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mlfit-package mlfit: Iterative Proportional Fitting Algorithms for Nested Structures

Description

The Iterative Proportional Fitting (IPF) algorithm operates on count data. This package offers im-
plementations for several algorithms that extend this to nested structures: ’parent’ and ’child’ items
for both of which constraints can be provided. The fitting algorithms include Iterative Proportional
Updating <https://trid.trb.org/view/881554>, Hierarchical IPF <doi:10.3929/ethz-a-006620748>,
Entropy Optimization <https://trid.trb.org/view/881144>, and Generalized Raking <doi:10.2307/2290793>.
Additionally, a number of replication methods is also provided such as ’Truncate, replicate, sample’
<doi:10.1016/j.compenvurbsys.2013.03.004>.

Details

To use this package, you need to:

1. Specify your fitting problem with ml_problem()

2. Optionally, convert the fitting problem to a structure that can be processed by the algorithms
with flatten_ml_fit_problem(); this is helpful if you want to run the same fitting problem
with multiple algorithms and compare results.

3. Compute weights with one of the algorithms provided in this package with ml_fit() or one
of the specialized functions

4. Analyze weights or residuals, e.g. with compute_margins()

Author(s)

Maintainer: Amarin Siripanich <amarin.siri@gmail.com> (Contributed ‘ml_replicate()‘)

Authors:

• Kirill Müller (Creator of the package) [copyright holder]

Other contributors:

• Kay W. Axhausen (Advisor of Kirill Müller) [thesis advisor]
• Taha H. Rashidi (Advisor of Amarin Siripanich) [thesis advisor]
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See Also

Useful links:

• https://mlfit.github.io/mlfit/

• https://github.com/mlfit/mlfit

• Report bugs at https://github.com/mlfit/mlfit/issues

compute_margins Compute margins for a weighting of a multi-level fitting problem

Description

These functions allows checking a fit in terms of the original input data.

Usage

compute_margins(ml_problem, weights, verbose = FALSE)

margin_to_df(controls, count = NULL, verbose = FALSE)

Arguments

ml_problem A fitting problem created by ml_problem() or returned by flatten_ml_fit_problem().
weights A vector with one entry per row of the original reference sample
verbose If TRUE, print diagnostic output.
controls Margins as returned by compute_margins or as passed to the controls param-

eter of ml_problem().
count Name of control total column, autodetected by default.

Details

compute_margins() computes margins in the format used for the input controls (i.e., as expected
by the controls parameter of the ml_problem() function), based on a reference sample and a
weight vector.

margins_to_df() converts margins to a data frame for easier comparison.

Value

compute_margins() returns a named list with two components, individual and group. Each
contains a list of margins as data.frames.

margins_to_df() returns a data frame with the following columns:

..control.type.. Type of the control total: either individual or group.

..control.name.. Name of the control total, if exists.

..id.. Name of the control category.

..count.. Count of the control category.

https://mlfit.github.io/mlfit/
https://github.com/mlfit/mlfit
https://github.com/mlfit/mlfit/issues
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See Also

ml_fit()

Examples

path <- toy_example("Tiny")
problem <- readRDS(path)
fit <- ml_fit(ml_problem = problem, algorithm = "entropy_o")
margins <- compute_margins(problem, fit$weights)
margins

margin_to_df(problem$controls)
margin_to_df(margins)

dss Calibrate sample weights

Description

Calibrate sample weights according to known marginal population totals. Based on initial sample
weights, the so-called g-weights are computed by generalized raking procedures. The final sample
weights need to be computed by multiplying the resulting g-weights with the initial sample weights.

Usage

dss(
X,
d,
totals,
q = NULL,
method = c("raking", "linear", "logit"),
bounds = NULL,
maxit = 500,
ginv = gginv(),
tol = 1e-06,
attributes = FALSE

)

Arguments

X a matrix of calibration variables.

d a numeric vector giving the initial sample (or design) weights.

totals a numeric vector of population totals corresponding to the calibration variables
in X.

q a numeric vector of positive values accounting for heteroscedasticity. Small
values reduce the variation of the g-weights.
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method a character string specifying the calibration method to be used. Possible values
are "linear" for the linear method, "raking" for the multiplicative method
known as raking and "logit" for the logit method.

bounds a numeric vector of length two giving bounds for the g-weights to be used in the
logit method. The first value gives the lower bound (which must be smaller than
or equal to 1) and the second value gives the upper bound (which must be larger
than or equal to 1). If NULL, the bounds are set to c(0, 10).

maxit a numeric value giving the maximum number of iterations.

ginv a function that computes the Moore-Penrose generalized inverse (default: an
optimized version of MASS::ginv()). In some cases it is possible to speed up
the process by using a function that computes a "regular" matrix inverse such as
{solve.default}.

tol relative tolerance; convergence is achieved if the difference of all residuals (rel-
ative to the corresponding total) is smaller than this tolerance.

attributes should additional attributes (currently success, iterations, method and bounds)
be added to the result? If FALSE (default), a warning is given if convergence
within the given relative tolerance could not be achieved.

