Package ‘gridify’

February 5, 2026
Type Package

Title Enrich Figures and Tables with Custom Headers and Footers and
More

Version 0.7.7

Description A simple and flexible tool designed to create enriched figures and tables by provid-
ing a way to add text
around them through predefined or custom layouts.
Any input which is convertible to 'grob' is supported, like 'ggplot', 'gt' or 'flextable’.
Based on R 'grid' graphics, for more details see Paul Mur-
rell (2018) <doi:10.1201/9780429422768>.

License Apache License 2.0
URL https://pharmaverse.github.io/gridify/

BugReports https://github.com/pharmaverse/gridify/issues
Encoding UTF-8

RoxygenNote 7.3.3

Imports grDevices, grid, methods

Suggests flextable (>= 0.8.0), ggplot2, gridGraphics, gt (>= 0.11.0),
gtable, knitr, magrittr, rmarkdown, spelling, testthat (>=
3.0.0)

Collate grid_utils.R gridify-classes.R gridify-methods.R ansi_colour.R
simple_layout.R complex_layout.R pharma_layout.R get_layouts.R
layout_issues.R pagination_utils.R

VignetteBuilder knitr
Config/testthat/edition 3
Language en-GB
NeedsCompilation no

Author Maciej Nasinski [aut, cre],
Alexandra Wall [aut],
Sarah Robson [aut],
Pritish Dash [aut],

https://doi.org/10.1201/9780429422768
https://pharmaverse.github.io/gridify/
https://github.com/pharmaverse/gridify/issues

2 Contents
Jennifer Winick-Ng [aut],
Lily Nan [ctb],
Alphonse Kwizera [ctb],
Agota Bodoni [ctb],
Eilis Meldrum-Dolan [ctb],
Gary Cao [ctb],
UCB S.A., Belgium [cph, fnd]
Maintainer Maciej Nasinski <Maciej.Nasinski®@ucb.com>
Repository CRAN
Date/Publication 2026-02-05 16:30:02 UTC
Contents
complex_layout L. e e e e e 3
EXPOIT_tO .« . o o e e e 6
get_layoutso 10
gridifyo e 11
eridifyCell 12
gridifyCell-class e 14
gridifyCells o 14
gridifyCells-class e 15
gridifyClass-class e 16
gridifyLayout 16
gridifyLayout-class 18
gridifyObject 19
gridifyObject-class 19
layout_issue e 20
paginate_table L. 21
pharma_layout 24
pharma_layout_ A4 e 26
pharma_layout_base 29
pharma_layout_letter 31
print,gridifyClass-method oL oo 34
set_cell e e e 35
show,gridifyClass-method oL 38
show,gridifyLayout-method oL o 39
show_cells e e 40
show_layout 41
ShOW_SPEC o e e e e 43
simple_layout L e 44
Index 48

complex_layout 3

complex_layout Complex Layout for a gridify object

Description

This function creates a complex layout for a gridify object. The layout consists of six rows and
three columns for headers, titles, notes and footnotes around the output.

Usage

complex_layout(
margin = grid::unit(c(t = 0.1, r = 0.1, b =0.1, 1 = 0.1), units = "npc"),
global_gpar = grid::gpar(),
background = grid::get.gpar()$fill,

scales = c("fixed", "free")
)
Arguments
margin A unit object specifying the margins around the output. Default is 10% of the

output area on all sides.

global_gpar A gpar object specifying the global graphical parameters. Must be the result of
acall to grid: :gpar().

background A string specifying the background fill colour. Defaultgrid: : get.gpar()$fill
for a white background.

scales A string, either "free” or "fixed". By default, "fixed" ensures that text ele-
ments (titles, footers, etc.) retain a static height, preventing text overlap while
maintaining a structured layout. However, this may result in different height
proportions between the text elements and the output.

The "free"” option makes the row heights proportional, allowing them to scale
dynamically based on the overall output size. This ensures that the text elements
and the output maintain relative proportions.

Details

The layout consists of six rows for headers, titles, object (figure or table), notes, and footnotes. The
object is placed in the fourth row.

* With "free” scales, the row heights are 5%, 5%, 5%, 70%, 5%, and 10% of the area, respec-
tively.

* With "fixed" scales, the row heights are adjusted by the number of lines for all text elements
around the object, with the remaining area occupied by the object. Note that reducing the
output space will retain the space for all text elements, making the object appear smaller.

4 complex_layout

Value

A gridifyLayout object.

Note

The Font Issue Information:

Changes to the fontfamily may be ignored by some devices, but is supported by PostScript, PDF,
X11, Windows, and Quartz. The fontfamily may be used to specify one of the Hershey Font families
(e.g., HersheySerif, serif), and this specification will be honoured on all devices.

If you encounter this warning, you can register the fonts using the extrafont package:

library(extrafont)
font_import()
loadfonts(device = 'all')

If you still see the warning while using RStudio, try changing the graphics backend.
Negative Dimensions Issues:

grobs from the grid package and ggplot2 objects (when converted to grobs by gridify) may appear
distorted in the output if there is insufficient space in the window, caused by negative dimensions.
This should be resolved. However, if this is affecting your layout, please increase your window size
or only use static heights/widths for custom layouts.

The negative dimensions are caused by the way grid handles null and npc heights/widths so if
some dimensions are static, then the npc or null values may cause unexpected behaviour when the
window size is too small. It was resolved by setting a minimum size of the object in the gridify
object to 1 inch for each dimension.

The following example demonstrates this behaviour Try resizing your window:

library(grid)
library(ggplot2)
grid.newpage()
object <- ggplot2::ggplotGrob(ggplot(mtcars, aes(mpg, wt)) + geom_line())
grid::grid.draw(
grid::grobTree(
grid::grobTree(
grid::editGrob(
object,
vp = grid::viewport(
height = grid::unit.pmax(grid::unit(1, "npc"), grid::unit(1, "inch")),
width = grid::unit.pmax(grid::unit(1, "npc"), grid::unit(1, "inch"))
)
),
vp = grid::viewport(
layout.pos.row = 2,
layout.pos.col = 1:3
)

complex_layout 5

vp = grid::viewport(
layout = grid::grid.layout(

nrow = 3,
ncol = 3,
heights = grid::unit(c(9, 1, 9), c("cm”, "null”, "cm"))

)
)
)
)

gt Font Size Issue:

When specifying font sizes, the gt package interprets values as having the unit pixels (px), whilst
the grid package, on which gridify is built, assumes points (pt). As a result, even if you set the
font sizes in both gt and gridify (using grid: : gpar()) to the same number, they may still appear
different. To convert point size to pixel size, multiply the point size by 96 / 72.

Examples

complex_layout()

(to use |> version 4.1.0 of R is required, for lower versions we recommend %>% from magrittr)
library(magrittr)

gridify(

object = ggplot2::ggplot(data = mtcars, ggplot2::aes(x = mpg, y = wt)) +
ggplot2::geom_line(),

layout = complex_layout()

) %>%
set_cell("header_left”, "Left Header") %>%
set_cell("header_middle"”, "Middle Header") %>%
set_cell("header_right"”, "Right Header") %>%
set_cell("title”, "Title") %>%
set_cell("subtitle”, "Subtitle") %>%
set_cell(”"note”, "Note") %>%
set_cell("footer_left”, "Left Footer”) %>%
set_cell("footer_middle”, "Middle Footer”) %>%
set_cell("footer_right”, "Right Footer")

gridify(

object = ggplot2::ggplot(data = mtcars, ggplot2::aes(x = mpg, y = wt)) +

ggplot2::geom_line(),

layout = complex_layout(margin = grid::unit(c(t=0.2, r=0.2, b=0.2, 1=0.2), units = "npc"))
) %>%

set_cell("header_left”, "Left Header") %>%

set_cell("header_right”, "Right Header") %>%

set_cell("title"”, "Title") %>%

set_cell("note”, "Note") %>%

set_cell("footer_left”, "Left Footer")

gridify(
object = gt::gt(head(mtcars)),

layout = complex_layout(
margin = grid::unit(c(t = 0.2, r = 0.2, b=0.2, 1 =0.2), units = "npc"),
global_gpar = grid::gpar(col = "blue”, fontsize = 18)

)

) %%

set_cell("header_left”, "Left Header") %>%
set_cell("header_right"”, "Right Header") %>%
set_cell("title”, "Title") %>%
set_cell(”"note”, "Note") %>%
set_cell("footer_left”, "Left Footer")

export_to

export_to Export gridify objects to a file

Description

The export_to() function exports a gridifyClass object or a list of such objects to a specified
file. Supported formats include PDF, PNG, TIFF and JPEG. For lists, if a single file name with
a PDF file extension is provided, the objects are combined into a multi-page PDF; if a character
vector with one file per object is provided, each object is written to its corresponding file. It is not

po

Usage

ex

ssible to create multi-page PNG or JPEG files.

port_to(x, to, device = NULL, ...)

