Package ‘gmp’

February 9, 2026

Version 0.7-5.1

Date 2024-08-23

Title Multiple Precision Arithmetic

Maintainer Antoine Lucas <antoinelucas@gmail.com>

Description Multiple Precision Arithmetic (big integers and rationals,
prime number tests, matrix computation), " " arithmetic without limitations"
using the C library GMP (GNU Multiple Precision Arithmetic).

Depends R (>=3.5.0)

Imports methods

Suggests Rmpfr, MASS, round

SystemRequirements gmp (>=4.2.3)

License GPL (>=2)

BuildResaveData no

LazyDataNote not available, as we use data/*.R *and* our classes

NeedsCompilation yes

URL https://forgemia.inra.fr/sylvain.jasson/gmp

Author Antoine Lucas [aut, cre] (ORCID:
<https://orcid.org/0000-0002-8059-9767>),
Immanuel Scholz [aut],
Rainer Boehme [ctb],
Sylvain Jasson [ctb],
Martin Maechler [ctb]

Repository CRAN
Date/Publication 2026-02-09 09:19:08 UTC

Contents

apply . . e e
asNUMETIC o o e e e

BernoulliQ e

https://forgemia.inra.fr/sylvain.jasson/gmp
https://orcid.org/0000-0002-8059-9767

2 apply
Bigq . . . e 5
Digq . . . e e e 6
Bigg operators e 8
bigz . . 9
bigz_operators e e 12
binomQ e e 14
CUMSUIN . & v v v v v e s e e e 15
EXITACE o o e e e e e e e e e e e e e e e e e 17
Extremes L 18
factorialZ e e e 19
factorization L e e e e e e 20
formatN e e 21
frexXpZ . . . o e e e 22
gedbigz . .o 23
gCABX . . . e 24
gmp-ifiworkarounds L L. 25
gmp.utils . L. e e e e 25
isswhole e 26
ISPrIME . . . o o e e e e e e e 27
lucnum e e e e e 28
MAIX . . 0 v e o e 29
modulus e e e e 31
mpfr . . . e e 32
NEXIPIIME oo e e e e 33
Oakley o e 34
POWIML . . . o vttt e e e e e e e e e e 35
Random e 36
Relational_Operator e e 37
roundQ L e 37
SIZEINDASE e e e e e 39
solve.bigz L 40
Stirling 41

Index 44

apply Apply Functions Over Matrix Margins (Rows or Columns)
Description

These are S3 methods for apply() which we re-export as S3 generic function. They “overload”
the apply () function for big rationals ("bigq") and big integers ("bigz").

Usage

S3 method for class 'bigz'
apply(X, MARGIN, FUN, ...)
S3 method for class 'bigq'
apply(X, MARGIN, FUN, ...)

asNumeric 3

Arguments
X a matrix of class bigz or bigq, see e.g., matrix.bigz.
MARGIN 1: apply function to rows; 2: apply function to columns
FUN function to be applied
(optional) extra arguments for FUN(), as e.g., in lapply.
Value

The bigz and bigq methods return a vector of class "bigz" or "bigq”, respectively.

Author(s)

Antoine Lucas

See Also
apply; lapply is used by our apply () method.

Examples

X <- as.bigz(matrix(1:12,3))
apply(x,1,min)
apply(x,2,max)

x <- as.bigq(x * 3, d = (x + 3)*2)
apply(x,1, min)
apply(x,2, sum)
now use the
x[2,3] <- NA

apply(x,1, sum)
apply(x,1, sum, na.rm = TRUE)

n ”

to pass na.rm=TRUE :

asNumeric Coerce to 'numeric’, not Loosing Dimensions

Description
a number-like object is coerced to type (typeof) "numeric”, keeping dim (and maybe dimnames)
when present.

Usage

asNumeric(x)

Arguments

X a “number-like” object, e.g., big integer (bigz), or mpfr, notably including ma-
trices and arrays of such numbers.

4 BernoulliQ

Value

an R object of type (typeof) "numeric”, amatrix or array if x had non-NULL dimension dim().

Methods

signature(x = "ANY") the default method, which is the identity for numeric array.
signature(x = "bigq") the method for big rationals.
signature(x = "bigqg") the method for big integers.

Note that package Rmpfr provides methods for its own number-like objects.

Author(s)
Martin Maechler

See Also

as.numeric coerces to both "numeric” and to a vector, whereas asNumeric() should keep dim
(and other) attributes.

Examples

m <- matrix(1:6, 2,3)
stopifnot(identical(m, asNumeric(m)))# remains matrix

(M <- as.bigz(m) / 5) ##-> "bigq" matrix
asNumeric(M) # numeric matrix
stopifnot(all.equal(asNumeric(M), m/5))

BernoulliQ Exact Bernoulli Numbers

Description

Return the n-th Bernoulli number B,,, (or Brf , see the reference), where B, = +%.

Usage
BernoulliQ(n, verbose = getOption("verbose"”, FALSE))

Arguments

n integer vector, n > 0.

verbose logical indicating if computation should be traced.
Value

a big rational (class "bigq") vector of the Bernoulli numbers B,,.

Bigq

Author(s)

Martin Maechler

References

https://en.wikipedia.org/wiki/Bernoulli_number

See Also

Bernoulli in Rmpfr in arbitrary precision via Riemann’s ¢ function. Bern(n) in DPQ uses stan-
dard (double precision) R arithmetic for the n-th Bernoulli number.

Examples

(Bn@.10 <- BernoulliQ(@:10))

Bigq

Relational Operators

Description

Binary operators which allow the comparison of values in atomic vectors.

Usage

S3 method
sign(x)

#it
el
#it
el
#i#
el
#it
el
it
el
##
el

Arguments

S3

method

< e2

S3
<=
S3

S3

method
e2
method
e2
method
e2
method

> e2

S3

1=

method
e2

X, el, e2

for class 'bigq'

for class 'bigq'
for class 'bigq'
for class 'bigqg'
for class 'bigq'

for class 'bigqg

for class 'bigq'

Object or vector of class bigq

https://en.wikipedia.org/wiki/Bernoulli_number
https://CRAN.R-project.org/package=Rmpfr
https://CRAN.R-project.org/package=DPQ

6 bigq

Examples

x <- as.bigq(8000,21)
X <2 *X

bigq Large sized rationals

Description

Class "bigq" encodes rationals encoded as ratios of arbitrary large integers (via GMP). A simple
S3 class (internally a raw vector), it has been registered as formal (S4) class (via setOldClass),
t0o.

Usage

as.bigq(n, d = 1)

S3 method for class 'bigq'
as.character(x, b=10,...)

S3 method for class 'bigq'
as.double(x,...)
as.bigz.bigq(a, mod=NA)

is.bigq(x)

S3 method for class 'bigq'

is.na(x)

S3 method for class 'bigqg'

print(x, quote=FALSE, initLine = TRUE, ...)

denominator(x)

numerator (x)

NA_bigq_

c_bigq(L)

Arguments

n,d either integer, numeric or string value (String value: either starting with @x for
hexadecimal, @b for binary or without prefix for decimal values. Any format
error results in @). n stands for numerator, d for denominator.

a an element of class "bigq"”

mod optional modulus to convert into biginteger

X a “rational number” (vector), of class "bigq".

b base: from 2 to 36
additional arguments passed to methods

quote (for printing:) logical indicating if the numbers should be quoted (as characters

are); the default used to be TRUE (implicitly) till 2011.

bigq 7

initLine (for printing:) logical indicating if an initial line (with the class and length or
dimension) should be printed.

L a list where each element contains "bigq" numbers, for c_bigq(), this allows
something like an sapply () for "bigq" vectors, see sapplyQ() in the examples
below.