Value

A numeric vector containing the g-weights.

Note

This is a faster implementation of parts of sampling::calib() from package sampling. Note that
the default calibration method is raking and that the truncated linear method is not yet implemented.

Author(s)

Andreas Alfons, with improvements by Kirill Müller

References

Deville, J.-C. and Särndal, C.-E. (1992) Calibration estimators in survey sampling. Journal of the
American Statistical Association, 87(418), 376–382.

Deville, J.-C., Särndal, C.-E. and Sautory, O. (1993) Generalized raking procedures in survey sam-
pling. Journal of the American Statistical Association, 88(423), 1013–1020.

Examples

obs <- 1000
vars <- 100
Xs <- matrix(runif(obs * vars), nrow = obs)
d <- runif(obs) / obs
totals <- rep(1, vars)
g <- dss(Xs, d, totals, method = "linear", ginv = solve)
g2 <- dss(Xs, d, totals, method = "raking")
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flatten_ml_fit_problem

Return a flattened representation of a multi-level fitting problem in-
stance

Description

This function transforms a multi-level fitting problem to a representation more suitable for applying
the algorithms: A matrix with one row per controlled attribute and one column per household, a
weight vector with one weight per household, and a control vector.

Usage

flatten_ml_fit_problem(
ml_problem,
model_matrix_type = c("combined", "separate"),
verbose = FALSE

)

as_flat_ml_fit_problem(x, model_matrix_type = c("combined", "separate"), ...)

Arguments

ml_problem A fitting problem created by ml_problem() or returned by flatten_ml_fit_problem().
model_matrix_type

Which model matrix building strategy to use? See details.

verbose If TRUE, print diagnostic output.

x An object

... Further parameters passed to the algorithm

Details

The standard way to build a model matrix (model_matrix = "combined") is to include intercepts
and avoid repeating redundant attributes. A simpler model matrix specification, available via
model_matrix = "separate", is suggested by Ye et al. (2009) and required for the ml_fit_ipu()
implementation: Here, simply one column per target value is used, which results in a larger model
matrix if more than one control is given.

Value

An object of classes flat_ml_fit_problem, essentially a named list.

See Also

ml_fit()
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Examples

path <- toy_example("Tiny")
flat_problem <- flatten_ml_fit_problem(ml_problem = readRDS(path))
flat_problem

fit <- ml_fit_dss(flat_problem)
fit$flat_weights
fit$weights

gginv Generalized Inverse of a Matrix using a custom tolerance or SVD im-
plementation

Description

The gginv function creates a function that calculates the Moore-Penrose generalized inverse of a
matrix X using a fixed tolerance value and a custom implementation for computing the singular
value decomposition.

Usage

gginv(tol = sqrt(.Machine$double.eps), svd = base::svd)

Arguments

tol A relative tolerance to detect zero singular values.

svd A function that computes the singular value decomposition of a matrix

Details

The svd argument is expected to adhere to the interface of base::svd(). It will be called as svd(x)
(with the nu and nv arguments unset) and is expected to return a named list with components d, u
and v.

Value

A function that accepts one argument X that computes a MP generalized inverse matrix for it.

Author(s)

Adapted implementation from the MASS package.

See Also

MASS::ginv(), base::svd()
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ml_fit Estimate weights for a fitting problem

Description

These functions reweight a reference sample to match constraints given by aggregate controls.

ml_fit() accepts an algorithm as argument and calls the corresponding function. This is useful if
the result of multiple algorithms are compared to each other.