S4 method for signature 'gridifyClass'

ex

port_to(x, to, device = NULL, ...)

S4 method for signature 'list'

ex

port_to(x, to, device = NULL, ...)

S4 method for signature 'ANY'

export_to(x, to, device = NULL, ...)
Arguments
X A gridifyClass object or a list of gridifyClass objects.
to A character string (or vector) specifying the output file name(s). The extension
determines the output format.
device a function for graphics device. By default a file name extension is used to choose

a graphics device function. Default NULL

Additional arguments passed to the graphics device functions (pdf (), png(),
tiff (), jpeg() or your custom one). Default width and height for each export

type, respectively:
* PDF: 11.69 inches x 8.27 inches

export_to 7

* PNG: 600 px x 400 px
» TIFF: 600 px x 400 px
» JPEG: 600 px x 400 px

Details

For PDF export, a new device is opened, the grid is printed using the object’s custom print method,
and then the device is closed. For PNG and JPEG, the device is opened, a new grid page is started,
the grid is printed, and then the device is closed.

When exporting a list of objects:

* If tois a single PDF file (Iength is 1), the function creates a multi-page PDF.

» If a vector of file names (one per object) is provided, each gridify object is written to its
corresponding file.

Value

No value is returned; the function is called for its side effect of writing output to a file.

Note

gridify objects can be saved directly in .Rmd and .Qmd documents, just like in the gridify pack-
age vignettes.

gt pct() issue

Using pct() to set the width of gt tables can be unreliable when exporting to PDF. It is recom-
mended to use px() to set the width in pixels instead.

Examples

library(gridify)
library(magrittr)
library(ggplot2)

Create a gridify object using a ggplot and a custom layout:

Set text elements on various cells:
gridify_obj <- gridify(
object = ggplot2::ggplot(data = mtcars, ggplot2::aes(x = mpg, y = wt)) +
ggplot2::geom_line(),
layout = pharma_layout_base(
margin = grid::unit(c(0.5, 0.5, 0.5, 0.5), "inches"),
global_gpar = grid::gpar(fontfamily = "serif”, fontsize = 10)
)
) %>%
set_cell("header_left_1", "My Company") %>%
set_cell("header_left_2", "<PROJECT> / <INDICATION>") %>%
set_cell("header_left_3", "<STUDY>") %>%
set_cell("header_right_1", "CONFIDENTIAL") %>%
set_cell("header_right_2", "<Draft or Final>") %>%
set_cell("header_right_3", "Data Cut-off: YYYY-MM-DD") %>%

export_to

set_cell("output_num”, "<Output> xx.xx.xx") %>%

set_cell("title_1", "<Title 1>") %>%

set_cell("title_2", "<Title 2>") %>%

set_cell("title_3", "<Optional Title 3>") %>%

set_cell("by_line", "By: <GROUP>, <optionally: Demographic parameters>") %>%
set_cell("note”, "<Note or Footnotes>") %>%

set_cell("references”, "<References:>") %>%

set_cell("footer_left”, "Program: <PROGRAM NAME>, YYYY-MM-DD at HH:MM") %>%
set_cell("footer_right”, "Page xx of nn") %>%

set_cell("watermark”, "DRAFT")

Export a result to different file types

Different file export formats require specific capabilities in your R installation.
Use capabilities() to check which formats are supported in your R build.

PNG
temp_png_default <- tempfile(fileext = ".png")
export_to(
gridify_obj,
to = temp_png_default
)

temp_png_custom <- tempfile(fileext = ".png")
export_to(

gridify_obj,

to = temp_png_custom,

width = 2400,

height = 1800,

res = 300

JPEG
temp_jpeg_default <- tempfile(fileext = ".jpeg")
export_to(
gridify_obj,
to = temp_jpeg_default
)

temp_jpeg_custom <- tempfile(fileext = ".jpeg")
export_to(

gridify_obj,

to = temp_jpeg_custom,

width = 2400,

height = 1800,

res = 300

TIFF
temp_tiff_default <- tempfile(fileext = ".tiff")
export_to(

gridify_obj,

to = temp_tiff_default

export_to

)

temp_tiff_custom <- tempfile(fileext = ".tiff")
export_to(

gridify_obj,

to = temp_tiff_custom,

width = 2400,

height = 1800,

res = 300
)

PDF
temp_pdf_A4 <- tempfile(fileext = ".pdf")
export_to(
gridify_obj,
to = temp_pdf_A4
)

temp_pdf_A4long <- tempfile(fileext = ".pdf")
export_to(

gridify_obj,

to = temp_pdf_A4long,

width = 8.3,

height = 11.7
)
Use different pdf device - cairo_pdf
temp_pdf_A4long_cairo <- tempfile(fileext = ".pdf")
export_to(

gridify_obj,
to = temp_pdf_A4long_cairo,
device = grDevices::cairo_pdf,
width = 8.3,
height = 11.7

)

Multiple Objects - a list
gridify_list <- list(gridify_obj, gridify_obj)

temp_pdf_multipageA4 <- tempfile(fileext = ".pdf")
export_to(

gridify_list,

to = temp_pdf_multipageA4
)

temp_pdf_multipageAdlong <- tempfile(fileext = ".pdf")
export_to(

gridify_list,

to = temp_pdf_multipageA4long,

width = 8.3,

height = 11.7
)

10 get_layouts

temp_png_multi <- c(tempfile(fileext = ".png"), tempfile(fileext = ".png"))
export_to(

gridify_list,

to = temp_png_multi
)

temp_png_multi_custom <- c(tempfile(fileext = ".png"), tempfile(fileext = ".png"))
export_to(

gridify_list,

to = temp_png_multi_custom,

width = 800,

height = 600,

res = 96

get_layouts Get the gridify layouts

Description

Lists out all the layout functions exported from the gridify package.

Usage

get_layouts()

Value

A vector listing out the names of the layout functions from the gridify package.

See Also

complex_layout(), simple_layout(), pharma_layout_base(), pharma_layout_A4(), pharma_layout_letter()

Examples

get_layouts()

gridify 11

gridify Create a gridify object

Description

This function creates a gridify object, which represents an object with a specific layout and text
elements around the output. The object can be a grob, ggplot2, gt, flextable, formula object. The
layout can be a gridifyLayout object or a function that returns a gridifyLayout object.

Usage
gridify(object = grid::nullGrob(), layout, elements = list(), ...)
Arguments
object A grob or ggplot2, gt, flextable, formula object. Default is grid: :nullGrob().
layout A gridifyLayout object or a function that returns a gridifyLayout object. You can
use predefined layouts; the get_layouts() function prints names of available
layouts. You can create your own layout, please read vignette("create_custom_layout”,
package = "gridify") for more information.
elements A list of text elements to fill the cells in the layout. Useful only in specific
situations, please consider using set_cell method to set text elements around
the output. Please note the elements list has to have a specific structure, please
see the example.
Additional arguments.
Details

The elements argument is a list of elements to fill the cells, it can be used instead of or in conjunction
with set_cell. Please access the vignettes for more information about gridify.

Value

A gridifyClass object.

Note

When setting your text within the elements argument, you can add new lines by using the new-
line character, \n. The addition of \n may require setting a smaller lineheight argument in the
grid: :gpar. For all layouts with the default scales = "fixed", the layout will automatically ad-
just to fit the new lines, ensuring no elements overlap.

See Also

set_cell(), show_layout(), print,gridifyClass-method, show,gridifyClass-method

12 gridityCell

Examples

library(magrittr)

object <- ggplot2::ggplot(mtcars, ggplot2::aes(mpg, wt)) +
ggplot2::geom_point()

gridify(
object = object,
layout = simple_layout()

) %>%
set_cell("title", "My Title"”, gpar = grid::gpar(fontsize = 30)) %>%
set_cell("footer”, "My Footer"”, gpar = grid::gpar(fontsize = 10))

gridify(

gt::gt(head(mtcars)),

layout = complex_layout(scales = "fixed")
) %>%

set_cell("header_left”, "Left Header") %>%
set_cell("header_middle”, "Middle Header") %>%
set_cell("header_right”, "Right Header") %>%
set_cell("title"”, "Title") %>%
set_cell("subtitle”, "Subtitle") %>%
set_cell(”"note”, "Note") %>%
set_cell("footer_left”, "Left Footer") %>%
set_cell("footer_middle”, "Middle Footer") %>%
set_cell("footer_right”, "Right Footer")

We encourage usage of set_cell but you can also use the elements argument
to set text elements around the output.
gridify(
object = ggplot2::ggplot(data = mtcars, ggplot2::aes(x = mpg, y = wt)) +
ggplot2::geom_line(),
layout = simple_layout(),
elements = list(
title = list(text = "My Title"”, gpar = grid::gpar(fontsize = 30)),
footer = list(text = "My Footer”, gpar = grid::gpar(fontsize = 10))

gridifyCell Create a gridifyCell

Description
Function for creating a new instance of the gridifyCell class. Multiple gridifyCell objects are inputs
for gridifyCells.