Details

as.bigqg(x) when x is numeric (aka double precision) calls the ‘GMP’ function mpqg_set_d () which
is documented to be exact (every finite double precision number is a rational number).

as.bigz.bigq() returns the smallest integers not less than the corresponding rationals bigq.

NA_bigg_ is computed on package load time as as.bigq(NA).

Value

An R object of (S3) class "bigq” representing the parameter value.

Author(s)
Antoine Lucas
Examples
x <- as.bigq(21,6)
X
#7/ 2
Wow ! result is simplified.

<- as.bigq(5,3)

<

H+

addition works !
ty

x

You can even try multiplication, division...
*y /13

x

and, since May 2012,

x * 20

stopifnot(is.bigq(x), is.bigg(x + y),
X * 20 == as.bigz(7)"20 / 2720)

convert to string, double
as.character(x)
as.double(x)

stopifnot(is.na(NA_bigg_))
Depict the "S4-class” bigq, i.e., the formal (S4) methods:

if(require("Rmpfr”)) # mostly interesting there
showMethods(class="bigq")

8 Bigq_operators

an sapply() version that works for big rationals "bigqg":
sapplyQ <- function(X, FUN, ...) c_bigg(lapply(X, FUN, ...))

dummy example showing it works (here):
qq <- as.bigqg(1l, 1:999)

gl <- sapplyQ(aq, function(q) q*2)
stopifnot(identical(ql, gq*2))

Bigg_operators Basic arithmetic operators for large rationals

Description

Addition, subtraction, multiplication, division, and absolute value for large rationals, i.e. "bigq”
class R objects.

Usage

add.bigq(el, e2)
S3 method for class 'bigq'
el + e2

sub.bigq(el, e2=NULL)
S3 method for class 'bigq'
el - e2

mul.bigq(el, e2)
S3 method for class 'bigq'
el * e2

div.bigq(el, e2)
S3 method for class 'bigqg'
el / e2

S3 method for class 'bigq'
el * e2

S3 method for class 'bigq'
abs(x)
Arguments

el, e2, x of class "bigq"”, or (e1 and e2) integer or string from an integer

Details

Operators can be use directly when the objects are of class "bigg”: a + b, a * b, etc, and a * n,
where n must be coercable to a biginteger ("bigz").

bigz

Value

A bigq class representing the result of the arithmetic operation.

Author(s)

Immanuel Scholz and Antoine Lucas

Examples

1/3 + 1 = 4/3 :
as.bigq(1,3) + 1

r <- as.bigq(12, 47)
stopifnot(r * 3 == rx*r=r)

bigz

Large Sized Integer Values

Description

Class "bigz" encodes arbitrarily large integers (via GMP). A simple S3 class (internally a raw
vector), it has been registered as formal (S4) class (via setOldClass), too.

Usage

as.bigz(a, mod = NA)

NA_bigz_

S3 method for class 'bigz'

as.character(x, b =10, ...)

is.bigz(x)

S3 method for class 'bigz'

is.na(x)

S3 method for class 'bigz'

print(x, quote=FALSE, initLine = is.null(modulus(x)), ...)

c_bigz(L)

Arguments

a either integer, numeric (i.e., double) or character vector.
If character: the strings either start with @x for hexadecimal, @b for binary, @ for
octal, or without a @* prefix for decimal values. Formatting errors are signalled
as with stop.

b base: from 2 to 36

X a “big integer number” (vector), of class "bigz".
additional arguments passed to methods

mod an integer, numeric, string or bigz of the internal modulus, see below.

10 bigz

quote (for printing:) logical indicating if the numbers should be quoted (as characters
are); the default used to be TRUE (implicitly) till 2011.

initLine (for printing:) logical indicating if an initial line (with the class and length or
dimension) should be printed. The default prints it for those cases where the
class is not easily discernable from the print output.

L a list where each element contains "bigz" numbers, for c_bigz (), this allows
something like an sapply () for "bigz" vectors, see sapplyZ() in the examples.

Details

Bigz’s are integers of arbitrary, but given length (means: only restricted by the host memory).
Basic arithmetic operations can be performed on bigzs as addition, subtraction, multiplication, divi-
sion, modulation (remainder of division), power, multiplicative inverse, calculating of the greatest
common divisor, test whether the integer is prime and other operations needed when performing
standard cryptographic operations.

For a review of basic arithmetics, see add.bigz.
Comparison are supported, i.e., "==", "1="_"<" "<="">" and ">=".
NA_bigz_ is computed on package load time as as.bigz(NA).

Objects of class "bigz" may have a “modulus”, accessible via modulus(), currently as an attribute
mod. When the object has such a modulus m, arithmetic is performed “modulo m”, mathematically
“within the ring Z/mZ”. For many operations, this means

result <- mod.bigz(result, m) ## == result %% m

is called after performing the arithmetic operation and the result will have the attribute mod set
accordingly. This however does not apply, e.g., for /, where a /b := ab~! and b~! is the multiplicate
inverse of b with respect to ring arithmetic, or NA with a warning when the inverse does not exist.
The warning can be turned off via options("gmp:warnModMismatch” = FALSE)

Powers of bigzs can only be performed, if either a modulus is going to be applied to the result bigz
or if the exponent fits into an integer value. So, if you want to calculate a power in a finite group
(“modulo c”), for large ¢ do not use a * b %% c, but rather as.bigz(a,c) * b.

The following rules for the result’s modulus apply when performing arithmetic operations on bigzs:

* If none of the operand has a modulus set, the result will not have a modulus.

* If both operands have a different modulus, the result will not have a modulus, except in case
of mod.bigz, where the second operand’s value is used.

* If only one of the operands has a modulus or both have a common (the same), it is set and
used for the arithmetic operations, except in case of mod.bigz, where the second operand’s
value is used.

Value

An R object of (S3) class "bigz", representing the argument (x or a).

bigz 11

Note
X <- as.bigz(1234567890123456789012345678901234567890)

will not work as R converts the number to a double, losing precision and only then convert to a
"bigz" object.

Instead, use the syntax

x <- as.bigz("1234567890123456789012345678901234567890")

Author(s)

Immanuel Scholz

References

The GNU MP Library, see https://gmplib.org

Examples

#H 1+1=2
a <- as.bigz(1)
a+a

Two non-small Mersenne primes:
two <- as.bigz(2)

pl <- two*107 -1 ; isprime(pl); pl
p2 <- two*127 -1 ; isprime(p2); p2

stopifnot(is.na(NA_bigz_))

Calculate c = x*e mod n

-

X <- as.bigz("0x123456789%abcdef") # my secret message

e <- as.bigz(3) # something smelling like a dangerous public RSA exponent
(n <= p1 * p2) # a product of two primes

as.character(n, b=16)# as both primes were Mersenne's..

recreate the three numbers above [for demo below]:
n. <- n; x. <- x; e. <- e # save
Rev <- function() { n <<- n.; x <<- Xx.; e <<- e.}

first way to do it right
modulus(x) <- n
c<-x"*e; c; Rev(

similar second way (makes more sense if you reuse e) to do it right
modulus(e) <- n

c2<-x"e

stopifnot(identical(c2, c), is.bigz(c2)) ; Rev()

https://gmplib.org

12 bigz_operators

third way to do it right
c3 <- x * as.bigz(e, n) ; stopifnot(identical(c3, c))

fourth way to do it right
c4 <- as.bigz(x, n) * e ; stopifnot(identical(c4, c))

WRONG! (although very beautiful. Ok only for very small 'e' as here)
cc<-x*e%kn
CC ==

Return result in hexa
as.character(c, b=16)

Depict the "S4-class” bigz, i.e., the formal (S4) methods:
if(require("Rmpfr"”)) # mostly interesting there
showMethods(class="bigz")

an sapply() version that works for big integers "bigz":
sapplyZ <- function(X, FUN, ...) c_bigz(lapply(X, FUN, ...))

dummy example showing it works (here):
zz <- as.bigz(3)*(1000+ 1:999)

z1 <- sapplyZ(zz, function(z) z*2)
stopifnot(identical(z1, zz*2))

bigz_operators Basic Arithmetic Operators for Large Integers ("bigz")

Description

Addition, substraction, multiplication, (integer) division, remainder of division, multiplicative in-
verse, power and logarithm functions.