Usage

ml_fit(
ml_problem,
algorithm = c("entropy_o", "dss", "ipu", "hipf"),
verbose = FALSE,
...,
tol = 1e-06

)

is_ml_fit(x)

## S3 method for class 'ml_fit'
format(x, ...)

## S3 method for class 'ml_fit'
print(x, ...)

ml_fit_dss(
ml_problem,
method = c("raking", "linear", "logit"),
ginv = gginv(),
tol = 1e-06,
verbose = FALSE

)

ml_fit_entropy_o(
ml_problem,
verbose = FALSE,
tol = 1e-06,
dfsane_args = list()

)

ml_fit_hipf(
ml_problem,
diff_tol = 16 * .Machine$double.eps,
tol = 1e-06,
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maxiter = 2000,
verbose = FALSE

)

ml_fit_ipu(
ml_problem,
diff_tol = 16 * .Machine$double.eps,
tol = 1e-06,
maxiter = 2000,
verbose = FALSE

)

Arguments

ml_problem A fitting problem created by ml_problem() or returned by flatten_ml_fit_problem().
algorithm Algorithm to use
verbose If TRUE, print diagnostic output.
... Further parameters passed to the algorithm
tol Tolerance, the algorithm has succeeded when all target values are reached within

this tolerance.
x An object
method Calibration method, one of "raking" (default), "linear", or "logit"
ginv Function that computes the Moore-Penrose pseudoinverse.
dfsane_args Additional arguments (as a named list) passed to the BB::dfsane() function

used internally for the optimization.
diff_tol Tolerance, the algorithm stops when relative difference of control values be-

tween iterations drops below this value
maxiter Maximum number of iterations.

Value

All functions return an object of class ml_fit, which is a named list under the hood. The class
matches the function called, e.g., the return value of the ml_fit_ipu function also is of class
ml_fit_ipu.

All returned objects contain at least the following components, which can be accessed with $ or [[:

• weights: Resulting weights, compatible to the original reference sample
• tol: The input tolerance
• iterations: The actual number of iterations required to obtain the result
• flat: The flattened fitting problem, see flatten_ml_fit_problem()

• flat_weights: Weights in terms of the flattened fitting problem
• residuals: Absolute residuals

• rel_residuals: Relative residuals
• success: Are the residuals within the tolerance?

is_ml_fit() returns a logical.
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References

Deville, J.-C. and Särndal, C.-E. (1992) Calibration estimators in survey sampling. Journal of the
American Statistical Association, 87 (418), 376–382.

Deville, J.-C., Särndal, C.-E. and Sautory, O. (1993) Generalized raking procedures in survey sam-
pling. Journal of the American Statistical Association, 88 (423), 1013–1020.

Bar-Gera, H., Konduri, K. C., Sana, B., Ye, X., & Pendyala, R. M. (2009, January). Estimating sur-
vey weights with multiple constraints using entropy optimization methods. In 88th Annual Meeting
of the Transportation Research Board, Washington, DC.

Müller, K. and Axhausen, K. W. (2011), Hierarchical IPF: Generating a synthetic population for
Switzerland, paper presented at the 51st Congress of the European Regional Science Association,
University of Barcelona, Barcelona.

Ye, X., K. Konduri, R. M. Pendyala, B. Sana and P. A. Waddell (2009) A methodology to match
distributions of both household and person attributes in the generation of synthetic populations,
paper presented at the 88th Annual Meeting of the Transportation Research Board, Washington,
D.C., January 2009.

See Also

dss(), gginv()

BB::dfsane()

Examples

path <- toy_example("Tiny")
fit <- ml_fit(ml_problem = readRDS(path), algorithm = "entropy_o")
fit
fit$weights
fit$tol
fit$iterations
fit$flat
fit$flat_weights
fit$residuals
fit$rel_residuals
fit$success
ml_fit_dss(ml_problem = readRDS(path))
ml_fit_dss(ml_problem = readRDS(path), ginv = solve)
ml_fit_entropy_o(ml_problem = readRDS(path))
ml_fit_hipf(ml_problem = readRDS(path))
ml_fit_ipu(ml_problem = readRDS(path))

ml_problem Create an instance of a fitting problem
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Description

The ml_problem() function is the first step for fitting a reference sample to known control totals
with mlfit. All algorithms (see ml_fit()) expect an object created by this function (or optionally
processed with flatten_ml_fit_problem()).

The special_field_names() function is useful for the field_names argument to ml_problem.

Usage

ml_problem(
ref_sample,
controls = list(individual = individual_controls, group = group_controls),
field_names,
individual_controls,
group_controls,
prior_weights = NULL,
geo_hierarchy = NULL

)

is_ml_problem(x)

## S3 method for class 'ml_problem'
format(x, ...)

## S3 method for class 'ml_problem'
print(x, ...)

special_field_names(
groupId,
individualId,
individualsPerGroup = NULL,
count = NULL,
zone = NULL,
region = NULL

)

Arguments

ref_sample The reference sample

controls Control totals, by default initialized from the individual_controls and group_controls
arguments

field_names Names of special fields, construct using special_field_names()

individual_controls, group_controls

Control totals at individual and group level, given as a list of data frames where
each data frame defines a control

prior_weights Prior (or design) weights at group level; by default a vector of ones will be used,
which corresponds to random sampling of groups
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geo_hierarchy A table shows mapping between a larger zoning level to many zones of a smaller
zoning level. The column name of the larger level should be specified in field_names
as ’region’ and the smaller one as ’zone’.

x An object

... Ignored.
groupId, individualId

Name of the column that defines the ID of the group or the individual
individualsPerGroup

Obsolete.

count Name of control total column in control tables (use first numeric column in each
control by default).

region, zone Name of the column that defines the region of the reference sample or the zone
of the controls. Note that region is a larger area that contains more than one
zone.