Usage

gridifyCell(
row,

gridifyCell

col,

13

text = character(9),

mch =
X = 0.
y = 0.
hjust
vjust
rot =
gpar =

Arguments
row
col

text

mch

hjust
vjust

rot

gpar

Value

Inf,
5y

I n o

(S

grid: :gpar()

A numeric value, span or a sequence specifying the range of occupied rows of
the cell.

A numeric value, span or a sequence specifying the range of occupied columns
of the cell.

A character value specifying the default text for the cell. Default character(0).

A numeric value specifying the maximum number of characters per line. The
functionality is based on the strwrap function. By default, it avoids breaking
up words and only splits lines when specified. Default Inf.

A numeric value specifying the x position of text in the cell. Default 0. 5.
A numeric value specifying the y position of text in the cell. Default 0. 5.

A numeric value specifying the horizontal position of the text in the cell, relative
to the x value. Default 0. 5.

A numeric value specifying the vertical position of the text in the cell, relative
to the y value. Default . 5.

A numeric value specifying the rotation of the cell. Default @.

A grid: :gpar() object specifying the graphical parameters of the cell. Default
grid: :gpar().

An instance of the gridifyCell class.

See Also

gridifyCells(), gridifylLayout()

Examples

cell <- gridifyCell(

row = 1
col

’

1:2,

text = "Default cell text”,

mch = Inf,

X = 0.5,

14

gridifyCells

y = 0.5,
hjust
vjust
rot = 0,

gpar = grid::gpar()

’

0.5
0.5,

(SI T

gridifyCell-class gridifyCell class

Description

Class for creating a cell used in a gridify layout.

Slots

row A numeric value, span or a sequence specifying the range of occupied rows of the cell.
col A numeric value, span or a sequence specifying the range of occupied columns of the cell.
text A character value specifying the default text for the cell.

mch A numeric value specifying the maximum number of characters per line. The functionality is
based on the strwrap function. By default, it avoids breaking up words and only splits lines
when specified.

x A numeric value specifying the x position of text in the cell.
y A numeric value specifying the y position of text in the cell.

hjust A numeric value specifying the horizontal position of the text in the cell, relative to the x
value.

vjust A numeric value specifying the vertical position of the text in the cell, relative to the y value.
rot A numeric value specifying the rotation of the cell.

gpar A grid::gpar() object specifying the graphical parameters of the cell.

gridifyCells Create a gridifyCells

Description

Function for creating a new instance of the gridifyCells class. gridifyCells consists of multiple
gridifyCell objects and is an input object for gridifyLayout.

Usage

gridifyCells(...)

gridifyCells-class 15

Arguments

Arguments passed to the new function to create an instance of the gridifyCells
class. Each argument should be the result of a call to gridifyCell.

Value

An instance of the gridifyCells class.

See Also

gridifylLayout()

Examples

celll <- gridifyCell(
row
col
X:
y:
hjus
vjus
rot
gpar = grid::gpar()

)

cell2 <- gridifyCell(
row =
col
X:
y:
hjus
vjust =
rot Q,
gpar = grid::gpar()

)

cells <- gridifyCells(title = celll, footer = cell2)

0l
N oo = =

(SIS
[S,BNE,)

N+ o I

(S

nm oo NN

0.5,
0.5

N ¢+ © o |l

gridifyCells-class gridifyCells class

Description

Class for creating a list of cells in a gridify layout.

Slots

cells A list of cell objects.

16 gridifyLayout

gridifyClass-class gridifyClass class

Description

Class for creating a gridify object.

Slots
object A grob like object.
layout A gridifyLayout object.

elements A list of text elements, calls to set_cell().

gridifylLayout Create a gridifyLayout

Description

Function for creating a new instance of the gridifyLayout class.

Usage

gridifylLayout(
nrow,
ncol,
heights,
widths,
margin,
global_gpar = grid::gpar(),
background = grid::get.gpar()$fill,
adjust_height = TRUE,

object,
cells
)
Arguments
nrow An integer specifying the number of rows in the layout.
ncol An integer specifying the number of columns in the layout.
heights A callto grid: :unit() specifying the heights of the rows.
widths A callto grid: :unit() specifying the widths of the columns.
margin A grid::unit() specifying the margins around the object. Must be a vector

of length 4, one element for each margin, with values in order for top, right,
bottom, left.

gridifyLayout

global_gpar

background

adjust_height

object

cells

Value

17

A call to grid: :gpar() specifying the global graphical parameters. Default is
grid: :gpar().
A string with background colour. Default grid: :get.gpar()$fill.

A logical value indicating whether to automatically adjust the height of the ob-
ject to make sure all of the text elements around the output do not overlap. This
only applies for rows with height defined in cm, mm, inch or lines units. Default
is TRUE.

A call to gridifyObject specifying the row and column location of the object.

A call to gridifyCells listing out the text element cells required for the layout.

A new instance of the gridifyLayout class.

See Also

gridifyCells(), gridifyCell(), gridifyObject()

layout <- gridifyLayout(

Examples
nrow = 3L,
ncol = 1L,

heights = grid::unit(c(@.15, 0.7, 0.15), "npc"),

widths = grid::unit(1, "npc"),

margin = grid::unit(c(t = 0.1, r = 0.1, b =0.1, 1 = 0.1), units = "npc"),
global_gpar = grid::gpar(),

background = grid::get.gpar()$fill,

adjust_height

FALSE,

object = gridifyObject(row = 2, col = 1),
cells = gridifyCells(
title = gridifyCell(row = 1, col = 1),
footer = gridifyCell(row = 3, col = 1)

)
)

(to use |> version 4.1.0 of R is required, for lower versions we recommend %>% from magrittr)

library(magrittr)

gridify(

object = ggplot2::ggplot(data = mtcars, ggplot2::aes(x = mpg, y = wt)) +
ggplot2::geom_line(),

layout = layout

%>%

set_cell("title”, "TITLE") %>%

set_cell("footer”, "FOOTER")

new_layout <- function(

margin = grid::unit(c(t = 0.1, r = 0.1, b =0.1, 1 =0.1), units = "npc"),
global_gpar = grid::gpar()) {
gridifylLayout(

18 gridifyLayout-class

nrow = 4L,
ncol = 1L,
heights = grid::unit(c(3, 0.5, 1, 3), c("cm”, "cm”, "null”, "cm")),
widths = grid::unit(1, "npc"),
global_gpar = global_gpar,
background = grid::get.gpar()$fill,
margin = margin,
adjust_height = FALSE,
object = gridifyObject(row = 3, col = 1),
cells = gridifyCells(
title = gridifyCell(row = 1, col = 1, text = "Default Title"),
subtitle = gridifyCell(row = 2, col = 1),
footer = gridifyCell(row = 4, col = 1)
)
)
}
gridify(
object = ggplot2::ggplot(data = mtcars, ggplot2::aes(x = mpg, y = wt)) +
ggplot2::geom_line(),
layout = new_layout()
) %>%
set_cell("subtitle”, "SUBTITLE") %>%
set_cell("footer”, "FOOTER")

gridifylLayout-class gridifyLayout class

Description

Class for creating a layout for a gridify object.

Slots

nrow An integer specifying the number of rows in the layout.

ncol An integer specifying the number of columns in the layout.

heights A grid::unit() call specifying the heights of the rows.

widths A grid::unit() call specifying the widths of the columns.

margin A grid::unit() specifying the margins around the object.

global_gpar A grid::gpar() object specifying the global graphical parameters.
background A string with background colour.

adjust_height A logical value indicating whether to adjust the height of the object. Only applies
for cells with height defined in cm, mm, inch or lines units.

object A grob object.
cells A list of cell objects.

gridifyObject

gridifyObject Create a gridifyObject

Description

Function for creating a new instance of the gridifyObject class.

Usage

gridifyObject(row, col, height = 1, width = 1)

Arguments
row A numeric value, span or sequence specifying the row position of the object.
col A numeric value, span or sequence specifying the row position of the object.
height A numeric value specifying the height of the object. Default is 1.
width A numeric value specifying the width of the object. Default is 1.

Value

An instance of the gridifyObject class.

See Also
gridifylLayout()

Examples

object <- gridifyObject(row = 1, col = 1, height = 1, width = 1)

gridifyObject-class gridifyObject class

Description

Class for creating an object in a gridify layout.

Slots

row A numeric value, span or sequence specifying the row position of the object.
col A numeric value, span or sequence specifying the column position of the object.
height A numeric value specifying the height of the object.

width A numeric value specifying the width of the object.

20

layout_issue

layout_issue Template for Layout Issues Note

Description

Template for Layout Issues Note

Note

The Font Issue Information:

Changes to the fontfamily may be ignored by some devices, but is supported by PostScript, PDF,
X11, Windows, and Quartz. The fontfamily may be used to specify one of the Hershey Font families
(e.g., HersheySerif, serif), and this specification will be honoured on all devices.

