fitted values using QR decomposition

Description

Computes the fitted values ŷ = Xβ̂ for a linear least-squares problem using a QR decomposition
computed internally.

Usage

qr_lse_fitted(X, y)

Arguments

X numeric matrix of dimension n× p.

y numeric response vector of length n.

Details

The QR decomposition of X is computed internally. The fitted values are obtained as

ŷ = QQ⊤y

without explicitly forming the orthogonal matrix Q.

This function is intended as a convenience wrapper for least-squares computations when the explicit
QR factors are not required.

Value

a numeric vector of fitted values ŷ.

qr_lse_Qty 29

Examples

set.seed(1)
n <- 10; p <- 4
X <- matrix(rnorm(n * p), n, p)
y <- rnorm(n)

yhat1 <- fastQR::qr_lse_fitted(X, y)

reference computation
yhat2 <- base::qr.fitted(base::qr(X), y)

max(abs(yhat1 - yhat2))

qr_lse_Qty Compute Q’y for a least-squares problem

Description

Computes the product Q⊤y, where Q is the orthogonal matrix from the QR decomposition of the
design matrix X .

Usage

qr_lse_Qty(X, y)

Arguments

X numeric matrix of dimension n× p.

y numeric response vector of length n.

Details

The QR decomposition of X is computed internally, and the orthogonal matrix Q is never formed
explicitly. The product Q⊤y is evaluated efficiently using Householder reflectors.

This function is intended as a convenience wrapper for least-squares computations when the explicit
QR factors are not required.

Value

a numeric vector equal to Q⊤y.

30 qr_lse_Qy

Examples

set.seed(1)
n <- 10; p <- 4
X <- matrix(rnorm(n * p), n, p)
y <- rnorm(n)

res1 <- fastQR::qr_lse_Qty(X, y)

reference computation
res2 <- crossprod(base::qr.Q(base::qr(X), complete = TRUE), y)

max(abs(res1 - drop(res2)))

qr_lse_Qy Compute Qy for a least-squares problem

Description

Computes the product Qy, where Q is the orthogonal matrix from the QR decomposition of the
design matrix X .

Usage

qr_lse_Qy(X, y)

Arguments

X numeric matrix of dimension n× p.

y numeric response vector of length n.

Details

The QR decomposition of X is computed internally, and the orthogonal matrix Q is never formed
explicitly. The product Qy is evaluated efficiently using Householder reflectors.

This function is intended as a convenience wrapper for least-squares computations when the explicit
QR factors are not required.

Value

a numeric vector equal to Qy.

qr_lse_resid 31

Examples

set.seed(1)
n <- 10; p <- 4
X <- matrix(rnorm(n * p), n, p)
y <- rnorm(n)

res1 <- fastQR::qr_lse_Qy(X, y)

reference computation
res2 <- base::qr.Q(base::qr(X), complete = TRUE) %*% y

max(abs(res1 - drop(res2)))

qr_lse_resid Compute residuals using QR decomposition

Description

Computes the residual vector r = y−ŷ for a linear least-squares problem using a QR decomposition
computed internally.

Usage

qr_lse_resid(X, y)

Arguments

X numeric matrix of dimension n× p.

y numeric response vector of length n.

Details

The QR decomposition of X is computed internally. The residuals are obtained as

r = y −QQ⊤y

without explicitly forming the orthogonal matrix Q.

This function is intended as a convenience wrapper for least-squares computations when the explicit
QR factors are not required.

Value

a numeric vector of residuals.

32 qr_pivot2perm

Examples

set.seed(1)
n <- 10; p <- 4
X <- matrix(rnorm(n * p), n, p)
y <- rnorm(n)

r1 <- fastQR::qr_lse_resid(X, y)

reference computation
r2 <- base::qr.resid(base::qr(X), y)

max(abs(r1 - r2))

qr_pivot2perm Reconstruct the permutation matrix from the pivot vector.

Description

returns the permutation matrix for the QR decomposition.

Usage

qr_pivot2perm(pivot)

Arguments

pivot a vector of dimension n of pivot elements from the QR factorization.

Value

the perumutation matrix P of dimension n× n.

References

Golub GH, Van Loan CF (2013). Matrix computations, Johns Hopkins Studies in the Mathematical
Sciences, Fourth edition. Johns Hopkins University Press, Baltimore, MD. ISBN 978-1-4214-0794-
4; 1-4214-0794-9; 978-1-4214-0859-0.

Björck Å (2015). Numerical methods in matrix computations, volume 59 of Texts in Applied Math-
ematics. Springer, Cham. ISBN 978-3-319-05088-1; 978-3-319-05098-8, doi:10.1007/9783319-
050898.