Usage

add.bigz(el, e2)
sub.bigz(el, e2 = NULL)
mul.bigz(el, e2)
div.bigz(el, e2)

divqg.bigz(el,e2) ## == el %/% €2
mod.bigz(el, e2) ## == el %% €2
S3 method for class 'bigz'
abs(x)

inv.bigz(a, b,...)## == (1 / a) (modulo b)
pow.bigz(el, e2,...)## == el * e2

S3 method for class 'bigz'

log(x, base=exp(1))

S3 method for class 'bigz'

bigz_operators 13

log2(x)
S3 method for class 'bigz'
loglo(x)

Arguments
X bigz, integer or string from an integer
el,e2,a,b bigz, integer or string from an integer
base base of the logarithm; base e as default

Additional parameters
Details

Operators can be used directly when objects are of class bigz: a + b, log(a), etc.

For details about the internal modulus state, and the rules applied for arithmetic operations on big
integers with a modulus, see the bigz help page.

a /b =div(a,b) returns a rational number unless the operands have a (matching) modulus where
a * b*-1 results.

a %/% b (or, equivalently, divg(a,b)) returns the quotient of simple integer division (with trunca-
tion towards zero), possibly re-adding a modulus at the end (but not using a modulus like in a /
b).

r <-inv.bigz(a, m), the multiplicative inverse of a modulo m, corresponds to 1/a or a *-1 from
above when a has modulus m. Note that a not always has an inverse modulo m, in which case r will
be NA with a warning that can be turned off via

options("gmp:warnNoInv"” = FALSE)

Value
Apart from / (or div), where rational numbers (bigq) may result, these functions return an object
of class "bigz", representing the result of the arithmetic operation.

Author(s)

Immanuel Scholz and Antoine Lucas

References

The GNU MP Library, see https://gmplib.org

Examples

1+1=2

as.bigz(1) + 1
as.bigz(2)*10
as.bigz(2)*200

https://gmplib.org

14

if my.large.num.string is set to a number, this returns the least byte
(my.large.num.string <- paste(sample(0:9, 200, replace=TRUE), collapse=""))
mod.bigz(as.bigz(my.large.num.string), "oxff")

power exponents can be up to MAX_INT in size, or unlimited if a
bigz's modulus is set.
pow.bigz(10,10000)

Modulo 11, 7 and 8 are inverses :
as.bigz(7, mod = 11) x 8 ## ==> 1 (mod 11)
inv.bigz(7, 11)## hence, 8

a<-1:10

(i.a <- inv.bigz(a, 11))

d <- as.bigz(7)

a %/%d # = divq(a, d)

a %%k d # =mod.bigz (a, d)

(ii <- inv.bigz(1:10, 16))

with 5 warnings (one for each NA)

op <- options("gmp:warnNoInv" = FALSE)

i2 <- inv.bigz(1:10, 16) # no warnings

(i3 <= 1 / as.bigz(1:10, 16))

i4 <- as.bigz(1:10, 16) * -1

stopifnot(identical(ii, i2),
identical(as.bigz(i2, 16), i3),
identical (i3, i4))

options(op)# revert previous options' settings

stopifnot(inv.bigz(7, 11) == 8,
all(as.bigz(i.a, 11) * a == 1),
identical(a %/% d, divq.bigz(1:10, 7)),
identical(a %% d, mod.bigz (a, d))

binomQ

binomQ Exact Rational Binomial Probabilities

Description

Compute exact binomial probabilities using (big integer and) big rational arithmetic.

Usage

dbinomQ(x, size, prob, log = FALSE)

Arguments

X, size integer or big integer ("bigz"), will be passed to chooseZ().

cumsum 15

prob the probability; should be big rational ("bigq"); if not it is coerced with a warn-
ing.
log logical; must be FALSE on purpose. Use log(Rmpfr: :mpfr(dbinomQ(..),

Value

precB)) for the logarithm of such big rational numbers.

a big rational ("bigq") of the length of (recycled) x+size+prob.

Author(s)

Martin Maechler

See Also

chooseZ; R’s (stats package) dbinom().

Examples

dbinomQ(@:8,8, as.bigq(1,2))

#it

1/256 1/32 7/64 7/32 35/128 7/32 7/64 1/32 1/256

ph16. <- dbinomQ(@:16, size=16, prob = 1/2) # innocous warning
ph16 <- dbinomQ(@:16, size=16, prob = as.bigq(1,2))

ph16.75 <- dbinomQ(@:16, size=16, prob = as.bigq(3,4))

ph8.75 <- dbinomQ(@:8, 8, as.bigq(3,4))

stopifnot(exprs = {

b

dbinomQ(0:8,8, as.bigq(1,2)) * 2*8 == choose(8, 0:8)
identical(ph8.75, chooseZ(8,0:8) * 3%(0:8) / 4"8)
all.equal(ph8.75, choose (8,0:8) * 3%(0:8) / 478, tol=1e-15) # see exactly equal
identical(ph16, ph16.)
identical(ph16,
dbinomQ(@:16, size=16, prob = as.bigz(1)/2))
all.equal(dbinom(@:16, 16, prob=1/2), asNumeric(ph16), tol=1e-15)
all.equal(dbinom(@:16, 16, prob=3/4), asNumeric(ph16.75), tol=1e-15)

cumsum (Cumulative) Sums, Products of Large Integers and Rationals

Description

Theses are methods to ‘overload’ the sum(), cumsum() and prod() functions for big rationals and
big integers.

16 cumsum

Usage
S3 method for class 'bigz'
cumsum(x)
S3 method for class 'bigqg'
cumsum(x)
S3 method for class 'bigz'
sum(..., na.rm = FALSE)
S3 method for class 'bigq'
sum(..., na.rm = FALSE)
S3 method for class 'bigz'
prod(..., na.rm = FALSE)
S3 method for class 'bigq'
prod(..., na.rm = FALSE)
Arguments
Xy vt R objects of class bigz or bigq or ‘simple’ numbers.
na.rm logical indicating if missing values (NA) should be removed before the compu-
tation.
Value

return an element of class bigz or bigq.

Author(s)

Antoine Lucas

See Also

apply

Examples

X <- as.bigz(1:12)
cumsum(x)

prod(x)

sum(x)

x <- as.bigq(1:12)
cumsum(x)

prod(x)

sum(x)

extract 17

extract Extract or Replace Parts of a "bigz’ or ’bigq’ Object

Description

Operators acting on vectors, arrays and lists to extract or replace subsets.