If you encounter this warning, you can register the fonts using the extrafont package:

library(extrafont)
font_import()
loadfonts(device = 'all')

If you still see the warning while using RStudio, try changing the graphics backend.
Negative Dimensions Issues:

grobs from the grid package and ggplot2 objects (when converted to grobs by gridify) may appear
distorted in the output if there is insufficient space in the window, caused by negative dimensions.
This should be resolved. However, if this is affecting your layout, please increase your window size
or only use static heights/widths for custom layouts.

The negative dimensions are caused by the way grid handles null and npc heights/widths so if
some dimensions are static, then the npc or null values may cause unexpected behaviour when the
window size is too small. It was resolved by setting a minimum size of the object in the gridify
object to 1 inch for each dimension.

The following example demonstrates this behaviour Try resizing your window:

library(grid)
library(ggplot2)
grid.newpage()
object <- ggplot2::ggplotGrob(ggplot(mtcars, aes(mpg, wt)) + geom_line())
grid::grid.draw(
grid::grobTree(
grid::grobTree(
grid::editGrob(
object,
vp = grid::viewport(
height = grid::unit.pmax(grid::unit(1, "npc"), grid::unit(1, "inch")),
width = grid::unit.pmax(grid::unit(1, "npc"), grid::unit(1, "inch"))
)

paginate_table 21

),
vp = grid::viewport(
layout.pos.row = 2,
layout.pos.col = 1:3
)
),
vp = grid::viewport(
layout = grid::grid.layout(

nrow = 3,
ncol = 3,
heights = grid::unit(c(9, 1, 9), c("cm”, "null”, "cm"))
)
)
)
)

gt Font Size Issue:

When specifying font sizes, the gt package interprets values as having the unit pixels (px), whilst
the grid package, on which gridify is built, assumes points (pt). As a result, even if you set the
font sizes in both gt and gridify (using grid: : gpar()) to the same number, they may still appear
different. To convert point size to pixel size, multiply the point size by 96 / 72.

paginate_table Split a data frame into pages for multi-page tables

Description

A lightweight utility function to split a data frame into pages based on the number of rows per page.
This is useful when creating multi-page tables with gridify.

Usage

paginate_table(data, rows_per_page = NULL, split_by = NULL, fill_empty = NULL)

Arguments

data A data frame to split into pages.

rows_per_page Integer or NULL. The maximum number of rows per page. When used with
split_by, groups larger than rows_per_page will be split into multiple pages.
When used alone, splits the entire dataset by row count. At least one of rows_per_page
or split_by must be provided.

split_by Character string or NULL. Name of a column in data to split by. Each unique
value in this column starts a new page. Can be combined with rows_per_page
to further split large groups. At least one of rows_per_page or split_by must
be provided.

22 paginate_table

fill_empty Character string or NULL. When provided, fills incomplete pages with empty
rows to match the target row count. Default is NULL (no filling). Providing a
value (e.g., "|", "", or "=") automatically enables filling and uses that value for
all cells in the empty rows. This helps maintain consistent vertical positioning
across all pages. The target row count is the maximum page size across all

pages.

Details

This is a simple utility to help with the common task of paginating large tables. After splitting the
data, you can use a loop to create multiple gridify objects and export them as a multi-page PDF
or separate image files.

The function does not perform the gridify conversion itself - it only prepares the data. This keeps
the package lightweight and flexible.

Value

A list of data frames, one for each page. When split_by is used, the list is named with the
group values. If a group spans multiple pages (when combined with rows_per_page), multiple list
elements will have the same name. When only rows_per_page is used, returns an unnamed list.

Note

This function is designed to work with data frames. It is suited especially for use with gt package.

See Also

gridify(), export_to()

Examples

Basic usage - split mtcars into pages of 10 rows
pages <- paginate_table(mtcars, rows_per_page = 10)
length(pages) # Number of pages

With filled last page for consistent positioning

pages_filled <- paginate_table(mtcars, rows_per_page = 10, fill_empty = "-")
nrow(pages_filled[[1]]) # 10 rows

nrow(pages_filled[[length(pages_filled)]]) # Also 10 rows (filled with empty rows)

With empty string fill
pages_empty <- paginate_table(mtcars, rows_per_page = 10, fill_empty =" ")

Without filling (default)
pages_no_fill <- paginate_table(mtcars, rows_per_page = 10)

Split by a grouping column

pages_by_cyl <- paginate_table(mtcars, split_by = "cyl")
length(pages_by_cyl) # 3 pages (one for each cylinder count: 4, 6, 8)
names(pages_by_cyl) # "4", "6", "8" - named with group values

paginate_table 23

Split by column with filling to match maximum page size

pages_by_cyl_filled <- paginate_table(mtcars, split_by = "cyl”, fill_empty = "|")
sapply(pages_by_cyl_filled, nrow) # All pages have same number of rows
names(pages_by_cyl_filled) # "4", "6", "8"

Combine split_by and rows_per_page: split by cylinder, then by 5 rows

pages_combined <- paginate_table(mtcars, split_by = "cyl"”, rows_per_page = 5)

Groups with more than 5 rows will be split into multiple pages

names(pages_combined) # e.g., "4", "6", "8", "8", "8" (8 cylinder group split into 3 pages)

With filling for combined approach
pages_combined_filled <- paginate_table(
mtcars,
split_by = "cyl”,
rows_per_page = 5,
fill_empty = "-"

library(gridify)

library(gt)

(to use |> version 4.1.0 of R is required, for lower versions we recommend %>% from magrittr)
library(magrittr)

Regular Example with gt
pages <- paginate_table(mtcars, rows_per_page = 10, fill_empty = " ")

row_height_pixels <- 10
font_size <- 12
font_type <- "serif”

Create gridify objects for each page
gridify_list <- lapply(seg_along(pages), function(page) {
gt_table <- gt::gt(pages[[pagell) %>%
gt::tab_options(
table.width = gt::pct(80),
data_row.padding = gt::px(row_height_pixels),
table.font.size = font_size,
table.font.names = font_type
)

gridify(
gt_table,
layout = pharma_layout_A4(global_gpar = grid::gpar(fontfamily = font_type))
) %>%
set_cell("title_1", "My Multi-Page Table") %>%
set_cell("footer_right”, paste("Page”, page, "of", length(pages)))
»

Export as multi-page PDF
temp_my_multipage_table_gt_simple <- tempfile(fileext = ".pdf")
export_to(gridify_list, temp_my_multipage_table_gt_simple)

24 pharma_layout

By var Example with gt
pages <- paginate_table(mtcars, split_by = "cyl")

row_height_pixels <- 10
font_size <- 12
font_type <- "serif”

Create gridify objects for each page
gridify_list <- lapply(seqg_along(pages), function(page) {
gt_table <- gt::gt(pages[[pagell) %>%
gt::tab_options(
table.width = gt::pct(80),
data_row.padding = gt::px(row_height_pixels),
table.font.size = font_size,
table.font.names = font_type
)

gridify(
gt_table,
layout = pharma_layout_A4(global_gpar = grid::gpar(fontfamily = font_type))
) %%
set_cell("title_1", "My Multi-Page Table") %>%
set_cell("by_line", sprintf(”"cyl is equal to %s", names(pages)[pagel)) %>%
set_cell("footer_right”, paste("Page”, page, "of"”, length(pages)))
»

Export as multi-page PDF
temp_my_multipage_table_gt_by <- tempfile(fileext = ".pdf")
export_to(gridify_list, temp_my_multipage_table_gt_by)

pharma_layout Pharma Layouts

Description

The pharma_layout functions define structured layouts for positioning text elements (titles, subti-
tles, footnotes, captions, etc.) around the outputs. These layouts ensure consistency in pharmaceu-
tical reporting across different output formats, including A4 and letter paper sizes.

Available Layouts

* pharma_layout_base(): The base function for pharma layouts.
* pharma_layout_A4(): Layout specifically designed for A4 paper size.
* pharma_layout_letter(): Layout specifically designed for letter paper size.

pharma_layout 25

Note

The Font Issue Information:

Changes to the fontfamily may be ignored by some devices, but is supported by PostScript, PDF,
X11, Windows, and Quartz. The fontfamily may be used to specify one of the Hershey Font families
(e.g., HersheySerif, serif), and this specification will be honoured on all devices.

If you encounter this warning, you can register the fonts using the extrafont package:

library(extrafont)
font_import()
loadfonts(device = 'all')

If you still see the warning while using RStudio, try changing the graphics backend.
Negative Dimensions Issues:

grobs from the grid package and ggplot2 objects (when converted to grobs by gridify) may appear
distorted in the output if there is insufficient space in the window, caused by negative dimensions.
This should be resolved. However, if this is affecting your layout, please increase your window size
or only use static heights/widths for custom layouts.

The negative dimensions are caused by the way grid handles null and npc heights/widths so if
some dimensions are static, then the npc or null values may cause unexpected behaviour when the
window size is too small. It was resolved by setting a minimum size of the object in the gridify
object to 1 inch for each dimension.