Björck Å (2024). Numerical Methods for Least Squares Problems: Second Edition. Society for In-
dustrial and Applied Mathematics, Philadelphia, PA. doi:10.1137/1.9781611977950, https://doi.org/10.1137/1.9781611977950.

Bernardi M, Busatto C, Cattelan M (2024). “Fast QR updating methods for statistical applications.”
2412.05905, https://arxiv.org/abs/2412.05905.

https://doi.org/10.1007/978-3-319-05089-8
https://doi.org/10.1007/978-3-319-05089-8
https://doi.org/10.1137/1.9781611977950
https://arxiv.org/abs/2412.05905

qr_Q 33

Examples

generate sample data
set.seed(1234)
n <- 12
p <- 5
X <- matrix(rnorm(n * p), n, p)

get the full QR decomposition with pivot
qr_res <- fastQR::qr_fast(X = X,

tol = sqrt(.Machine$double.eps),
pivot = TRUE)

get the pivot matrix
P <- qr_pivot2perm(qr_res$pivot)

qr_Q Reconstruct the Q, matrix from a QR object.

Description

returns the Q matrix of the full QR decomposition. If r = rank(X) < p, then only the reduced
Q ∈ Rn×r matrix is returned.

Usage

qr_Q(qr, tau, rank = NULL, complete = NULL)

Arguments

qr object representing a QR decomposition. This will typically have come from a
previous call to qr.

tau a vector of length ncol(X) which contains additional information on Q. It cor-
responds to qraux from a previous call to qr.

rank the rank of x as computed by the decomposition.

complete logical flag (length 1). Indicates whether to compute the full Q ∈ Rn×n or the
thin Q ∈ Rn×p. If r = rank(X) < p, then only the reduced Q ∈ Rn×r matrix
is returned.

Value

returns part or all of Q, the order-n orthogonal (unitary) transformation represented by qr. If com-
plete is TRUE, Q has n columns. If complete is FALSE, Q has p columns.

34 qr_Qty

References

Golub GH, Van Loan CF (2013). Matrix computations, Johns Hopkins Studies in the Mathematical
Sciences, Fourth edition. Johns Hopkins University Press, Baltimore, MD. ISBN 978-1-4214-0794-
4; 1-4214-0794-9; 978-1-4214-0859-0.

Björck Å (2015). Numerical methods in matrix computations, volume 59 of Texts in Applied Math-
ematics. Springer, Cham. ISBN 978-3-319-05088-1; 978-3-319-05098-8, doi:10.1007/9783319-
050898.

Björck Å (2024). Numerical Methods for Least Squares Problems: Second Edition. Society for In-
dustrial and Applied Mathematics, Philadelphia, PA. doi:10.1137/1.9781611977950, https://doi.org/10.1137/1.9781611977950.

Bernardi M, Busatto C, Cattelan M (2024). “Fast QR updating methods for statistical applications.”
2412.05905, https://arxiv.org/abs/2412.05905.

Examples

generate sample data
set.seed(1234)
n <- 12
p <- 5
X <- matrix(rnorm(n * p), n, p)

get the full QR decomposition with pivot
qr_res <- fastQR::qr_fast(X = X,

tol = sqrt(.Machine$double.eps),
pivot = TRUE)

get the full Q matrix
Q1 <- qr_Q(qr_resqr, qr_resqraux, complete = TRUE)

check the Q matrix (orthogonality)
max(abs(crossprod(Q1)-diag(1, n)))

get the reduced Q matrix
Q2 <- qr_Q(qr_resqr, qr_resqraux, qr_res$rank, complete = FALSE)

check the Q matrix (orthogonality)
max(abs(crossprod(Q2)-diag(1, p)))

qr_Qty Multiply Q by a vector using a QR decomposition

Description

Computes Q⊤y, where Q is the orthogonal matrix from the QR decomposition stored in compact
(Householder) form.

https://doi.org/10.1007/978-3-319-05089-8
https://doi.org/10.1007/978-3-319-05089-8
https://doi.org/10.1137/1.9781611977950
https://arxiv.org/abs/2412.05905

qr_Qy 35

Usage

qr_Qty(qr, tau, y)

Arguments

qr numeric matrix containing the QR decomposition in compact form (as returned
by qr_fast()).

tau numeric vector of Householder coefficients.

y numeric vector of length n.

Details

The orthogonal matrix Q is not formed explicitly. The product Q⊤y is computed efficiently using
the Householder reflectors stored in qr and tau.

Value

a numeric vector equal to Q⊤y.