Usage

S3 method for class 'bigz'
x[1=NULL, j=NULL, drop = TRUE]
S3 method for class 'bigq'
x[i=NULL, j=NULL, drop = TRUE]
##___ In the following, only the bigq method is mentioned (but 'bigz' is "the same"”): ___
S3 method for class 'bigqg'

c(..., recursive = FALSE)
S3 method for class 'bigq'
rep(x, times=1, length.out=NA, each=1, ...)
Arguments
X R object of class "bigz" or "bigq", respectively.

further arguments, notably for c().
i,] indices, see standard R subsetting and subassignment.

drop logical, unused here, i.e., matrix subsetting always returns a matrix, here!
times, length.out, each
integer; typically only one is specified; for more see rep (standard R, package
base).

recursive from c()’s default method; disregarded here

Examples

a <- as.bigz(123)

indexing "outside” --> extends the vectors (filling with NA)
a[2] <- al1]

a[4] <- -4

create a vector of 3 a
c(a,a,a)

repeate a 5 times
rep(a,5)

with matrix: 3 x 2
m <- matrix.bigz(1:6,3)

m[1,] # the first row

18 Extremes
m[1,, drop=TRUE] # the same: drop does *not* drop
m[1]
mf-c(2,3),]
m[-c(2,3)]
mLc(TRUE, FALSE, FALSE)]
##_modification on matrix
mE2,-11 <- 11
Extremes Extrema (Maxima and Minima)
Description
We provide S3 methods for min and max for big rationals (bigq) and big integers (biqz); conse-
quently, range () works as well.
Similarly, S4 methods are provided for which.min() and which.max().
Usage
S3 method for class 'bigz'
max(..., na.rm=FALSE)
S3 method for class 'bigq'
max(..., na.rm=FALSE)
S3 method for class 'bigz'
min(..., na.rm=FALSE)
S3 method for class 'bigq'
min(..., na.rm=FALSE)
S4 method for signature 'bigz'
which.min(x)
S4 method for signature 'bigq'
which.max(x)
Arguments
X a “big integer” (bigz) or “big rational” (bigq) vector.
numeric arguments
na.rm a logical indicating whether missing values should be removed.
Value
an object of class "bigz" or "bigq".
Author(s)

Antoine Lucas

factorialZ 19

See Also

max etc in base.

Examples

X <- as.bigz(1:10)

max (x)

min(x)

range(x) # works correctly via default method
x <= x[c(7:10,6:3,1:2)]

which.min(x) ## 9

which.max(x) ## 4

Q <- as.bigq(1:10, 3)

max(Q)

min(Q)

(Q <- Q[c(6:3, 7:10,1:2)1)

stopifnot(which.min(Q) == which.min(asNumeric(Q)),
which.max(Q) == which.max(asNumeric(Q)))

stopifnot(range(x) == c(1,10), 3*range(Q) == c(1,10))

factorialZ Factorial and Binomial Coefficient as Big Integer

Description

Efficiently compute the factorial n! or a binomial coefficient (Z) as big integer (class bigz).

Usage

factorialZ(n)
chooseZ(n, k)

Arguments
n non-negative integer (vector), for factorialZ. For chooseZ, may be a bigz big
integer, also negative.
k non-negative integer vector.
Value

a vector of big integers, i.e., of class bigz.

See Also

factorial and gamma in base R;

20 factorization

Examples

factorialZ(0:10)# 1 1 2 6 ... 3628800
factorialZ(0:40)# larger
factorialZ(200)

n <- 1000
1000 <- factorialZ(n)
stopifnot(1e-15 > abs(as.numeric(1 - 1lfactorial(n)/log(f1000))))

system.time(replicate(8, fle4 <<- factorialZ(10000)))
nchar(as.character(fle4))# 35660 ... (too many to even look at ..)

chooseZ (1000, 100:102)# vectorizes

chooseZ(as.bigz(2)*120, 10)

n <- c(590,80,100)

k <- c(20,30,40)

currently with an undesirable warning: % from methods/src/eval.c _FIXME_
stopifnot(chooseZ(n,k) == factorialZ(n) / (factorialZ(k)*factorialZ(n-k)))

factorization Factorize a number

Description

Give all primes numbers to factor the number

Usage
factorize(n)
Arguments
n Either integer, numeric or string value (String value: ither starting with @x for
hexadecimal, @b for binary or without prefix for decimal values.) Or an element
of class bigz.
Details

The factorization function uses the Pollard Rho algorithm.

Value

Vector of class bigz.

Author(s)

Antoine Lucas

formatN 21

References

The GNU MP Library, see https://gmplib.org

Examples

factorize(34455342)

formatN Format Numbers Keeping Classes Distinguishable

Description

Format (generalized) numbers in a way that their classes are distinguishable. Contrary to format ()
which uses a common format for all elements of x, here, each entry is formatted individually.

Usage

formatN(x, ...)

Default S3 method:

formatN(x, ...)

S3 method for class 'integer'

formatN(x, ...)

S3 method for class 'double'

formatN(x, ...)

S3 method for class 'bigz'

formatN(x, ...)

S3 method for class 'bigq'

formatN(x, ...)
Arguments

X any R object, typically “number-like”.

potentially further arguments passed to methods.

Value

a character vector of the same length as x, each entry a representation of the corresponding entry
in x.

Author(s)

Martin Maechler

See Also

format, including its (sophisticated) default method; as.character.

https://gmplib.org

22 frexpZ

Examples

Note that each class is uniquely recognizable from its output:
formatN(-2:5)# integer

formatN(@ + -2:5)# double precision

formatN(as.bigz(-2:5))

formatN(as.bigq(-2:5, 4))

frexpz Split Number into Fractional and Exponent of 2 Parts

Description

Breaks the number x into its binary significand (“fraction”) d € [0.5, 1) and ex, the integral expo-
nent for 2, such that x = d - 2°*.

If x is zero, both parts (significand and exponent) are zero.

Usage

frexpZ(x)

Arguments

X integer or big integer (bigz).

Value

a list with the two components

d a numeric vector whose absolute values are either zero, or in [$, 1).

exp an integer vector of the same length; note that exp == 1 + floor(log2(x)), and
hence always exp > log2(x).

Author(s)

Martin Maechler

See Also

log2, etc; for bigz objects built on (the C++ equivalent of) frexp(), actually GMP’s ‘mpz_get_d_2exp()’.

ged.bigz 23

Examples

frexpZ(1:10)
and confirm :
with(frexpZ(1:10), d x 2%exp)
X <- rpois(1000, lambda=100) * (1 + rpois(1000, lambda=16))
X <- as.bigz(x)
stopifnot(all.equal(x, with(frexpZ(x), dx 2*exp)),
1+floor(log2(x)) == (fx <- frexpZ(x)s$exp),
fx == frexpZ(X)$exp,
1+floor(log2(X)) == fx

gcd.bigz Greatest Common Divisor (GCD) and Least Common Multiple (LCM)

Description

Compute the greatest common divisor (GCD) and least common multiple (LCM) of two (big) inte-
gers.

Usage

S3 method for class 'bigz'
gcd(a, b)
lcm.bigz(a, b)

Arguments
a,b Either integer, numeric, bigz or a string value; if a string, either starting with 0x
for hexadecimal, @b for binary or without prefix for decimal values.
Value

An element of class bigz

Author(s)

Antoine Lucas

References

The GNU MP Library, see https://gmplib.org

See Also

gcdex

https://gmplib.org

24 gedex

Examples

gcd.bigz(210,342) # or also

lcm.bigz(210,342)

a <- 210 ; b <- 342

stopifnot(gcd.bigz(a,b) * lcm.bigz(a,b) == a * b)

or

(a <- as.bigz("82696155787249022588"))

(b <- as.bigz("65175989479756205392"))
gcd(a,b) # 4

stopifnot(gcd(a,b) * lcm.bigz(a,b) == a * b)

gcdex Compute Bezoult Coefficient

Description

Compute g,s,t as as + bt = g = ged(a, b). s and t are also known as Bezoult coefficients.

Usage
gcdex(a, b)
Arguments
a, b either integer, numeric, character string, or of class "bigz"; If a string, either
starting with "@x" for hexadecimal, "@b" for binary or without prefix for deci-
mal values.
Value

a class "bigz" vector of length 3 with (long integer) values g, s, t.

