g3_parameterized('x', by_step = TRUE)
for seasonal
parameters #115group_by(length = cut(...))
can be used as well as MFDB for
groupings #112g3l_understocking
(),
g3a_naturalmortality
(),
g3a_renewal_normalparam
()g3a_renewal_vonb_t0
() &
g3a_renewal_vonb_recl
(), with
g3a_renewal_vonb
() being an alias to the latterscale = 0.001
from default K
parameters in g3a_grow, g3a_renew_*g3a_renewal_vonb_t0
() is now the default mean_f for
*_normalparam
()g3a_initialconditions_normalparam
() now offsets any
age
in mean_f
(i.e. the VonB formula) by
cur_step_size
, in effect running at step -1.g3_suitability_andersen()
now produces sensible values
- https://github.com/gadget-framework/gadget3/issues/108g3a_age()
now supports stocks with a single age
(i.e. minage == maxage)recage
parameter to g3a_renewal_vonb
/
g3a_renewal_initabund
g3_suitability_andersenfleet()
, a fleet-specialised
andsersen suitability function.g3_is_stock()
publicg3_eval()
, to evaluate snippets of a gadget3
model.g3l_distribution_*(transform_fs = ...)
now happens
before aggregation, not after. Any matrix used now has to be expressed
in terms of the stock, not aggregated age.
g3_param_table()
now returns NaN (and warns) on a
missing value, instead of aborting.
optim(g3_tmb_par(...))
is now an error. When
optimising, always use obj.fun$par
.
as.vector(array)
in TMB formulas, so arrays can
be used with TMB vectorized functions,
e.g. pnorm(as.vector(ar[,1]))
.