Examples

set.seed(1)
n <- 10; p <- 4
X <- matrix(rnorm(n * p), n, p)
y <- rnorm(n)

qr_res <- fastQR::qr_fast(X)
res1 <- fastQR::qr_Qty(qr = qr_res$qr, tau = qr_res$qraux, y = y)

reference computation
Q <- base::qr.Q(base::qr(X), complete = TRUE)
res2 <- crossprod(Q, y)

max(abs(res1 - drop(res2)))

qr_Qy Multiply Q by a vector using a QR decomposition

Description

Computes Qy, where Q is the orthogonal matrix from the QR decomposition stored in compact
(Householder) form.

Usage

qr_Qy(qr, tau, y)

36 qr_Q_full

Arguments

qr numeric matrix containing the QR decomposition in compact form (as returned
by qr_fast()).

tau numeric vector of Householder coefficients.
y numeric vector of length n.

Details

The orthogonal matrix Q is not formed explicitly. The product Qy is computed efficiently using the
Householder reflectors stored in qr and tau.

Value

a numeric vector equal to Qy.

Examples

set.seed(1)
n <- 10; p <- 4
X <- matrix(rnorm(n * p), n, p)
y <- rnorm(n)

qr_res <- fastQR::qr_fast(X)
res1 <- fastQR::qr_Qy(qr = qr_res$qr, tau = qr_res$qraux, y = y)

reference computation
Q <- base::qr.Q(base::qr(X), complete = TRUE)
res2 <- Q %*% y

max(abs(res1 - drop(res2)))

qr_Q_full Reconstruct the full Q matrix from the qr object.

Description

returns the full Q ∈ Rn×n matrix.

Usage

qr_Q_full(qr, tau)

Arguments

qr object representing a QR decomposition. This will typically have come from a
previous call to qr.

tau a vector of length ncol(X) which contains additional information on Q. It cor-
responds to qraux from a previous call to qr.

qr_Q_reduced2full 37

Value

returns the matrix Q ∈ Rn×n.

References

Golub GH, Van Loan CF (2013). Matrix computations, Johns Hopkins Studies in the Mathematical
Sciences, Fourth edition. Johns Hopkins University Press, Baltimore, MD. ISBN 978-1-4214-0794-
4; 1-4214-0794-9; 978-1-4214-0859-0.

Björck Å (2015). Numerical methods in matrix computations, volume 59 of Texts in Applied Math-
ematics. Springer, Cham. ISBN 978-3-319-05088-1; 978-3-319-05098-8, doi:10.1007/9783319-
050898.

Björck Å (2024). Numerical Methods for Least Squares Problems: Second Edition. Society for In-
dustrial and Applied Mathematics, Philadelphia, PA. doi:10.1137/1.9781611977950, https://doi.org/10.1137/1.9781611977950.

Bernardi M, Busatto C, Cattelan M (2024). “Fast QR updating methods for statistical applications.”
2412.05905, https://arxiv.org/abs/2412.05905.

Examples

create data: n > p
set.seed(1234)
n <- 12
p <- 7
X <- matrix(rnorm(n * p), n, p)

get the full QR decomposition with pivot
qr_res <- fastQR::qr_fast(X = X,

tol = sqrt(.Machine$double.eps),
pivot = TRUE)

complete the reduced Q matrix
Q <- fastQR::qr_Q_full(qr = qr_res$qr,

tau = qr_res$qraux)

check the Q matrix (orthogonality)
max(abs(crossprod(Q)-diag(1, n)))

qr_Q_reduced2full Reconstruct the full Q matrix from the reduced Q matrix.

Description

returns the full Q ∈ Rn×n matrix.

Usage

qr_Q_reduced2full(Q)

https://doi.org/10.1007/978-3-319-05089-8
https://doi.org/10.1007/978-3-319-05089-8
https://doi.org/10.1137/1.9781611977950
https://arxiv.org/abs/2412.05905

38 qr_Q_reduced2full

Arguments

Q a n× p reduced Q matrix from the QR decomposition (with n > p).

Value

a n× n orthogonal matrix Q.

References

Golub GH, Van Loan CF (2013). Matrix computations, Johns Hopkins Studies in the Mathematical
Sciences, Fourth edition. Johns Hopkins University Press, Baltimore, MD. ISBN 978-1-4214-0794-
4; 1-4214-0794-9; 978-1-4214-0859-0.

Björck Å (2015). Numerical methods in matrix computations, volume 59 of Texts in Applied Math-
ematics. Springer, Cham. ISBN 978-3-319-05088-1; 978-3-319-05098-8, doi:10.1007/9783319-
050898.

Björck Å (2024). Numerical Methods for Least Squares Problems: Second Edition. Society for In-
dustrial and Applied Mathematics, Philadelphia, PA. doi:10.1137/1.9781611977950, https://doi.org/10.1137/1.9781611977950.