Author(s)

Antoine Lucas

References

The GNU MP Library, see https://gmplib.org

See Also
gcd.bigz

Examples

gcdex(342,654)

https://gmplib.org

gmp-ifiworkarounds

gmp-ifiworkarounds Base Functions in "gmp’-ified Versions

Description

Functions from base etc which need a copy in the gmp namespace so they correctly dispatch.

Usage
outer(X, Y, FUN = "x" ...)

Arguments

X, Y,FUN, ... See base package help: outer.

See Also

outer.

Examples

twop <- as.bigz(2)*(99:103)

(mtw <- outer(twop, 0:2))

stopifnot(
identical(dim(mtw), as.integer(c(5,3)))
mtw[,1] == @

identical(as.vector(mtw[,2]), twop)

gmp.utils GMP Number Utilities

Description

gmpVersion() returns the version of the GMP library which gmp is currently linked to.

Usage

gmpVersion()

References

The GNU MP Library, see https://gmplib.org

Examples

gmpVersion()

https://gmplib.org

26

is.whole

is.whole Whole ("Integer") Numbers

Description

Check which elements of x[] are integer valued aka “whole” numbers.

Usage
is
##
is
#it
is.
#it
is.

.whole(x)

Default S3 method:

.whole(x)

S3 method for class 'bigz'
whole(x)
S3 method for class 'bigq'
whole(x)

Arguments

X

Value

any R vector

logical vector of the same length as x, indicating where x[.] is integer valued.

Author(s)

Martin Maechler

See Also

is.integer(x) (base package) checks for the internal mode or class; not if x[1] are integer valued.

The is.whole() method for "mpfr" numbers.

Examples

is.
.whole(3) # TRUE

is
##

is.
is.

integer(3) # FALSE, it's internally a double

integer valued complex numbers (two FALSE) :
whole(c(7, 1 + 1i, 1.2, 3.4i, 7i))
whole(factorialZ(20)(10:12)) ## "bigz" are *always* whole numbers

g <- c(as.bigz(36)*50 / as.bigz(30)*40, 3, factorialZ(30:31), 12.25)

is

.whole(q) # FTTTF

isprime 27

isprime Determine if number is (very probably) prime

Description
Determine whether the number n is prime or not, with three possible answers:
2: nis prime,
1: n is probably prime (without beeing certain),

0: n is composite.

Usage

isprime(n, reps = 40)

Arguments

n integer number, to be tested.

reps integer number of primality testing repeats.
Details

This function does some trial divisions, then some Miller-Rabin probabilistic primary tests. reps
controls how many such tests are done, 5 to 10 is already a resonable number. More will reduce the
chances of a composite being returned as “probably prime”.

Value
0 n is not prime
1 n is probably prime
2 n is prime
Author(s)

Antoine Lucas

References

The GNU MP Library, see https://gmplib.org

See Also

nextprime, factorize.

Note that for “small” n, which means something like n < 10’000’000, non-probabilistic methods
(such as factorize()) are fast enough.

https://gmplib.org

28 lucnum

Examples

isprime(210)
isprime(71)

All primes numbers from 1 to 100
t <- isprime(1:99)
(1:99)[t > 0]

table(isprime(1:10000))# @ and 2 : surely prime or not prime

primes <- function(n) {
all primes <= n
stopifnot(length(n) == 1, n <= 1e7) # be reasonable
p <- c(2L, as.integer(seq(3, n, by=2)))
pLisprime(p) > 0]

3

quite quickly, but for these small numbers
still slower than e.g., sfsmisc::primes()
system.time(p100k <- primes(100000))

The first couple of Mersenne primes:

p.exp <- primes(1000)

Mers <- as.bigz(2) * p.exp - 1

isp.M <- sapply(seq_along(Mers), function(i) isprime(Mers[i], reps=256))
cbind(p.exp, isp.M)[isp.M > 0,]

Mers[isp.M > @]

lucnum Compute Fibonacci and Lucas numbers

Description

fibnum compute n-th Fibonacci number. fibnum2 compute (n-1)-th and n-th Fibonacci number.
lucnum compute n-th lucas number. lucnum?2 compute (n-1)-th and n-th lucas number.

Fibonacci numbers are define by: F,, = F,,_1 + F,,_5 Lucas numbers are define by: L,, = F,, +
2Fn71

Usage

fibnum(n)
fibnum2(n)
lucnum(n)
Llucnum2(n)

Arguments

n Integer

matrix 29

Value

Fibonacci numbers and Lucas number.

Author(s)

Antoine Lucas

References

The GNU MP Library, see https://gmplib.org

Examples

fibnum(10)
fibnum2(10)
lucnum(10)
Llucnum2(10)

matrix Matrix manipulation with gmp

Description

Overload of “all” standard tools useful for matrix manipulation adapted to large numbers.

Usage

S3 method for class 'bigz'
matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL, mod = NA,...)

is.matrixZQ(x)

S3 method for class 'bigz'
X %*% Yy

S3 method for class 'bigq'
X %*% Yy

S3 method for class 'bigq'
crossprod(x, y=NULL,...)

S3 method for class 'bigz'
tcrossprod(x, y=NULL,...)

S3 method for class 'bigz'

cbind(..., deparse.level=1)
S3 method for class 'bigq'
rbind(..., deparse.level=1)

#o.o... etc

https://gmplib.org

30 matrix

Arguments

data an optional data vector

nrow the desired number of rows

ncol the desired number of columns

byrow logical. If FALSE (the default), the matrix is filled by columns, otherwise the
matrix is filled by rows.

dimnames not implemented for "bigz" or "bigq"” matrices.

mod optional modulus (when data is "bigz").

X,y numeric, bigz, or bigqg matrices or vectors.

...,deparse.level
arguments from the generic; not made use of, i.e., disregarded here.

Details

The extract function ("[") is the same use for vector or matrix. Hence, x[i] returns the same values
as x[1,]. This is not considered a feature and may be changed in the future (with warnings).

All matrix multiplications should work as with numeric matrices.

Special features concerning the "bigz" class: the modulus can be

Unset: Just play with large numbers

Set with a vector of size 1: Example: matrix.bigz(1:6,nrow=2,ncol=3,mod=7) This means you
work in Z/nZ, for the whole matrix. It is the only case where the %*% and solve functions
will work in Z/nZ.

Set with a vector smaller than data: Example: matrix.bigz(1:6,nrow=2,ncol=3,mod=1:5). Then,
the modulus is repeated to the end of data. This can be used to define a matrix with a different
modulus at each row.

Set with same size as data: Modulus is defined for each cell

Value

matrix(): A matrix of class "bigz" or "bigq".
is.matrixZQ(): TRUE or FALSE.
dim(), ncol(), etc: integer or NULL, as for simple matrices.

cbind(x,y,...)and rbind(x,y, ...) now (2024-01, since gmp version 0.9-5), do drop deparse.level=.
instead of wrongly creating an extra column or row and the "bigz" method takes all arguments into
account and calls the "bigq"” method in case of arguments inheriting from "bigq".

