Package ‘frontmatter’
January 14, 2026

Title Parse Front Matter from Documents
Version 0.1.0

Description Extracts and parses structured metadata ("YAML' or TOML")
from the beginning of text documents. Front matter is a common pattern
in 'Quarto’ documents, 'R Markdown' documents, static site generators,
documentation systems, content management tools and even 'Python' and
'R’ scripts where metadata is placed at the top of a document,
separated from the main content by delimiter fences.

License MIT + file LICENSE

URL https://github.com/posit-dev/frontmatter,
https://posit-dev.github.io/frontmatter/

BugReports https://github.com/posit-dev/frontmatter/issues
Imports cppll, rlang, tomledit, yaml12

Suggests testthat (>= 3.0.0), withr, yaml

LinkingTo cppll

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.3

NeedsCompilation yes

Author Garrick Aden-Buie [aut, cre] (ORCID:
<https://orcid.org/0000-0002-7111-0077>),
Posit Software, PBC [cph, fnd] (ROR: <https://ror.org/03wc8by49>)

Maintainer Garrick Aden-Buie <garrick@posit.co>
Repository CRAN
Date/Publication 2026-01-14 18:10:07 UTC

Contents
parse_front_matter L. L e e e

Index

https://github.com/posit-dev/frontmatter
https://posit-dev.github.io/frontmatter/
https://github.com/posit-dev/frontmatter/issues
https://orcid.org/0000-0002-7111-0077
https://ror.org/03wc8by49

2 parse_front_matter

parse_front_matter Parse YAML or TOML Front Matter

Description

Extract and parse YAML or TOML front matter from a file or a text string. Front matter is structured
metadata at the beginning of a document, delimited by fences (--- for YAML, +++ for TOML).
parse_front_matter() processes a character string, while read_front_matter() reads from a
file. Both functions return a list with the parsed front matter and the document body.

Usage

parse_front_matter(text, parse_yaml = NULL, parse_toml = NULL)

read_front_matter(path, parse_yaml = NULL, parse_toml = NULL)

Arguments

text A character string or vector containing the document text. If a vector with mul-
tiple elements, they are joined with newlines (as from readLines()).

parse_yaml, parse_toml

A function that takes a string and returns a parsed R object, or NULL to use the
default parser. Use identity to return the raw string without parsing.

path A character string specifying the path to a file. The file is assumed to be UTF-8
encoded. A UTF-8 BOM (byte order mark) at the start of the file is automatically
stripped if present.

Value

A named list with two elements:

* data: The parsed front matter as an R object, or NULL if no valid front matter was found.

* body: The document content after the front matter, with leading empty lines removed. If no
front matter is found, this is the original text.

Functions

e parse_front_matter(): Parse front matter from text

* read_front_matter(): Parse front matter from a file.

Custom Parsers

By default, the package uses yam112: :parse_yaml() for YAML and tomledit::parse_toml()
for TOML. You can provide custom parser functions via parse_yaml and parse_toml to override
these defaults.

Use identity to return the raw YAML or TOML string without parsing.

parse_front_matter 3

YAML Specification Version

The default YAML parser uses YAML 1.2 via yaml12: :parse_yaml(). To use YAML 1.1 parsing
instead (via yaml: :yaml.load()), set either:

* The R option frontmatter.parse_yaml.specto "1.1"
¢ The environment variable FRONTMATTER_PARSE _YAML_SPEC to "1.1"

The option takes precedence over the environment variable. Valid values are "1.1" and "1.2" (the
default).

YAML 1.1 differs from YAML 1.2 in several ways, most notably in how it handles boolean values
(e.g., yes/no are booleans in 1.1 but strings in 1.2).

Examples

Parse YAML front matter
text <- "---

title: My Document

date: 2024-01-01

Document content here”

result <- parse_front_matter(text)
result$datastitle # "My Document”
result$body # "Document content here”

Parse TOML front matter
text <= "+++

title = 'My Document'
date = 2024-01-01

+++

Document content”

result <- parse_front_matter(text)

Get raw YAML without parsing
result <- parse_front_matter(text, parse_yaml = identity)

Use a custom parser that adds metadata
result <- parse_front_matter(
text,
parse_yaml = function(x) {
data <- yaml12::parse_yaml(x)
data$parsed_at <- Sys.time()
data
}
)

Or read from a file
tmpfile <- tempfile(fileext = ".md")
writeLines(text, tmpfile)

parse_front_matter

read_front_matter(tmpfile)

Index

parse_front_matter, 2

read_front_matter (parse_front_matter),
2

tomledit: :parse_toml(), 2

yaml12::parse_yaml(), 2, 3
yaml::yaml.load(), 3

	parse_front_matter
	Index