Bernardi M, Busatto C, Cattelan M (2024). “Fast QR updating methods for statistical applications.”
2412.05905, https://arxiv.org/abs/2412.05905.

Examples

create data: n > p
set.seed(1234)
n <- 12
p <- 7
X <- matrix(rnorm(n * p), n, p)

get the full QR decomposition with pivot
qr_res <- fastQR::qr_fast(X = X,

tol = sqrt(.Machine$double.eps),
pivot = TRUE)

reconstruct the reduced Q matrix
Q1 <- qr_Q(qr = qr_res$qr, tau = qr_res$qraux,

rank = qr_res$rank, complete = FALSE)

complete the reduced Q matrix
Q2 <- fastQR::qr_Q_reduced2full(Q = Q1)
R <- fastQR::qr_R(qr = qr_res$qr, rank = NULL, complete = TRUE)

X1 <- qr_X(Q = Q2, R = R, pivot = qr_res$pivot)
max(abs(X - X1))

https://doi.org/10.1007/978-3-319-05089-8
https://doi.org/10.1007/978-3-319-05089-8
https://doi.org/10.1137/1.9781611977950
https://arxiv.org/abs/2412.05905

qr_R 39

qr_R Reconstruct the R, matrix from a QR object.

Description

returns the R matrix of the full QR decomposition. If r = rank(X) < p, then only the reduced
R ∈ Rr×p matrix is returned.

Usage

qr_R(qr, rank = NULL, pivot = NULL, complete = NULL)

Arguments

qr object representing a QR decomposition. This will typically have come from a
previous call to qr.

rank the rank of x as computed by the decomposition.

pivot a vector of length p, specifying the permutation of the columns of X applied
during the QR decomposition process. The default is NULL if no pivoting has
been applied.

complete logical flag (length 1). Indicates whether the R matrix is to be completed by
binding zero-value rows beneath the square upper triangle. If r = rank(X) < p,
then only the reduced R ∈ Rr×p matrix is returned.

Value

returns part or all of R. If complete is TRUE, R has n rows. If complete is FALSE, R has p rows.

References

Golub GH, Van Loan CF (2013). Matrix computations, Johns Hopkins Studies in the Mathematical
Sciences, Fourth edition. Johns Hopkins University Press, Baltimore, MD. ISBN 978-1-4214-0794-
4; 1-4214-0794-9; 978-1-4214-0859-0.

Björck Å (2015). Numerical methods in matrix computations, volume 59 of Texts in Applied Math-
ematics. Springer, Cham. ISBN 978-3-319-05088-1; 978-3-319-05098-8, doi:10.1007/9783319-
050898.

Björck Å (2024). Numerical Methods for Least Squares Problems: Second Edition. Society for In-
dustrial and Applied Mathematics, Philadelphia, PA. doi:10.1137/1.9781611977950, https://doi.org/10.1137/1.9781611977950.

Bernardi M, Busatto C, Cattelan M (2024). “Fast QR updating methods for statistical applications.”
2412.05905, https://arxiv.org/abs/2412.05905.

https://doi.org/10.1007/978-3-319-05089-8
https://doi.org/10.1007/978-3-319-05089-8
https://doi.org/10.1137/1.9781611977950
https://arxiv.org/abs/2412.05905

40 qr_resid

Examples

generate sample data
set.seed(1234)
n <- 12
p <- 5
X <- matrix(rnorm(n * p), n, p)

get the full QR decomposition with pivot
qr_res <- fastQR::qr_fast(X = X,

tol = sqrt(.Machine$double.eps),
pivot = TRUE)

get the full R matrix
R1 <- qr_R(qr_res$qr, complete = TRUE)

check that X^TX = R^TR
get the permutation matrix
P <- qr_pivot2perm(pivot = qr_res$pivot)
max(abs(crossprod(R1 %*% P) - crossprod(X)))
max(abs(crossprod(R1) - crossprod(X %*% t(P))))

get the reduced R matrix
R2 <- qr_R(qr_resqr, qr_resrank, complete = FALSE)

check that X^TX = R^TR
get the permutation matrix
P <- qr_pivot2perm(pivot = qr_res$pivot)
max(abs(crossprod(R2 %*% P) - crossprod(X)))
max(abs(crossprod(R2) - crossprod(X %*% t(P))))

qr_resid Compute residuals from a QR decomposition

Description

Computes the residual vector r = y−ŷ for a linear least-squares problem using a QR decomposition
stored in compact (Householder) form.