Value

An object of class ml_problem or a list of them if geo_hierarchy was given, essentially a named
list with the following components:

refSample The reference sample, a data.frame.

controls A named list with two components, individual and group. Each contains a list of
controls as data.frames.

fieldNames A named list with the names of special fields.

is_ml_problem() returns a logical.

Examples

# Create example from Ye et al., 2009

# Provide reference sample
ye <- tibble::tribble(

~HHNR, ~PNR, ~APER, ~HH_VAR, ~P_VAR,
1, 1, 3, 1, 1,
1, 2, 3, 1, 2,
1, 3, 3, 1, 3,
2, 4, 2, 1, 1,
2, 5, 2, 1, 3,
3, 6, 3, 1, 1,
3, 7, 3, 1, 1,
3, 8, 3, 1, 2,
4, 9, 3, 2, 1,
4, 10, 3, 2, 3,
4, 11, 3, 2, 3,
5, 12, 3, 2, 2,
5, 13, 3, 2, 2,
5, 14, 3, 2, 3,
6, 15, 2, 2, 1,
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6, 16, 2, 2, 2,
7, 17, 5, 2, 1,
7, 18, 5, 2, 1,
7, 19, 5, 2, 2,
7, 20, 5, 2, 3,
7, 21, 5, 2, 3,
8, 22, 2, 2, 1,
8, 23, 2, 2, 2

)
ye

# Specify control at household level
ye_hh <- tibble::tribble(

~HH_VAR, ~N,
1, 35,
2, 65

)
ye_hh

# Specify control at person level
ye_ind <- tibble::tribble(

~P_VAR, ~N,
1, 91,
2, 65,
3, 104

)
ye_ind

ye_problem <- ml_problem(
ref_sample = ye,
field_names = special_field_names(

groupId = "HHNR", individualId = "PNR", count = "N"
),
group_controls = list(ye_hh),
individual_controls = list(ye_ind)

)
ye_problem

fit <- ml_fit_dss(ye_problem)
fit$weights

ml_replicate Replicate records in a reference sample based on its fitted weights

Description

This function replicates each entry in a reference sample based on its fitted weights. This is useful
if the result of multiple replication algorithms are compared to each other, or to generate a full
synthetic population based on the result of a ml_fit object. Note that, all individual and group ids
of the synthetic population are not the same as those in the original reference sample, and the total
number of groups replicated is always very close to or equal the sum of the fitted group weights.
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Usage

ml_replicate(
ml_fit,
algorithm = c("pp", "trs", "round"),
verbose = FALSE,
.keep_original_ids = FALSE

)

Arguments

ml_fit A ml_fit object created by the ml_fit() family.

algorithm Replication algorithm to use. "trs" is the ’Truncate, replicate, sample’ integeri-
sation algorithm proposed by Lovelace et al. (2013), "pp" is weighted sampling
with replacement, and "round" is just simple rounding.

verbose If TRUE, print diagnostic output.
.keep_original_ids

If TRUE, the original individual and group ids of the reference sample will be
kept with suffix ’_old’.

Value

The function returns a replicated sample in data.frame in the format used in the reference sample of
the input ml_fit object.

References

Lovelace, R., & Ballas, D. (2013). ‘Truncate, replicate, sample’:
A method for creating integer weights for spatial microsimulation.
Computers, Environment and Urban Systems, 41, 1-11.

Examples

path <- toy_example("Tiny")
fit <- ml_fit(ml_problem = readRDS(path), algorithm = "entropy_o")
syn_pop <- ml_replicate(fit, algorithm = "trs")
syn_pop

toy_example Access to toy examples bundled in this package

Description

Returns the paths to all available toy examples, or to a specific toy example. Load via readRDS().

Usage

toy_example(name = NULL)
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Arguments

name Name of the example, default: return all

Value

A named vector of file system paths.

Examples

toy_example()

# Load example with results from Ye et al. (2009)
readRDS(toy_example("Tiny"))
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