The following example demonstrates this behaviour Try resizing your window:

library(grid)
library(ggplot2)
grid.newpage()
object <- ggplot2::ggplotGrob(ggplot(mtcars, aes(mpg, wt)) + geom_line())
grid::grid.draw(
grid::grobTree(
grid::grobTree(
grid::editGrob(
object,
vp = grid::viewport(
height = grid::unit.pmax(grid::unit(1, "npc”), grid::unit(1, "inch")),
width = grid::unit.pmax(grid::unit(1, "npc"”), grid::unit(1, "inch"))
)
),
vp = grid::viewport(
layout.pos.row = 2,
layout.pos.col = 1:3
)
),
vp = grid::viewport(
layout = grid::grid.layout(
nrow = 3,
ncol = 3,

26 pharma_layout_A4

heights = grid::unit(c(9, 1, 9), c("cm”, "null”, "cm"))
)
)
)
)

gt Font Size Issue:

When specifying font sizes, the gt package interprets values as having the unit pixels (px), whilst
the grid package, on which gridify is built, assumes points (pt). As a result, even if you set the
font sizes in both gt and gridify (using grid: : gpar()) to the same number, they may still appear
different. To convert point size to pixel size, multiply the point size by 96 / 72.

See Also
pharma_layout_base(), pharma_layout_A4(), pharma_layout_letter()

pharma_layout_A4 Pharma Layout (A4) for a gridify object

Description

This function sets up the general structure for positioning the text elements for pharma layouts using
the A4 paper size.

Usage
pharma_layout_A4(global_gpar = NULL, background = grid::get.gpar()$fill)

Arguments

global_gpar A list specifying global graphical parameters to change in the layout. Default is
NULL, however the defaults in the layout, inherited from pharma_layout_base(),
are: fontfamily = "Serif”, fontsize = 9 and lineheight = ©.95, which
can be overwritten alongside other graphical parameters found by grid: :get.gpar ().

background A character string specifying the background fill colour. Default grid: :get.gpar()$fill
for a white background.

Details
The margins for the A4 layout are:
* top =1 inch
* right = 1.69 inches

¢ bottom = 1 inch
e left =1 inch

The pharma_layout_base() function is used to set up the general layout structure, with these
specific margins applied for the A4 format.

pharma_layout_A4 27

Value

A gridifylLayout object with the structure defined for A4 paper size.

Note

The Font Issue Information:

Changes to the fontfamily may be ignored by some devices, but is supported by PostScript, PDF,
X11, Windows, and Quartz. The fontfamily may be used to specify one of the Hershey Font families
(e.g., HersheySerif, serif), and this specification will be honoured on all devices.

If you encounter this warning, you can register the fonts using the extrafont package:

library(extrafont)
font_import()
loadfonts(device = 'all')

If you still see the warning while using RStudio, try changing the graphics backend.
Negative Dimensions Issues:

grobs from the grid package and ggplot2 objects (when converted to grobs by gridify) may appear
distorted in the output if there is insufficient space in the window, caused by negative dimensions.
This should be resolved. However, if this is affecting your layout, please increase your window size
or only use static heights/widths for custom layouts.

The negative dimensions are caused by the way grid handles null and npc heights/widths so if
some dimensions are static, then the npc or null values may cause unexpected behaviour when the
window size is too small. It was resolved by setting a minimum size of the object in the gridify
object to 1 inch for each dimension.

The following example demonstrates this behaviour Try resizing your window:

library(grid)
library(ggplot2)
grid.newpage()
object <- ggplot2::ggplotGrob(ggplot(mtcars, aes(mpg, wt)) + geom_line())
grid::grid.draw(
grid::grobTree(
grid::grobTree(
grid::editGrob(
object,
vp = grid::viewport(
height = grid::unit.pmax(grid::unit(1, "npc"), grid::unit(1, "inch")),
width = grid::unit.pmax(grid::unit(1, "npc"), grid::unit(1, "inch"))
)
),
vp = grid::viewport(
layout.pos.row = 2,
layout.pos.col = 1:3
)

28 pharma_layout_A4

vp = grid::viewport(
layout = grid::grid.layout(
nrow = 3,
ncol = 3,
heights = grid::unit(c(9, 1, 9), c("cm”, "null”, "cm"))
)

gt Font Size Issue:

When specifying font sizes, the gt package interprets values as having the unit pixels (px), whilst
the grid package, on which gridify is built, assumes points (pt). As a result, even if you set the
font sizes in both gt and gridify (using grid: : gpar()) to the same number, they may still appear
different. To convert point size to pixel size, multiply the point size by 96 / 72.

See Also

pharma_layout, pharma_layout_base(), pharma_layout_letter()

Examples

pharma_layout_A4()
(to use |> version 4.1.0 of R is required, for lower versions we recommend %>% from magrittr)
library(magrittr)
Example with all cells filled out
gridify(
object = ggplot2::ggplot(data = mtcars, ggplot2::aes(x = mpg, y = wt)) +
ggplot2::geom_line(),
layout = pharma_layout_A4()
) %%
set_cell("header_left_1", "My Company") %>%
set_cell("header_left_2", "<PROJECT> / <INDICATION>") %>%
set_cell("header_left_3", "<STUDY>") %>%
set_cell("header_right_1", "CONFIDENTIAL") %>%
set_cell("header_right_2", "<Draft or Final>") %>%
set_cell("header_right_3", "Data Cut-off: YYYY-MM-DD") %>%
set_cell("output_num”, "<Output> xx.xx.xx") %>%
set_cell("title_1", "<Title 1>") %>%
set_cell("title_2", "<Title 2>") %>%
set_cell("title_3", "<Optional Title 3>") %>%
set_cell("by_line", "By: <GROUP>, <optionally: Demographic parameters>") %>%
set_cell("note"”, "<Note or Footnotes>") %>%
set_cell("references”, "<References:>") %>%
set_cell("footer_left”, "Program: <PROGRAM NAME>, YYYY-MM-DD at HH:MM") %>%
set_cell("footer_right”, "Page xx of nn") %>%
set_cell("watermark”, "DRAFT")

pharma_layout_base 29

pharma_layout_base Base Function for Pharma Layouts

Description

This function sets up the general structure for positioning text elements for pharma layouts. It
defines the layout with specified margins, global graphical parameters, and height adjustment. The
layout includes cells for headers, titles, footers, and optional elements like watermarks.

Usage

pharma_layout_base(
margin = grid::unit(c(t =1, r=1, b =1, 1 =1), units = "inches"),
global_gpar = NULL,
background = grid::get.gpar()$fill,
adjust_height = TRUE
)

Arguments

margin A grid: :unit object defining the margins of the layout (top, right, bottom, left)
in inches. Default is grid: :unit(c(1, 1, 1, 1), "inches").

global_gpar A list specifying global graphical parameters to change in the layout. Default is

NULL, however the defaults in the layout are: fontfamily = "Serif”, fontsize = 9 and lineheight
which can be overwritten alongside other graphical parameters found by grid: :get.gpar().

background A string specifying the background fill colour. Defaultgrid: : get.gpar()$fill
for a white background.

adjust_height A logical value indicating whether to adjust the height of the layout. Default is
TRUE.
Details
This function is primarily used internally by other layout functions such as pharma_layout_A4()
and pharma_layout_letter() to create specific layouts.
Value

A gridifyLayout object that defines the general structure and parameters for a pharma layout.

Note

The Font Issue Information:

Changes to the fontfamily may be ignored by some devices, but is supported by PostScript, PDF,
X11, Windows, and Quartz. The fontfamily may be used to specify one of the Hershey Font families
(e.g., HersheySerif, serif), and this specification will be honoured on all devices.

If you encounter this warning, you can register the fonts using the extrafont package:

30

pharma_layout_base

library(extrafont)
font_import()
loadfonts(device = 'all')

If you still see the warning while using RStudio, try changing the graphics backend.
Negative Dimensions Issues:

grobs from the grid package and ggplot2 objects (when converted to grobs by gridify) may appear
distorted in the output if there is insufficient space in the window, caused by negative dimensions.
This should be resolved. However, if this is affecting your layout, please increase your window size
or only use static heights/widths for custom layouts.

The negative dimensions are caused by the way grid handles null and npc heights/widths so if
some dimensions are static, then the npc or null values may cause unexpected behaviour when the
window size is too small. It was resolved by setting a minimum size of the object in the gridify
object to 1 inch for each dimension.