Author(s)

Antoine Lucas and Martin Maechler

See Also

Solving a linear system: solve.bigz. matrix

modulus

Examples

V <- as.bigz(v <- 3:7)
crossprod(V)# scalar product
(C <= t(V)
stopifnot(dim(C) == dim(t(v)), C == v,
dim(t(C)) == c(length(v), 1),
crossprod(V) == sum(V * V),
tcrossprod(V) == outer(v,v),
identical(C, t(t(C))),
is.matrixzQ(C), !is.matrixzZQ(V), !is.matrixZQ(5)
)

a matrix

x <- diag(1:4)

invert this matrix
(xI <- solve(x))

matrix in 2/7Z
y <- as.bigz(x,7)
invert this matrix (result is *differentx from solve(x)):
(yI <- solve(y))
stopifnot(yl %*% y == diag(4),
y %*% yI == diag(4))

matrix in Q

z <- as.bigq(x)

invert this matrix (result is the same as solve(x))
(zI <- solve(z))

stopifnot(abs(zIl - xI) <= 1e-13,
z %*% zI == diag(4),
identical(crossprod(zI), zI %*% t(zI))
)

A <- matrix(2*as.bigz(1:12), 3,4)
for(a in list(A, as.bigq(A, 16), factorialZ(20), as.bigq(2:9, 3:4))) {
a.a <- crossprod(a)
aa. <- tcrossprod(a)
stopifnot(identical(a.a, crossprod(a,a)),
identical(a.a, t(a) %*% a)
identical(aa., tcrossprod(a,a)),
identical(aa., a %*% t(a))
)
Y {for}

modulus Modulus of a Big Integer

32 mpfr

Description

The modulus of a bigz number a is “unset” when a is a regular integer, a € Z). Or the modulus
can be set to m which means a € Z/m - Z), i.e., all arithmetic with a is performed ‘modulo m’.

Usage

modulus(a)
modulus(a) <- value

Arguments

a R object of class "bigz"

value integer number or object of class "bigz".
Examples

x <- as.bigz(24)
modulus(x) # NULL, i.e. none

x element of Z/31Z :
modulus(x) <- 31

x+x # 48 |-> (17 %% 31)
10%x # 240 |-> (23 %% 31)
x31 <- x

reset modulus to "none”:
modulus(x) <- NA; x; x. <- Xx
X <- x31

modulus(x) <- NULL; x

stopifnot(identical(x, as.bigz(24)), identical(x, x.),
identical(modulus(x31), as.bigz(31)))

mpfr Exported function for mpfr use

Description

Theses hidden function are provided for mpfr use. Use theses function with care.

Usage

.as.bigz(a, mod=NA)

nextprime 33

Arguments
a either integer, numeric (i.e., double) or character vector.
If character: the strings either start with @x for hexadecimal, @b for binary, @ for
octal, or without a @* prefix for decimal values. Formatting errors are signalled
as with stop.
mod an integer, numeric, string or bigz of the internal modulus, see below.
Value

An R object of (S3) class "bigz", representing the argument (x or a).

References

The GNU MP Library, see https://gmplib.org

Examples

.as.bigz(1)

nextprime Next Prime Number

Description

Return the next prime number, say p, with p > n.

Usage

nextprime(n)

Arguments

n Integer

Details

This function uses probabilistic algorithm to identify primes. For practical purposes, it is adequate,
the chance of a composite passing will be extremely small.

Value

A (probably) prime number

Author(s)

Antoine Lucas

https://gmplib.org

34 Oakley

References

The GNU MP Library, see https://gmplib.org

See Also

isprime and its references and examples.

Examples

nextprime(14)

still very fast:

(p <~ nextprime(1e7))

to be really sure { isprime() gives "probably prime” } :
stopifnot(identical(p, factorize(p)))

Oakley RFC 2409 Oakley Groups - Parameters for Diffie-Hellman Key Ex-
change

Description
RFC 2409 standardizes global unique prime numbers and generators for the purpose of secure
asymmetric key exchange on the Internet.
Usage
data(Oakley1)
data(Oakley?2)
Value

Oakley|1 returns an object of class bigz for a 768 bit Diffie-Hellman group. The generator is stored
as value with the respective prime number as modulus attribute.

Oakley? returns an object of class bigz for a 1024 bit Diffie-Hellman group. The generator is stored
as value with the respective prime number as modulus attribute.

References

The Internet Key Exchange (RFC 2409), Nov. 1998

Examples

packageDescription("gmp") # {possibly useful for debugging}

data(Oakley1)
(M1 <- modulus(Oakley1))
isprime(M1)# '1' : "probably prime”

sizeinbase(M1)# 232 digits (was 309 in older version)

https://gmplib.org

powm 35

powm Exponentiation function

Description

This function return x¥modn.

This function return x¥modn pow.bigz do the same when modulus is set.

Usage

powm(x, y, n)

Arguments
X Integer or big integer - possibly a vector
y Integer or big integer - possibly a vector
n Integer or big integer - possibly a vector
Value

A bigz class representing the parameter value.

Author(s)

A. L.

See Also

pow.bigz

Examples

powm(4,7,9)

X = as.bigz(4,9)
x *7

36 Random

Random Generate a random number

Description

Generate a uniformly distributed random number in the range O to 2siz¢ _ 1 inclusive.

Usage

urand.bigz(nb=1,size=200, seed = 0)

Arguments
nb Integer: number of random numbers to be generated (size of vector returned)
size Integer: number will be generated in the range 0 to 25%%¢ — 1
seed Bigz: random seed initialisation

Value

A biginteger of class bigz.

Author(s)

Antoine Lucas

References

‘mpz_urandomb’ from the GMP Library, see https://gmplib.org

Examples

Integers are differents
urand.bigz()
urand.bigz()
urand.bigz()

Integers are the same
urand.bigz(seed="234234234324323")
urand.bigz(seed="234234234324323")

Vector
urand.bigz(nb=50,size=30)

https://gmplib.org

Relational_Operator 37

Relational_Operator Relational Operators

Description

Binary operators which allow the comparison of values in atomic vectors.

Usage
S3 method for class 'bigz'
sign(x)
S3 method for class 'bigz'
el == e2
S3 method for class 'bigz'
el < e2
S3 method for class 'bigz'
el >= e2
Arguments
X, el, e2 R object (vector or matrix-like) of class "bigz".
See Also

mod.bigz for arithmetic operators.

Examples

X <- as.bigz(8000)
X * 300 < 2 *x

sign(as.bigz(-3:3))
sign(as.bigq(-2:2, 7))

roundQ Rounding Big Rationals ("bigq") to Decimals

Description

Rounding big rationals (of class "bigq”, see as.bigq()) to decimal digits is strictly based on
a (optionally choosable) definition of rounding to integer, i.e., digits = @, the default method of
which we provide as round@().

The users typically just call round(x, digits) as elsewhere, and the round() method will call
round(x, digits, round@=round®).

38 roundQ
Usage

round@(x)

roundQ(x, digits = @, r@ = roundd)

S3 method for class 'bigqg'
round(x, digits = @)

Arguments
X vector of big rationals, i.e., of class "bigq".
digits integer number of decimal digits to round to.
ro a function of one argument which implements a version of round(x, digits=0).
The default for roundQ() is to use our round@() which implements “round to
even”, as base R’s round.
Value

round@ () returns a vector of big integers, i.e., "bigz" classed.
roundQ(x, digits, round®) returns a vector of big rationals, "bigq", as x.

round.bigq is very simply defined as function(x, digits) roundQ(x, digits) .

Author(s)
Martin Maechler, ETH Zurich

References

The vignette “Exact Decimal Rounding via Rationals” from CRAN package round,

Wikipedia, Rounding, notably "Round halfto even": https://en.wikipedia.org/wiki/Rounding#
Round_half_to_even

See Also

round for (double precision) numbers in base R; roundX from CRAN package round.