Usage

qr_resid(qr, tau, y)

Arguments

qr numeric matrix containing the QR decomposition of X in compact form (as
returned by qr_fast()).

tau numeric vector of Householder coefficients.

y numeric response vector of length n.

qr_thin 41

Details

The residuals are computed as
r = y −QQ⊤y

without explicitly forming the orthogonal matrix Q. The computation relies on the Householder
reflectors stored in qr and tau.

Value

a numeric vector of residuals of dimension n.

Examples

set.seed(1)
n <- 10; p <- 4
X <- matrix(rnorm(n * p), n, p)
y <- rnorm(n)

qr_res <- fastQR::qr_fast(X)
r1 <- fastQR::qr_resid(qr = qr_res$qr, tau = qr_res$qraux, y = y)

reference computation
r2 <- base::qr.resid(base::qr(X), y)

max(abs(r1 - r2))

qr_thin Fast thin QR decomposition

Description

qr_thin provides the thin QR factorization of the matrix X ∈ Rn×p with n > p. The thin QR
factorization of the matrix X returns the matrices Q ∈ Rn×p and the upper triangular matrix
R ∈ Rp×p such that X = QR. See Golub and Van Loan (2013) for further details on the method.

Usage

qr_thin(X)

Arguments

X a n× p matrix with n > p.

Value

A named list containing

Q the Q matrix.

R the R matrix.

42 qr_X

References

Golub GH, Van Loan CF (2013). Matrix computations, Johns Hopkins Studies in the Mathematical
Sciences, Fourth edition. Johns Hopkins University Press, Baltimore, MD. ISBN 978-1-4214-0794-
4; 1-4214-0794-9; 978-1-4214-0859-0.

Björck Å (2015). Numerical methods in matrix computations, volume 59 of Texts in Applied Math-
ematics. Springer, Cham. ISBN 978-3-319-05088-1; 978-3-319-05098-8, doi:10.1007/9783319-
050898.

Björck Å (2024). Numerical Methods for Least Squares Problems: Second Edition. Society for In-
dustrial and Applied Mathematics, Philadelphia, PA. doi:10.1137/1.9781611977950, https://doi.org/10.1137/1.9781611977950.

Bernardi M, Busatto C, Cattelan M (2024). “Fast QR updating methods for statistical applications.”
2412.05905, https://arxiv.org/abs/2412.05905.

Examples

generate sample data
set.seed(1234)
n <- 12
p <- 5
X <- matrix(rnorm(n * p), n, p)

get the thin QR factorization
output <- qr_thin(X = X)
Q <- output$Q
R <- output$R

check
max(abs(Q %*% R - X))

qr_X Reconstruct the original matrix from which the object was constructed
X ∈ Rˆn× p from the Q and R matrices of the QR decomposition.

Description

returns the X ∈ Rn×p matrix.

Usage

qr_X(Q, R, pivot = NULL)

Arguments

Q either the reduced Q ∈ Rn×p of full Q ∈ Rn×n, Q matrix obtained from the
QR decomposition.

R either the reduced R ∈ Rp×p of full R ∈ Rn×p, R matrix obtained from the QR
decomposition.

https://doi.org/10.1007/978-3-319-05089-8
https://doi.org/10.1007/978-3-319-05089-8
https://doi.org/10.1137/1.9781611977950
https://arxiv.org/abs/2412.05905

qr_X 43

pivot a vector of length p, specifying the permutation of the columns of X applied
during the QR decomposition process. The default is NULL if no pivoting has
been applied.

Value

returns the matrix X .

References

Golub GH, Van Loan CF (2013). Matrix computations, Johns Hopkins Studies in the Mathematical
Sciences, Fourth edition. Johns Hopkins University Press, Baltimore, MD. ISBN 978-1-4214-0794-
4; 1-4214-0794-9; 978-1-4214-0859-0.

Björck Å (2015). Numerical methods in matrix computations, volume 59 of Texts in Applied Math-
ematics. Springer, Cham. ISBN 978-3-319-05088-1; 978-3-319-05098-8, doi:10.1007/9783319-
050898.

Björck Å (2024). Numerical Methods for Least Squares Problems: Second Edition. Society for In-
dustrial and Applied Mathematics, Philadelphia, PA. doi:10.1137/1.9781611977950, https://doi.org/10.1137/1.9781611977950.

Bernardi M, Busatto C, Cattelan M (2024). “Fast QR updating methods for statistical applications.”
2412.05905, https://arxiv.org/abs/2412.05905.