The following example demonstrates this behaviour Try resizing your window:

library(grid)
library(ggplot2)
grid.newpage()
object <- ggplot2::ggplotGrob(ggplot(mtcars, aes(mpg, wt)) + geom_line())
grid::grid.draw(
grid::grobTree(
grid::grobTree(
grid::editGrob(
object,
vp = grid::viewport(
height = grid::unit.pmax(grid::unit(1, "npc”), grid::unit(1, "inch")),
width = grid::unit.pmax(grid::unit(1, "npc"”), grid::unit(1, "inch"))
)
),
vp = grid::viewport(
layout.pos.row = 2,
layout.pos.col = 1:3
)
),

vp = grid::viewport(

layout = grid::grid.layout(

nrow = 3,

ncol = 3,

heights = grid::unit(c(9, 1, 9), c("cm”, "null”, "cm"))
)

)
)
)

gt Font Size Issue:

pharma_layout_letter 31

When specifying font sizes, the gt package interprets values as having the unit pixels (px), whilst
the grid package, on which gridify is built, assumes points (pt). As a result, even if you set the
font sizes in both gt and gridify (using grid: : gpar()) to the same number, they may still appear
different. To convert point size to pixel size, multiply the point size by 96 / 72.

See Also

pharma_layout, pharma_layout_A4(), pharma_layout_letter()

Examples

Create a general pharma layout with default settings
pharma_layout_base()

library(magrittr)
Customize margins and global graphical parameters and fill all cells
gridify(
object = ggplot2::ggplot(data = mtcars, ggplot2::aes(x = mpg, y = wt)) +
ggplot2::geom_line(),
layout = pharma_layout_base(
margin = grid::unit(c(@0.5, 0.5, 0.5, 0.5), "inches"),
global_gpar = list(col = "blue”, fontsize = 10)
)
) %>%
set_cell("header_left_1", "My Company") %>%
set_cell("header_left_2", "<PROJECT> / <INDICATION>") %>%
set_cell("header_left_3", "<STUDY>") %>%
set_cell("header_right_1", "CONFIDENTIAL") %>%
set_cell("header_right_2", "<Draft or Final>") %>%
set_cell("header_right_3", "Data Cut-off: YYYY-MM-DD") %>%
set_cell("output_num”, "<Output> xx.xx.xx") %>%
set_cell("title_1", "<Title 1>") %>%
set_cell("title_2", "<Title 2>") %>%
set_cell("title_3", "<Optional Title 3>") %>%
set_cell("by_line"”, "By: <GROUP>, <optionally: Demographic parameters>") %>%
set_cell("note"”, "<Note or Footnotes>") %>%
set_cell("references”, "<References:>") %>%
set_cell("footer_left”, "Program: <PROGRAM NAME>, YYYY-MM-DD at HH:MM") %>%
set_cell("footer_right"”, "Page xx of nn") %>%
set_cell("watermark”, "DRAFT")

pharma_layout_letter Pharma Layout (Letter) for a gridify object

Description

This function sets up the general structure for positioning the text elements for pharma layouts using
the letter paper size.

32 pharma_layout_letter

Usage
pharma_layout_letter(global_gpar = NULL, background = grid::get.gpar()$fill)

Arguments

global_gpar A list specifying global graphical parameters to change in the layout. Default is
NULL, however the defaults in the layout, inherited from pharma_layout_base(),
are: fontfamily = "Serif”, fontsize = 9 and lineheight = 0.95, which
can be overwritten alongside other graphical parameters found by grid: : get.gpar().

background A character string specifying the background fill colour. Default grid: : get.gpar () $fill
for a white background.

Details

The margins for the letter layout are:

e top =1inch

* right =1 inch

* bottom = 1.23 inches
e left =1 inch

The pharma_layout_base() function is used to set up the general layout structure, with these
specific margins applied for the letter format.

Value

A gridifylLayout object with the structure defined for letter paper size.

Note

The Font Issue Information:

Changes to the fontfamily may be ignored by some devices, but is supported by PostScript, PDF,
X11, Windows, and Quartz. The fontfamily may be used to specify one of the Hershey Font families
(e.g., HersheySerif, serif), and this specification will be honoured on all devices.

If you encounter this warning, you can register the fonts using the extrafont package:

library(extrafont)
font_import()
loadfonts(device = 'all')

If you still see the warning while using RStudio, try changing the graphics backend.
Negative Dimensions Issues:

grobs from the grid package and ggplot2 objects (when converted to grobs by gridify) may appear
distorted in the output if there is insufficient space in the window, caused by negative dimensions.
This should be resolved. However, if this is affecting your layout, please increase your window size
or only use static heights/widths for custom layouts.

pharma_layout_letter 33

The negative dimensions are caused by the way grid handles null and npc heights/widths so if
some dimensions are static, then the npc or null values may cause unexpected behaviour when the
window size is too small. It was resolved by setting a minimum size of the object in the gridify
object to 1 inch for each dimension.

The following example demonstrates this behaviour Try resizing your window:

library(grid)
library(ggplot2)
grid.newpage()
object <- ggplot2::ggplotGrob(ggplot(mtcars, aes(mpg, wt)) + geom_line())
grid::grid.draw(
grid::grobTree(
grid::grobTree(
grid::editGrob(
object,
vp = grid::viewport(
height = grid::unit.pmax(grid::unit(1, "npc”), grid::unit(1, "inch")),
width = grid::unit.pmax(grid::unit(1, "npc"”), grid::unit(1, "inch"))
)
),
vp = grid::viewport(
layout.pos.row = 2,
layout.pos.col = 1:3
)
),
vp = grid::viewport(
layout = grid::grid.layout(

nrow = 3,
ncol = 3,
heights = grid::unit(c(9, 1, 9), c("cm”, "null”, "cm"))

)
)
)
)

gt Font Size Issue:

When specifying font sizes, the gt package interprets values as having the unit pixels (px), whilst
the grid package, on which gridify is built, assumes points (pt). As a result, even if you set the
font sizes in both gt and gridify (using grid: :gpar()) to the same number, they may still appear
different. To convert point size to pixel size, multiply the point size by 96 / 72.

See Also

pharma_layout, pharma_layout_base(), pharma_layout_A4()

Examples

pharma_layout_letter()

34 print,gridifyClass-method

library(magrittr)

Example with all cells filled out

gridify(
object = ggplot2::ggplot(data = mtcars, ggplot2::aes(x = mpg, y = wt)) +

ggplot2::geom_line(),

layout = pharma_layout_letter()

) %%
set_cell("header_left_1", "My Company") %>%
set_cell("header_left_2", "<PROJECT> / <INDICATION>") %>%
set_cell("header_left_3", "<STUDY>") %>%
set_cell("header_right_1", "CONFIDENTIAL") %>%
set_cell("header_right_2", "<Draft or Final>") %>%
set_cell("header_right_3", "Data Cut-off: YYYY-MM-DD") %>%
set_cell("output_num”, "<Output> xx.xx.xx") %>%
set_cell("title_1", "<Title 1>") %>%
set_cell("title_2", "<Title 2>") %>%
set_cell("title_3", "<Optional Title 3>") %>%
set_cell("by_line", "By: <GROUP>, <optionally: Demographic parameters>") %>%
set_cell("note”, "<Note or Footnotes>") %>%
set_cell("references”, "<References:>") %>%
set_cell("footer_left”, "Program: <PROGRAM NAME>, YYYY-MM-DD at HH:MM") %>%
set_cell("footer_right”, "Page xx of nn") %>%
set_cell("watermark”, "DRAFT")

print,gridifyClass-method
Print method for gridifyClass

Description

Method for printing a gridifyClass object. Prevents the show method from being triggered.

Usage
S4 method for signature 'gridifyClass'
print(x, ...)
Arguments
X A gridifyClass object.
Additional arguments. Not yet in use.
Value

Invisibly a grid call used to draw the object.

set_cell 35

See Also
gridify(), set_cell()

Examples

(to use |> version 4.1.0 of R is required, for lower versions we recommend %>% from magrittr)
library(magrittr)

g <- gridify(
object = ggplot2::ggplot(data = mtcars, ggplot2::aes(x = mpg, y = wt)) +
ggplot2::geom_line(),
layout = simple_layout()
) %%
set_cell("title”, "TITLE")

print(g)

grid call is returned when printed to a variable
gg <- print(g)

unevaluated grid code

gg

evaluate the code

grid::grid.draw(eval(gg, envir = attr(gg, "env")))
or

OBJECT <- attr(gg, "env")[["OBJECT"]1]
grid::grid.draw(eval(gg))

set_cell Add text elements to a gridify cell

Description

This function sets a text element for a specific cell in a gridify object. The element can be positioned
and rotated as desired, and its graphical parameters can be customized.

Usage

set_cell(
object,
cell,
text,
mch = NULL,
x = NULL,
y = NULL,
hjust = NULL,
vjust = NULL,
rot = NULL,
gpar = NULL,

36

)

set_cell

S4 method for signature 'gridifyClass'

set_cell(
object,
cell,
text,
mch = NULL,
x = NULL,
y = NULL,
hjust = NULL,
vjust = NULL,
rot = NULL,
gpar = NULL,

Arguments

object
cell
text

mch

hjust

vjust

rot

gpar

A gridifyClass object. (See note)
A single character string specifying the name of the cell.

A single character string specifying the text of the element. When setting your
string within the text argument, you can add new lines by using the newline
character, \n.