Examples

gqq <- as.bigq((-21:31), 10)

noquote(cbind(as.character(qq), asNumeric(qq)))

roundd(qq) # Big Integer ("bigz")

corresponds to R's own "round to even” :

stopifnot(round@(qq) == round(asNumeric(qq)))

round(qq) # == round(qq, ©): the same as round@(qq) *butx Big Rational ("bigq")

halfs <- as.bigq(1,2) + -5:12

https://CRAN.R-project.org/package=round
https://en.wikipedia.org/wiki/Rounding#Round_half_to_even
https://en.wikipedia.org/wiki/Rounding#Round_half_to_even
https://CRAN.R-project.org/package=round

sizeinbase 39

round@() is simply
round® <- function (x) {
nU <- as.bigz.bigq(xU <- x + as.bigq(1, 2)) # traditional round: .5 rounded up
if(any(I <- is.whole.bigq(xU))) { # I <==> x == <n>.5 : "hard case”
I[I] <~ .mod.bigz(nULI], 2L) == 1L # rounded up is odd ==> round *downx
nULI] <- nULI] - 1L

nU
3

's' for simple: rounding as you learned in school:
roundds <- function(x) as.bigz.bigq(x + as.bigq(l, 2))

cbind(halfs, round@s(halfs), roundd(halfs))

roundQ() is simply

roundQ <- function(x, digits = @, r@ = round@) {
round(x * 10%d) / 10*d -- vectorizing in both (x, digits)
p1@ <- as.bigz(10) * digits # class: if(all(digits >= 0)) "bigz" else "bigq"
ro(x x p1e) / ple

sizeinbase Compute size of a bigz in a base

Description

Return an approximation to the number of character the integer X would have printed in base b. The
approximation is never too small.

In case of powers of 2, function gives exact result.

Usage

sizeinbase(a, b=10)

Arguments
a big integer, i.e. "bigz"
b base

Value

integer of the same length as a: the size, i.e. number of digits, of each a[i].

Author(s)

Antoine Lucas

40 solve.bigz

References

The GNU MP Library, see https://gmplib.org

Examples

sizeinbase (342434, 10)# 6 obviously

Iv <- as.bigz(2:7)"500

sizeinbase(Iv)
stopifnot(sizeinbase(Iv) == nchar(as.character(Iv)),
sizeinbase(Iv, b=16) == nchar(as.character(Iv, b=16)))
solve.bigz Solve a system of equation
Description

This generic function solves the equation a% * %z = b for x, where b can be either a vector or a
matrix.

If a and b are rational, return is a rational matrix.

If a and b are big integers (of class bigz) solution is in Z/nZ if there is a common modulus, or a
rational matrix if not.

Usage

S3 method for class 'bigz'
solve(a, b, ...)
S3 method for class 'bigqg'
solve(a, b, ...)

Arguments
a,b A element of class bigz or bigq
Unused
Details

It uses the Gauss and trucmuch algo ... (to be detailled).

Value

If a and b are rational, return is a rational matrix.

If a and b are big integers (of class bigz) solution is in Z/nZ if there is a common modulus, of a
rational matrix if not.

https://gmplib.org

Stirling 41

Author(s)

Antoine Lucas

See Also

solve

Examples

x <- matrix(1:4,2,2) ## standard solve :
solve(x)

g <- as.bigq(x) ## solve with rational
solve(q)

z <- as.bigz(x)
modulus(z) <- 7 ## solve in Z/7Z :
solve(z)

b <- c(1,3)
solve(q,b)
solve(z,b)

Inversion of ("non-trivial”) rational matrices :

A <= rbind(c(10, 1, 3),

c(4, 2, 10),

c(1, 8, 2))
(IA.q <- solve(as.bigq(A))) # fractions..
stopifnot(diag(3) == A %*% IA.q)# perfect

set.seed(5); B <- matrix(round(9*runif(5*2, -1,1)), 5)

B

(IB.gq <- solve(as.bigq(B)))

stopifnot(diag(5) == B %*% IB.q, diag(5) == IB.q %*% B,
identical (B, asNumeric(solve(IB.q))))

Stirling Eulerian and Stirling Numbers of First and Second Kind

Description

Compute Eulerian numbers and Stirling numbers of the first and second kind, possibly vectorized
for all k£ “at once”.

42 Stirling

Usage

Stirlingl(n, k)
Stirling2(n, k, method = c("lookup.or.store”, "direct"))
Eulerian (n, k, method = c("lookup.or.store”, "direct”))

Stirlingl.all(n)
Stirling2.all(n)
Eulerian.all (n)

Arguments
n positive integer (@ is allowed for Eulerian()).
k integer in @:n.
method for Eulerian() and Stirling2(), string specifying the method to be used.
"direct” uses the explicit formula (which may suffer from some cancelation
for “large” n).
Details

Eulerian numbers:
A(n, k) = the number of permutations of 1,2,...,n with exactly k ascents (or exactly k descents).

Stirling numbers of the first kind:
s(n, k) = (—1)"~* times the number of permutations of 1,2,...,n with exactly k cycles.

Stirling numbers of the second kind:
qu,k) is the number of ways of partitioning a set of n elements into £ non-empty subsets.

Value

A(n, k), s(n, k) or S(n, k) = S, respectively.

Eulerian.all(n) is the same as sapply(@: (n-1), Eulerian, n=n) (for n > 0),
Stirling1.all(n) is the same as sapply(1:n, Stirlingl, n=n), and
Stirling2.all(n) is the same as sapply(1:n, Stirling2, n=n), but more efficient.

Note

For typical double precision arithmetic,

Eulerian*(n, *) overflow (to Inf) forn > 172,
Stirlinglx(n, *) overflow (to +Inf) forn > 171, and
Stirling2x(n, x) overflow (to Inf) for n > 220.

Author(s)

Martin Maechler ("direct": May 1992)

Stirling 43

References

Eulerians:

NIST Digital Library of Mathematical Functions, 26.14: https://dlmf.nist.gov/26.14
Stirling numbers:

Abramowitz and Stegun 24,1,4 (p. 824-5 ; Table 24.4, p.835); Closed Form : p.824 "C."
NIST Digital Library of Mathematical Functions, 26.8: https://dlmf.nist.gov/26.8

See Also

chooseZ for the binomial coefficients.

Examples

Stirlingl1(7,2)
Stirling2(7,3)

stopifnot(
Stirlingl.all(9) == c(40320, -109584, 118124, -67284, 22449, -4536, 546, -36, 1)

Stirling2.all(9) == c(1, 255, 3025, 7770, 6951, 2646, 462, 36, 1)

Eulerian.all(7) == c(1, 120, 1191, 2416, 1191, 120, 1)

https://dlmf.nist.gov/26.14
https://dlmf.nist.gov/26.8

Index

!=.bigq(Bigq), 5

!=.bigz (Relational_Operator), 37

* GCD
gcd.bigz, 23

* LCM
gcd.bigz, 23

* Rounding
roundQ, 37

x arithmetic
Stirling, 41

* arith
apply, 2
asNumeric, 3
Bigg, 5
bigq, 6
Bigq_operators, 8
bigz, 9
bigz_operators, 12
cumsum, 15
extract, 17
Extremes, 18
factorialZz, 19
factorization, 20
frexpz, 22
gcd.bigz, 23
gcdex, 24
gmp.utils, 25
isprime, 27
lucnum, 28
matrix, 29
modulus, 31
mpfr, 32
nextprime, 33
powm, 35
Random, 36
Relational_Operator, 37
roundQ, 37
sizeinbase, 39
solve.bigz, 40

44

+ character

formatN, 21
+ data

Oakley, 34
+* math

is.whole, 26
+ methods

asNumeric, 3
* misc

gmp-ifiworkarounds, 25
* print

formatN, 21

.bigqg (Bigg_operators), 8
.bigz (bigz_operators), 12
.bigq (Bigq_operators), 8
.bigz (bigz_operators), 12
-.bigqg (Bigg_operators), 8
-.bigz (bigz_operators), 12
..as.bigz (mpfr), 32
.as.bigz (mpfr), 32
.as.char.bigz (mpfr), 32
.sub.bigq (mpfr), 32
/.bigqg (Bigg_operators), 8
/.bigz (bigz_operators), 12
<.bigq(Bigq), 5
<.bigz (Relational_Operator), 37
<=.bigqg (Bigq), 5
<=.bigz (Relational_Operator), 37
==.bigq (Bigq), 5
==.bigz (Relational_Operator), 37
>.bigq(Bigq), 5
>.bigz (Relational_Operator), 37
>=.bigq (Bigq), 5
>=.bigz (Relational_Operator), 37
[.bigg(extract), 17
[.bigz (extract), 17
[<-.bigq (extract), 17
[<-.bigz (extract), 17
[[.bigq(extract), 17