Examples

generate sample data
set.seed(1234)
n <- 12
p <- 5
X <- matrix(rnorm(n * p), n, p)

get the full QR decomposition with pivot
qr_res <- fastQR::qr_fast(X = X,

tol = sqrt(.Machine$double.eps),
pivot = TRUE)

get the full QR decomposition with pivot
qr_res <- fastQR::qr_fast(X = X, pivot = TRUE)

get the Q and R matrices
Q <- qr_Q(qr = qr_res$qr, tau = qr_res$qraux, rank = qr_res$rank, complete = TRUE)
R <- qr_R(qr = qr_res$qr, rank = qr_res$rank, complete = TRUE)
X1 <- qr_X(Q = Q, R = R, pivot = qr_res$pivot)
max(abs(X1 - X))

get the full QR decomposition without pivot
qr_res <- fastQR::qr_fast(X = X, pivot = FALSE)

get the Q and R matrices
Q <- qr_Q(qr = qr_res$qr, tau = qr_res$qraux, rank = p, complete = FALSE)
R <- qr_R(qr = qr_res$qr, rank = NULL, complete = FALSE)
X1 <- qr_X(Q = Q, R = R, pivot = NULL)

https://doi.org/10.1007/978-3-319-05089-8
https://doi.org/10.1007/978-3-319-05089-8
https://doi.org/10.1137/1.9781611977950
https://arxiv.org/abs/2412.05905

44 rchol

max(abs(X1 - X))

rchol Cholesky decomposition via R factorization.

Description

rchol, provides the Cholesky decomposition of the symmetric and positive definite matrix X⊤X ∈
Rp×p, where X ∈ Rn×p is the input matrix.

Arguments

X an (n× p) matrix, with n ≥ p. If n < p an error message is returned.

Value

an upper triangular matrix of dimension p × p which represents the Cholesky decomposition of
X⊤X .

References

Golub GH, Van Loan CF (2013). Matrix computations, Johns Hopkins Studies in the Mathematical
Sciences, Fourth edition. Johns Hopkins University Press, Baltimore, MD. ISBN 978-1-4214-0794-
4; 1-4214-0794-9; 978-1-4214-0859-0.

Björck Å (2015). Numerical methods in matrix computations, volume 59 of Texts in Applied Math-
ematics. Springer, Cham. ISBN 978-3-319-05088-1; 978-3-319-05098-8, doi:10.1007/9783319-
050898.

Björck Å (2024). Numerical Methods for Least Squares Problems: Second Edition. Society for In-
dustrial and Applied Mathematics, Philadelphia, PA. doi:10.1137/1.9781611977950, https://doi.org/10.1137/1.9781611977950.

Bernardi M, Busatto C, Cattelan M (2024). “Fast QR updating methods for statistical applications.”
2412.05905, https://arxiv.org/abs/2412.05905.

Examples

set.seed(1234)
n <- 10
p <- 6
X <- matrix(rnorm(n * p, 1), n, p)

compute the Cholesky decomposition of X^TX
S <- fastQR::rchol(X = X)
S

check
round(S - chol(crossprod(X)), 5)

https://doi.org/10.1007/978-3-319-05089-8
https://doi.org/10.1007/978-3-319-05089-8
https://doi.org/10.1137/1.9781611977950
https://arxiv.org/abs/2412.05905

rdowndate 45

rdowndate Fast downdating of the R matrix

Description

rdowndate provides the update of the thin R matrix of the QR factorization after the deletion of
m ≥ 1 rows or columns to the matrix X ∈ Rn×p with n > p. The R factorization of the matrix X
returns the upper triangular matrix R ∈ Rp×p such that X⊤X = R⊤R. See Golub and Van Loan
(2013) for further details on the method.

Usage

rdowndate(R, k = NULL, m = NULL, U = NULL, fast = NULL, type = NULL)

Arguments

R a p× p upper triangular matrix.

k position where the columns or the rows are removed.

m number of columns or rows to be removed. It is not required when deleting
columns. If NULL, it defaults to the number of columns in U .

U a p × m matrix of rows to be removed. It should only be provided when rows
are being removed.

fast fast mode: disable to check whether the provided matrices are valid inputs. De-
fault is FALSE.

type either ’row’ of ’column’, for removing rows or columns.

Value

R the updated R matrix.

References

Golub GH, Van Loan CF (2013). Matrix computations, Johns Hopkins Studies in the Mathematical
Sciences, Fourth edition. Johns Hopkins University Press, Baltimore, MD. ISBN 978-1-4214-0794-
4; 1-4214-0794-9; 978-1-4214-0859-0.

Björck Å (2015). Numerical methods in matrix computations, volume 59 of Texts in Applied Math-
ematics. Springer, Cham. ISBN 978-3-319-05088-1; 978-3-319-05098-8, doi:10.1007/9783319-
050898.

Björck Å (2024). Numerical Methods for Least Squares Problems: Second Edition. Society for In-
dustrial and Applied Mathematics, Philadelphia, PA. doi:10.1137/1.9781611977950, https://doi.org/10.1137/1.9781611977950.