A positive numeric value specifying the maximum number of characters per
line. The functionality is based on the strwrap() function. By default, it avoids
breaking up words and only splits lines when specified.

A numeric value specifying the x (horizontal) location of the text element in the
cell. Takes values between 0 and 1; O places the text element at the left side of
the cell and 1 at the right side.

A numeric value specifying the y (vertical) location of the text element in the
cell. Takes values between 0 and 1; O places the text element at the bottom of
the cell and 1 at the top.

A numeric value specifying which part of the text element lines up with the x
value. Adjusting this value changes how the text element is positioned horizon-
tally relative to the x coordinate specified before. Takes values between 0 and 1;
0 aligns the left side of the text element with the x coordinate and 1 aligns the
right side.

A numeric value specifying which part of the text element lines up with the y
value. Adjusting this value changes how the text element is positioned vertically
relative to the y coordinate specified before. Takes values between 0 and 1; 0
aligns the bottom of the text element with the y coordinate and 1 aligns the top.
A numeric value specifying the rotation of the text element anticlockwise from
the x-axis.

A grid: :gpar() object specifying the graphical parameters of the text element.

Additional arguments.

set_cell 37

Details

set_cell() can also make minor adjustments to the positioning of the text elements in the layout.

If the existing layouts generally meet your needs and you only require additional lines in certain
cells, there is no need to create a new layout. By using the newline character, \n, within your text,
you can add as many new lines as desired. For all layouts with the default scales = "fixed"”, the
layout will automatically adjust to fit the new lines, ensuring no elements overlap.

For applying more substantial changes to a layout or when applying adjustments across multiple
objects and projects, it is recommended to create a custom layout instead. This will promote repro-
ducibility and consistency across projects. See vignette(”create_custom_layout”, package =
"gridify") for more information on how to create a custom layout.

Value

The gridifyClass object with the added text element.

Note

The object argument has to be passed directly only when adding set_cell() after a gridify
object has already been defined. We do NOT need to pass the object directly when using pipes.
See first example.

See Also

gridify()

Examples

using set_cell() without the pipe operator
object <- ggplot2::ggplot(data = mtcars, ggplot2::aes(x = mpg, y = wt)) +
ggplot2::geom_line()

g <- gridify(object = object, layout = simple_layout())
g <- set_cell(g, "title", "TITLE")
g

using set_cell() with the pipe operator
(to use |> version 4.1.0 of R is required, for lower versions we recommend %>% from magrittr)
library(magrittr)

gridify(object = object, layout = simple_layout()) %>%
set_cell("title"”, "TITLE")

using multiple lines in set_cell()
gridify(object, layout = simple_layout()) %>%
set_cell(cell = "title", text = "THIS IS THE MAIN TITLE\nA Second Title\nSubtitle”) %>%
set_cell(
cell = "footer”, text = "This is a footer.\nWe can have multiple lines here as well.",
X = 0, hjust = @
)

38 show,gridifyClass-method

using mch in set_cell()

long_footer_string <- paste@(
"This is a footer. We can have a long description here.”,
"We can have another long description here.",
"We can have another long description here.”

)
gridify(object, layout = simple_layout()) %>%
set_cell(
cell = "footer”, long_footer_string, mch = 60, x = @, hjust = @
)

using the location and alignment arguments

the left side of the text is on the left side of the cell

gridify(object = object, layout = simple_layout()) %>%
set_cell("title”, "TITLE", x = @, hjust = @)

the right side of the text is on the right side of the cell
gridify(object = object, layout = simple_layout()) %>%
set_cell("title”, "TITLE", x = 1, hjust = 1)

the right side of the text is 30% from the right side of the cell
gridify(object = object, layout = simple_layout()) %>%
set_cell("title”, "TITLE", x = 0.7, hjust = 1)

using the rotation argument
gridify(object = object, layout = simple_layout()) %>%
set_cell("title”, "TITLE", x = 0.7, rot = 45)

using the graphical parameters argument

gridify(object = object, layout = simple_layout()) %>%
set_cell("title”, "TITLE", x = 0.7, rot = 45, gpar = grid::gpar(fontsize = 20)) %>%
set_cell("footer”, "FOOTER", x = 0.2, y = 1, gpar = grid::gpar(col = "blue"))

show, gridifyClass-method
Show method for gridifyClass

Description

Method for showing a gridifyClass object.

Usage
S4 method for signature 'gridifyClass'
show(object)

Arguments

object A gridifyClass object.

show,gridifyLayout-method 39

Value

The object with all the titles, subtitles, footnotes, and other text elements around the output is printed
in the graphics device. A list is also printed to the console containing:

¢ the dimensions of the layout

» where the object is located in the layout

* the size of the margin

* any global graphical parameters

* the list of elements cells and if they are filled or empty

See Also
gridify()

Examples

g <- gridify(
object = ggplot2::ggplot(data = mtcars, ggplot2::aes(x = mpg, y = wt)) +
ggplot2::geom_line(),
layout = complex_layout()
)
show(g)

show, gridifyLayout-method
Show method for gridifyLayout

Description

Method for showing a gridifyLayout object. It prints the names of the cells in the layout.

Usage
S4 method for signature 'gridifylLayout'
show(object)

Arguments

object A gridifyLayout object.

Value

The list of cells defined in the layout.

See Also

gridifylLayout()

40 show_cells

Examples

show(complex_layout())

show_cells Show the cells in a gridify object or layout

Description
Method for showing the cells of a gridifyClass or gridifyLayout object. It prints the names of the
cells and for gridifyClass it indicates whether each cell is filled or empty.

Usage

show_cells(object)

S4 method for signature 'gridifyClass'
show_cells(object)

S4 method for signature 'gridifylLayout'
show_cells(object)
Arguments

object A gridifyClass or gridifyLayout object.

Value

A print out of the available cells and for gridifyClass indicates whether each cell is filled or empty.

Examples

show_cells(complex_layout())

(to use |> version 4.1.0 of R is required, for lower versions we recommend %>% from magrittr)
library(magrittr)

g <- gridify(
object = ggplot2::ggplot(data = mtcars, ggplot2::aes(x = mpg, y = wt)) +
ggplot2::geom_line(),
layout = simple_layout()
) %%
set_cell("title”, "TITLE")

show_cells(g)
g <- gridify(

object = ggplot2::ggplot(data = mtcars, ggplot2::aes(x = mpg, y = wt)) +
ggplot2::geom_line(),

show_layout 41

layout = complex_layout()

) %%
set_cell("header_left”, "Left Header") %>%
set_cell("header_right"”, "Right Header") %>%
set_cell("title”, "Title") %>%
set_cell(”"note”, "Note") %>%
set_cell("footer_left”, "Left Footer”) %>%
set_cell("footer_right”, "Right Footer")

show_cells(g)

show_layout Show the layout in a given gridify object or layout

Description

Method for showing the layout of a gridifyClass or gridifyLayout object. It prints the layout of
the object, including the number of rows and columns and the heights and widths of the rows and
columns in the graphics device.

Usage

show_layout (x)

S4 method for signature 'gridifyClass'
show_layout (x)

S4 method for signature 'gridifylLayout'
show_layout (x)
Arguments

X A gridifyClass or gridifyLayout object.

Value

An object showing the layout, including the widths and heights of all the rows and columns.

Note
When using show_layout(), not all lines are initially visible. Some lines may be assigned zero
space and are dynamically updated to have more space once the text is added.

See Also

gridify(), simple_layout(), complex_layout(), pharma_layout, pharma_layout_base(), pharma_layout_A4(),
pharma_layout_letter()

42

Examples

g <- gridify(

)

object = ggplot2::ggplot(data = mtcars, ggplot2::aes(x = mpg, y = wt)) +
ggplot2::geom_line(),

layout = simple_layout()

show_layout(g)

g <- gridify(

)

object = ggplot2::ggplot(data = mtcars, ggplot2::aes(x = mpg, y = wt)) +
ggplot2::geom_line(),
layout = complex_layout()

show_layout(g)

show_layout(simple_layout())
show_layout (complex_layout())

Example with a custom layout

custom_layout <- gridifylLayout(

)

nrow = 3L,

ncol = 2L,

heights = grid::unit(c(@.15, 0.7, 0.15), "npc"),

widths = grid::unit(c(0.5, 0.5), "npc"),

margin = grid::unit(c(t = 0.1, r = 0.1, b=0.1, 1 = 0.1), units = "npc"),

global_gpar = grid::gpar(),

adjust_height = FALSE,

object = gridifyObject(row = 2, col = 1),

cells = gridifyCells(header = gridifyCell(
row = 1,
col
x:
y:
hjust
vjust =
rot = 0,
gpar = grid::gpar()

), footer = gridifyCell(
row = 2,
col
x:
y:
hjust

vjust =

rot = 0,
gpar = grid::gpar()

»

’

)

[SEESII
nm oo =

’
’

0.5
0.5,

[SEESII
n o o N

0.5,
0.5

’

show_layout (custom_layout)

show_layout

show_spec 43

show_spec Show the layout specifications of a gridifyClass or gridifyLayout

Description

Method for showing the specifications of the layout in a gridifyClass or gridifyLayout object, in-
cluding, but not limited to:

* Layout dimensions

* Heights of rows

* Widths of columns

* Margins

* Graphical parameters defined in the layout.