+ + % %

INDEX

[[.bigz (extract), 17
[[<-.bigq (extract), 17
[[<-.bigz (extract), 17

%*% (matrix), 29

%/%.bigz (bigz_operators), 12
%%.bigz (bigz_operators), 12
*.bigq (Bigg_operators), 8
*.bigz (bigz_operators), 12

abs.bigq (Bigg_operators), 8
abs.bigz (bigz_operators), 12
add.bigq (Bigg_operators), 8
add.bigz, 10

add.bigz (bigz_operators), 12
apply, 2,2, 3, 16

array, 4

as.bigq, 37

as.bigq(bigq), 6

as.bigz (bigz), 9
as.bigz.bigq(bigq), 6
as.character, 21
as.character.bigq (bigq), 6
as.character.bigz (bigz), 9
as.double.bigq (bigq), 6
as.double.bigz (bigz), 9
as.matrix.bigq (matrix), 29
as.matrix.bigz (matrix), 29
as.numeric, 4

as.vector.bigq (matrix), 29
as.vector.bigz (matrix), 29
asNumeric, 3

asNumeric,ANY-method (asNumeric), 3
asNumeric,bigg-method (asNumeric), 3
asNumeric,bigz-method (asNumeric), 3
asNumeric-methods (asNumeric), 3

Bernoulli, 5

BernoulliQ, 4

biginteger_as (bigz), 9
biginteger_as_character (bigz), 9
Bigqg, 5

bigq, 5,6, 8, 13,15, 18, 30
bigg-class (bigq), 6
Bigq_operators, 8

bigz, 3,8,9, 13, 14, 18, 19, 22, 23, 30, 32, 34,

37,39
bigz-class (bigz), 9
bigz_operators, 12
binomQ, 14

c.bigq (extract), 17
c.bigz (extract), 17
c_bigq(bigq), 6

c_bigz (bigz), 9
cbind.bigq (matrix), 29
cbind.bigz (matrix), 29
character, 9, 33
chooseZ, 14, 15,43
chooseZ (factorialZz), 19
class, 21, 38

crossprod (matrix), 29
cumsum, 15, 15

dbinom, 15

dbinomQ (binomQ), 14
denominator (bigg), 6
denominator<- (bigq), 6
dim, 3, 4

dim.bigq (matrix), 29
dim.bigz (matrix), 29
dim<-.bigqg (matrix), 29
dim<-.bigz (matrix), 29
dimnames, 3

div.bigq (Bigqg_operators), 8
div.bigz (bigz_operators), 12
divq.bigz (bigz_operators), 12
double, 7, 9, 33

Eulerian (Stirling), 41
extract, 17
Extremes, 18

factorial, 19
factorialz, 19
factorization, 20
factorize, 27
factorize (factorization), 20
fibnum (lucnum), 28
fibnum2 (lucnum), 28
format, 2/
formatNn, 21

frexp (frexpz), 22
frexpz, 22
function, 3, 38

gamma, 19

gcd (ged.bigz), 23
gcd.bigz, 23, 24
gcdex, 23, 24

45

46

gmp-ifiworkarounds, 25
gmp.utils, 25
gmpVersion (gmp.utils), 25

integer, 9, 33

inv (bigz_operators), 12
is.bigq(bigq), 6
is.bigz (bigz), 9
is.integer, 26
is.matrixZQ (matrix), 29
is.na.bigq (bigq), 6
is.na.bigz (bigz), 9
is.whole, 26, 26
isprime, 27, 34

lapply, 3

lcm.bigz (ged.bigz), 23
lcm.default (ged.bigz), 23
length, 15, 21

length.bigq (extract), 17
length.bigz (extract), 17
length<-.bigq (extract), 17
length<-.bigz (extract), 17
list, 7,10, 22

log.bigz (bigz_operators), 12
log10.bigz (bigz_operators), 12
log2, 22

log2.bigz (bigz_operators), 12
lucnum, 28

lucnum2 (1ucnum), 28

matrix, 4, 29, 30
matrix.bigz, 3

max, 18, 19

max.bigq (Extremes), 18
max.bigz (Extremes), 18
methods, 2, 18

min, /8

min.bigq (Extremes), 18
min.bigz (Extremes), 18
mod.bigz, 10, 37

mod.bigz (bigz_operators), 12
modulus, /0, 31

modulus<- (modulus), 31
mpfr, 3, 15, 32

mul.bigq (Bigg_operators), 8
mul.bigz (bigz_operators), 12

NA, 10, 13, 16

INDEX

NA_bigqg_ (bigq), 6
NA_bigz_ (bigz), 9
ncol.bigqg (matrix), 29
ncol.bigz (matrix), 29
nextprime, 27, 33
nrow.bigq (matrix), 29
nrow.bigz (matrix), 29
numerator (bigq), 6
numerator<- (bigq), 6
numeric, 4, 7,9, 33

Oakley, 34

Oakley1 (Oakley), 34

Oakley? (Oakley), 34

outer, 25

outer (gmp-ifiworkarounds), 25

pow (bigz_operators), 12
pow.bigq (Bigg_operators), 8
pow.bigz, 35

powm, 35

print.bigqg(bigq), 6
print.bigz (bigz), 9

prod, 15

prod.bigg (cumsum), 15
prod.bigz (cumsum), 15

Random, 36

range, 18

raw, 6, 9

rbind.bigq (matrix), 29
rbind.bigz (matrix), 29
Relational_Operator, 37
rep, 17

rep.bigqg (extract), 17
rep.bigz (extract), 17
round, 38

round.bigq (roundQ), 37
round® (roundQ), 37
roundQ, 37

roundX, 38

sapply, 7, 10

setOldClass, 6, 9

sign.bigq (Bigq), 5

sign.bigz (Relational_Operator), 37
sizeinbase, 39

solve, 30, 41

solve.bigqg (solve.bigz), 40

INDEX

solve.bigz, 30, 40
Stirling, 41

Stirlingl (Stirling), 41
Stirling2 (Stirling), 41
stop, 9, 33

sub.bigq (Bigqg_operators), 8
sub.bigz (bigz_operators), 12
sum, 15

sum.bigq (cumsum), 15
sum.bigz (cumsum), 15

t.bigqg (matrix), 29
t.bigz (matrix), 29
tcrossprod (matrix), 29
TRUE, 30

typeof, 3, 4

urand.

bigz (Random), 36

vector, 4

which.
which.
which.
.min, /8
which.
which.

which

max, 18
max,bigg-method (Extremes), 18
max,bigz-method (Extremes), 18

min,bigg-method (Extremes), 18
min,bigz-method (Extremes), 18

47

	apply
	asNumeric
	BernoulliQ
	Bigq
	bigq
	Bigq_operators
	bigz
	bigz_operators
	binomQ
	cumsum
	extract
	Extremes
	factorialZ
	factorization
	formatN
	frexpZ
	gcd.bigz
	gcdex
	gmp-ifiworkarounds
	gmp.utils
	is.whole
	isprime
	lucnum
	matrix
	modulus
	mpfr
	nextprime
	Oakley
	powm
	Random
	Relational_Operator
	roundQ
	sizeinbase
	solve.bigz
	Stirling
	Index