Bernardi M, Busatto C, Cattelan M (2024). “Fast QR updating methods for statistical applications.”
2412.05905, https://arxiv.org/abs/2412.05905.

https://doi.org/10.1007/978-3-319-05089-8
https://doi.org/10.1007/978-3-319-05089-8
https://doi.org/10.1137/1.9781611977950
https://arxiv.org/abs/2412.05905

46 rdowndate

Examples

Remove one column
generate sample data
set.seed(10)
n <- 10
p <- 6
X <- matrix(rnorm(n * p, 1), n, p)

get the initial QR factorization
output <- fastQR::qr(X, type = "householder",

nb = NULL,
complete = TRUE)

Q <- output$Q
R <- output$R
R1 <- R[1:p,]

select the column to be deleted from X and update X
k <- 2
X1 <- X[, -k]

downdate the R decomposition
R2 <- fastQR::rdowndate(R = R1, k = k,

m = 1, type = "column")

check
max(abs(crossprod(R2) - crossprod(X1)))

Remove m columns
generate sample data
set.seed(10)
n <- 10
p <- 6
X <- matrix(rnorm(n * p, 1), n, p)

get the initial QR factorization
output <- fastQR::qr(X, type = "householder",

nb = NULL,
complete = TRUE)

Q <- output$Q
R <- output$R
R1 <- R[1:p,]

select the column to be deleted from X and update X
k <- 2
X1 <- X[, -c(k,k+1)]

downdate the R decomposition
R2 <- fastQR::rdowndate(R = R1, k = k,

m = 2, type = "column")

check
max(abs(crossprod(R2) - crossprod(X1)))

rdowndate 47

Remove one row
generate sample data
set.seed(10)
n <- 10
p <- 6
X <- matrix(rnorm(n * p, 1), n, p)

get the initial QR factorization
output <- fastQR::qr(X, type = "householder",

nb = NULL,
complete = TRUE)

Q <- output$Q
R <- output$R
R1 <- R[1:p,]

select the row to be deleted from X and update X
k <- 5
X1 <- X[-k,]
U <- as.matrix(X[k,], p, 1)

downdate the R decomposition
R2 <- rdowndate(R = R1, k = k, m = 1,

U = U, fast = FALSE, type = "row")

check
max(abs(crossprod(R2) - crossprod(X1)))

Remove m rows
create data: n > p
set.seed(10)
n <- 10
p <- 6
X <- matrix(rnorm(n * p, 1), n, p)
output <- fastQR::qr(X, type = "householder",

nb = NULL,
complete = TRUE)

Q <- output$Q
R <- output$R
R1 <- R[1:p,]

select the rows to be deleted from X and update X
k <- 2
m <- 2
X1 <- X[-c(k,k+m-1),]
U <- t(X[k:(k+m-1),])

downdate the R decomposition
R2 <- rdowndate(R = R1, k = k, m = m,

U = U, fast = FALSE, type = "row")

check
max(abs(crossprod(R2) - crossprod(X1)))

48 rupdate

rupdate Fast updating of the R matrix

Description

updates the R factorization when m ≥ 1 rows or columns are added to the matrix X ∈ Rn×p,
where n > p. The R factorization of X produces an upper triangular matrix R ∈ Rp×p such that
X⊤X = R⊤R. For more details on this method, refer to Golub and Van Loan (2013). Columns
can only be added in positions p+1 through p+m, while the position of added rows does not need
to be specified.

Arguments

X the current n× p matrix, prior to the addition of any rows or columns.

R a p× p upper triangular matrix.

U either a n×m matrix or a p×m matrix of columns or rows to be added.

type either ’row’ of ’column’, for adding rows or columns.

fast fast mode: disable to check whether the provided matrices are valid inputs. De-
fault is FALSE.

Value

R the updated R matrix.

References

Golub GH, Van Loan CF (2013). Matrix computations, Johns Hopkins Studies in the Mathematical
Sciences, Fourth edition. Johns Hopkins University Press, Baltimore, MD. ISBN 978-1-4214-0794-
4; 1-4214-0794-9; 978-1-4214-0859-0.

Björck Å (2015). Numerical methods in matrix computations, volume 59 of Texts in Applied Math-
ematics. Springer, Cham. ISBN 978-3-319-05088-1; 978-3-319-05098-8, doi:10.1007/9783319-
050898.

Björck Å (2024). Numerical Methods for Least Squares Problems: Second Edition. Society for In-
dustrial and Applied Mathematics, Philadelphia, PA. doi:10.1137/1.9781611977950, https://doi.org/10.1137/1.9781611977950.