 Default specs per cell.

Usage
show_spec(object)

S4 method for signature 'gridifylLayout'
show_spec(object)

S4 method for signature 'gridifyClass'
show_spec(object)
Arguments

object A gridifyClass or gridifyLayout object.

Value

A print out of the specifications of a gridifyClass or gridifyLayout object.

Examples

show_spec(complex_layout())

(to use |> version 4.1.0 of R is required, for lower versions we recommend %>% from magrittr)
library(magrittr)

g <- gridify(
object = ggplot2::ggplot(data = mtcars, ggplot2::aes(x = mpg, y = wt)) +
ggplot2::geom_line(),
layout = simple_layout()
) 5%
set_cell("title"”, "TITLE")

44

show_spec(g)

<- gridify(

object = ggplot2::ggplot(data = mtcars, ggplot2::aes(x = mpg, y = wt)) +
ggplot2::geom_line(),

layout = complex_layout()

%>%

set_cell("header_left”, "Left Header") %>%

set_cell("header_right”, "Right Header") %>%

set_cell("title"”, "Title") %>%

set_cell("note”, "Note") %>%

set_cell("footer_left”, "Left Footer") %>%

set_cell("footer_right”, "Right Footer")

show_spec(g)

simple_layout

simple_layout Simple Layout for a gridify object

Description

Creates a simple layout only containing two text element cells: a title and a footer.

Usage

simple_layout(
margin = grid::unit(c(t = 0.1, r = 0.1, b=0.1, 1 = 0.1), units = "npc"),

global_gpar = grid::gpar(),
background = grid::get.gpar()$fill,

scales = c("fixed", "free")
)
Arguments
margin A unit object specifying the margins around the output. Default is 10% of the

global_gpar

output area on all sides.

acall to grid: :gpar().

A gpar object specifying the global graphical parameters. Must be the result of

background A string specifying the background fill colour. Default grid: :get.gpar()$fill
for a white background.
scales A string, either "free"” or "fixed”. By default, "fixed" ensures that text ele-

ments (titles, footers, etc.) retain a static height, preventing text overlap while
maintaining a structured layout. However, this may result in different height

proportions between the text elements and the output.

The "free" option makes the row heights proportional, allowing them to scale
dynamically based on the overall output size. This ensures that the text elements

and the output maintain relative proportions.

simple_layout 45

Details

The layout consists of three rows, one each for the title, output, and footer.

The heights of the rows in simple_layout with "free” scales are 15%, 70% and 15% of the area
respectively.

The heights of the rows in simple_layout with "fixed" scales are adjusted n number of lines for all
text elements around the output and the rest of the area taken up by the output.

Please note that as output space is reduced, all text elements around the output retain their space
which makes the output appear smaller.

Value

A gridifyLayout object.

Note

The Font Issue Information:

Changes to the fontfamily may be ignored by some devices, but is supported by PostScript, PDF,
X11, Windows, and Quartz. The fontfamily may be used to specify one of the Hershey Font families
(e.g., HersheySerif, serif), and this specification will be honoured on all devices.

If you encounter this warning, you can register the fonts using the extrafont package:

library(extrafont)
font_import()
loadfonts(device = 'all')

If you still see the warning while using RStudio, try changing the graphics backend.
Negative Dimensions Issues:

grobs from the grid package and ggplot2 objects (when converted to grobs by gridify) may appear
distorted in the output if there is insufficient space in the window, caused by negative dimensions.
This should be resolved. However, if this is affecting your layout, please increase your window size
or only use static heights/widths for custom layouts.

The negative dimensions are caused by the way grid handles null and npc heights/widths so if
some dimensions are static, then the npc or null values may cause unexpected behaviour when the
window size is too small. It was resolved by setting a minimum size of the object in the gridify
object to 1 inch for each dimension.

The following example demonstrates this behaviour Try resizing your window:

library(grid)
library(ggplot2)
grid.newpage()
object <- ggplot2::ggplotGrob(ggplot(mtcars, aes(mpg, wt)) + geom_line())
grid::grid.draw(

grid: :grobTree(

grid: :grobTree(
grid::editGrob(
object,

46 simple_layout

vp = grid::viewport(
height = grid::unit.pmax(grid::unit(1, "npc"”), grid::unit(1, "inch")),
width = grid::unit.pmax(grid::unit(1, "npc"), grid::unit(1, "inch"))
)
),
vp = grid::viewport(
layout.pos.row = 2,
layout.pos.col = 1:3
)
),
vp = grid::viewport(
layout = grid::grid.layout(

nrow = 3,
ncol = 3,
heights = grid::unit(c(9, 1, 9), c("cm”, "null”, "cm"))

)
)
)
)

gt Font Size Issue:

When specifying font sizes, the gt package interprets values as having the unit pixels (px), whilst
the grid package, on which gridify is built, assumes points (pt). As a result, even if you set the
font sizes in both gt and gridify (using grid: : gpar()) to the same number, they may still appear
different. To convert point size to pixel size, multiply the point size by 96 / 72.

Examples

simple_layout()

(to use |> version 4.1.0 of R is required, for lower versions we recommend %>% from magrittr)
library(magrittr)

gridify(
object = ggplot2::ggplot(data = mtcars, ggplot2::aes(x = mpg, y = wt)) +
ggplot2::geom_line(),
layout = simple_layout()
) %%
set_cell("title"”, "TITLE") %>%
set_cell("footer”, "FOOTER")

gridify(
object = ggplot2::ggplot(data = mtcars, ggplot2::aes(x = mpg, y
ggplot2::geom_line(),
layout = simple_layout(
margin = grid::unit(c(5, 2, 2, 2), "cm"),
global_gpar = grid::gpar(fontsize = 20, col = "blue”)
)
) %>%
set_cell("title”, "TITLE") %>%

wt)) +

simple_layout

set_cell("footer”, "FOOTER")

gridify(
object = ggplot2::ggplot(data = mtcars, ggplot2::aes(x = mpg, y = wt)) +
ggplot2::geom_line(),
layout = simple_layout()
) %%
set_cell("title”, "TITLE\nSUBTITLE", x = 0.7, gpar = grid::gpar(fontsize = 12)) %>%
set_cell("footer”, "FOOTER", x = 0.5, y = 0.5, gpar = grid::gpar())

Index

complex_layout, 3
complex_layout(), 10, 41

export_to, 6

export_to(), 22

export_to,ANY-method (export_to), 6

export_to,gridifyClass-method
(export_to), 6

export_to,list-method (export_to), 6

get_layouts, 10
gridify, 11
gridify(), 22, 35, 37, 39, 41
gridifyCell, 12
gridifyCell(), 17
gridifyCell-class, 14
gridifyCells, 14
gridifyCells(), 13,17
gridifyCells-class, 15
gridifyClass-class, 16
gridifylLayout, 16
gridifylLayout(), 13, 15, 19, 39
gridifylLayout-class, 18
gridifyObject, 19
gridifyObject(), 17
gridifyObject-class, 19

layout_issue, 20

paginate_table, 21
pharma_layout, 24, 28, 31, 33, 41
pharma_layout_A4, 26
pharma_layout_A4(), 10, 26, 31, 33,41
pharma_layout_base, 29
pharma_layout_base(), 10, 26, 28, 33, 41
pharma_layout_letter, 31
pharma_layout_letter(), 10, 26, 28, 31, 41
print,gridifyClass-method, /1, 34

set_cell, 35
set_cell(), 11,35

48

set_cell,gridifyClass-method
(set_cell), 35
show, gridifyClass-method, /1, 38
show, gridifylLayout-method, 39
show_cells, 40
show_cells,gridifyClass-method
(show_cells), 40
show_cells, gridifylLayout-method
(show_cells), 40
show_layout, 41
show_layout(), 11
show_layout,gridifyClass-method
(show_layout), 41
show_layout, gridifylLayout-method
(show_layout), 41
show_spec, 43
show_spec, gridifyClass-method
(show_spec), 43
show_spec, gridifyLayout-method
(show_spec), 43
simple_layout, 44
simple_layout(), 10, 41

	complex_layout
	export_to
	get_layouts
	gridify
	gridifyCell
	gridifyCell-class
	gridifyCells
	gridifyCells-class
	gridifyClass-class
	gridifyLayout
	gridifyLayout-class
	gridifyObject
	gridifyObject-class
	layout_issue
	paginate_table
	pharma_layout
	pharma_layout_A4
	pharma_layout_base
	pharma_layout_letter
	print,gridifyClass-method
	set_cell
	show,gridifyClass-method
	show,gridifyLayout-method
	show_cells
	show_layout
	show_spec
	simple_layout
	Index