Bernardi M, Busatto C, Cattelan M (2024). “Fast QR updating methods for statistical applications.”
2412.05905, https://arxiv.org/abs/2412.05905.

https://doi.org/10.1007/978-3-319-05089-8
https://doi.org/10.1007/978-3-319-05089-8
https://doi.org/10.1137/1.9781611977950
https://arxiv.org/abs/2412.05905

rupdate 49

Examples

Add one column
generate sample data
set.seed(1234)
n <- 12
p <- 5
X <- matrix(rnorm(n * p, 1), n, p)

get the initial QR factorization
output <- fastQR::qr(X, complete = TRUE)
Q <- output$Q
R <- output$R
R1 <- R[1:p,]

create column to be added
u <- matrix(rnorm(n), n, 1)
X1 <- cbind(X, u)

update the R decomposition
R2 <- fastQR::rupdate(X = X, R = R1, U = u,

fast = FALSE, type = "column")

check
max(abs(crossprod(R2) - crossprod(X1)))

Add m columns
generate sample data
set.seed(1234)
n <- 10
p <- 5
X <- matrix(rnorm(n * p, 1), n, p)

get the initial QR factorization
output <- fastQR::qr(X, complete = TRUE)
Q <- output$Q
R <- output$R
R1 <- R[1:p,]

create the matrix of columns to be added
m <- 2
U <- matrix(rnorm(n*m), n, m)
X1 <- cbind(X, U)

QR update
R2 <- fastQR::rupdate(X = X, R = R1, U = U,

fast = FALSE, type = "column")

check
max(abs(crossprod(R2) - crossprod(X1)))

Add one row
generate sample data

50 rupdate

set.seed(1234)
n <- 12
p <- 5
X <- matrix(rnorm(n * p, 1), n, p)

get the initial QR factorization
output <- fastQR::qr(X, complete = TRUE)
Q <- output$Q
R <- output$R
R1 <- R[1:p,]

create the row u to be added
u <- matrix(data = rnorm(p), p, 1)
k <- 5
if (k<=n) {

X1 <- rbind(rbind(X[1:(k-1),], t(u)), X[k:n,])
} else {

X1 <- rbind(rbind(X, t(u)))
}

update the R decomposition
R2 <- fastQR::rupdate(R = R1, X = X,

U = u,
type = "row")

check
max(abs(crossprod(R2) - crossprod(X1)))

Add m rows
generate sample data
set.seed(1234)
n <- 12
p <- 5
X <- matrix(rnorm(n * p, 1), n, p)

get the initial QR factorization
output <- fastQR::qr(X, complete = TRUE)
Q <- output$Q
R <- output$R
R1 <- R[1:p,]

create the matrix of rows to be added
m <- 2
U <- matrix(data = rnorm(p*m), p, m)
k <- 5
if (k<=n) {

X1 <- rbind(rbind(X[1:(k-1),], t(U)), X[k:n,])
} else {

X1 <- rbind(rbind(X, t(U)))
}

update the R decomposition
R2 <- fastQR::rupdate(R = R1, X = X,

rupdate 51

U = U,
fast = FALSE,
type = "row")

check
max(abs(crossprod(R2) - crossprod(X1)))

Index

qr, 2
qr_coef, 20
qr_fast, 21
qr_fitted, 24
qr_lm, 26
qr_lse_coef, 27
qr_lse_fitted, 28
qr_lse_Qty, 29
qr_lse_Qy, 30
qr_lse_resid, 31
qr_pivot2perm, 32
qr_Q, 33
qr_Q_full, 36
qr_Q_reduced2full, 37
qr_Qty, 34
qr_Qy, 35
qr_R, 39
qr_resid, 40
qr_thin, 41
qr_X, 42
qrchol, 4
qrdowndate, 4
qrls, 8
qrmls, 9
qrmridge, 10
qrmridge_cv, 12
qrridge, 13
qrridge_cv, 14
qrsolve, 16
qrupdate, 17

rchol, 44
rdowndate, 45
rupdate, 48

52

	qr
	qrchol
	qrdowndate
	qrls
	qrmls
	qrmridge
	qrmridge_cv
	qrridge
	qrridge_cv
	qrsolve
	qrupdate
	qr_coef
	qr_fast
	qr_fitted
	qr_lm
	qr_lse_coef
	qr_lse_fitted
	qr_lse_Qty
	qr_lse_Qy
	qr_lse_resid
	qr_pivot2perm
	qr_Q
	qr_Qty
	qr_Qy
	qr_Q_full
	qr_Q_reduced2full
	qr_R
	qr_resid
	qr_thin
	qr_X
	rchol
	rdowndate
	rupdate
	Index

