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Abstract

R package plot3D (Soetaert 2021b) contains functions for plotting multi-dimensional
data. Many functions are derived from the persp function, other functions start from the
image or contour function.

Two related packages are:

• plot3Drgl (Soetaert 2021c), that plots multidimensional data using openGL graphics
(and using package rgl (Adler, Murdoch et al. 2020)).

• OceanView (Soetaert 2021a) that contains functions for visualing oceanographic
data.

A graphical gallery using one of plot3D, plot3Drgl or OceanView is in http://www.

rforscience.com/rpackages/visualisation/oceanview/ and http://www.rforscience.

com/rpackages/visualisation/plot3d/

Keywords: plot, persp, image, 2-D, 3-D, scatter plots, surface plots, slice plots, oceanographic
data, R .

1. Introduction

R package plot3D provides functions for plotting 2-D and 3-D data, and that are either
extensions of R’s persp function or of R’s image and contour function.

The main extensions to these functions are:

• In addition to the x, y (and z) values, an additional data dimension can be represented
by a color variable (argument colvar).

• A color key (argument colkey) can be written next to the figure. It is possible to
log-transform the color key, rescale it, adjust its position, ...

• The resolution of a figure can be increased (argument resfac).

• Either the facets can be colored, just the border, or both.

Package plot3D contains:

• Functions that are based on the persp function, for visualising 3-D data:

– persp3D: an extended version of the persp function.

http://www.rforscience.com/rpackages/visualisation/oceanview/
http://www.rforscience.com/rpackages/visualisation/oceanview/
http://www.rforscience.com/rpackages/visualisation/plot3d/
http://www.rforscience.com/rpackages/visualisation/plot3d/
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– ribbon3D: perspective plots as ribbons.

– hist3D: 3-D histograms.

– scatter3D, points3D, lines3D, text3D: scatter plots in 3-D, points, lines, labels.

– surf3D: 3-D shapes (or surfaces).

– slice3D, slicecont3D, isosurf3D, voxel3D: slices, isosurfaces and voxels from a
full 3-D data set.

– arrows3D: arrows in 3D.

– contour3D, image3D: contours and images in 3D.

– segments3D, polygon3D, rect3D, border3D, box3D: line segments, polygons, rect-
angles, boxes in 3D.

• Functions defined on the image or contour function:

– image2D, contour2D, for an extended version of these functions to visualise 2-D
(or 3-D) data.

– ImageOcean, for an image of the ocean’s bathymetry.

• Other functions

• scatter2D: colored points, lines, ... in 2-D.

• text2D, arrows2D, segments2D, rect2D, polygon2D for other 2D functions, comparable
to R’s base graphics but that have a color key.

• Colors and colorkeys:

– colkey: color legends.

– jet.col, jet2.col, gg.col, ramp.col: suitable color palettes.

• Utility functions:

– mesh: generating rectangular (2D) or (3D) meshes.

– plotdev: plotting on the current device.

• Data sets:

– Oxsat: a (rather large) 3-D data set with the ocean’s oxygen saturation values.

– Hypsometry: a 2-D data set with the worlds elevation and the ocean’s depth.

This vignette contains some examples; more can be found in the package’s help files. To run
all examples:

example(persp3D)

example(surf3D)

example(slice3D)

example(scatter3D)

example(segments3D)

example(image2D)
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example(image3D)

example(contour3D)

example(colkey)

example(jet.col)

example(perspbox)

example(mesh)

example(trans3D)

example(plot.plist)

example(ImageOcean)

example(Oxsat)

example(legendplot)

2. Functions image2D and persp3D

image2D and persp3D are extensions of R’s image and persp functions. The arguments of
persp3D are (see the help file for what they mean):

args(persp3D)

function (x = seq(0, 1, length.out = nrow(z)), y = seq(0, 1,

length.out = ncol(z)), z, ..., colvar = z, phi = 40, theta = 40,

col = NULL, NAcol = "white", breaks = NULL, border = NA,

facets = TRUE, colkey = NULL, resfac = 1, image = FALSE,

contour = FALSE, panel.first = NULL, clim = NULL, clab = NULL,

bty = "b", lighting = FALSE, shade = NA, ltheta = -135, lphi = 0,

inttype = 1, curtain = FALSE, add = FALSE, plot = TRUE)

NULL

Many examples of the use of image2D and persp3D are in vignette volcano.

The Hypsometry data set is depicted first as an image, with 0 m contour lines added. Slight
shading gives the plot a perspective view. The zoomed region (used in next figure) is then
added.

image2D(Hypsometry, xlab = "longitude", ylab = "latitude",

contour = list(levels = 0, col = "black", lwd = 2),

shade = 0.1, main = "Hypsometry data set", clab = "m")

rect(-50, 10, -20, 40, lwd = 3)

ii <- which(Hypsometry$x > -50 & Hypsometry$x < -20)

jj <- which(Hypsometry$y > 10 & Hypsometry$y < 40)

zlim <- c(-10000, 0)

The perspective figure is made with black side-panels (bty). Grey contour lines are added
on the bottom panel ("zmin") and on the persp plot itself ("z"). The resolution is increased
(resfac) to make smoother images. A color key (colkey) is added on the first margin (side)
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Figure 1: Hypsometry data set

par(mfrow = c(1, 1))

# Actual bathymetry, 4 times increased resolution, with contours

persp3D(z = Hypsometry$z[ii,jj], xlab = "longitude", bty = "bl2",

ylab = "latitude", zlab = "depth", clab = "depth, m",

expand = 0.5, d = 2, phi = 20, theta = 30, resfac = 2,

contour = list(col = "grey", side = c("zmin", "z")),

zlim = zlim, colkey = list(side = 1, length = 0.5))
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Figure 2: Bathymetry of a part of the ocean

3. slices and isosurfaces

Function slice3D draws slices from volumetric (3D) data, function isosurf3D creates and
plots isosurfaces. It makes use of a function from package misc3d (Feng and Tierney 2008).

args(slice3D)

function (x, y, z, colvar, ..., phi = 40, theta = 40, xs = min(x),

ys = max(y), zs = min(z), col = NULL, NAcol = "white", breaks = NULL,

border = NA, facets = TRUE, colkey = NULL, panel.first = NULL,

clim = NULL, clab = NULL, bty = "b", lighting = FALSE, shade = NA,

ltheta = -135, lphi = 0, add = FALSE, plot = TRUE)

NULL

Function mesh is used to generate a full rectangular 3-D mesh. This is used to generate the
volumetric data (p) that defines the coloration. The data are visualised by one slice in x (xs)
and 3 slices in y direction (ys). Function isosurf3D plots the data for p-values that are equal
to 0.

par(mfrow = c(1, 2))

x <- y <- z <- seq(-4, 4, by = 0.2)

M <- mesh(x, y, z)

R <- with (M, sqrt(x^2 + y^2 +z^2))
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Figure 3: Slices and isosurfaces from volumetric data

p <- sin(2*R)/(R+1e-3)

slice3D(x, y, z, colvar = p,

xs = 0, ys = c(-4, 0, 4), zs = NULL)

isosurf3D(x, y, z, colvar = p, level = 0, col = "red")
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4. surf3D

Function surf3D creates 3-D surface plots.

args(surf3D)

function (x, y, z, ..., colvar = z, phi = 40, theta = 40, col = NULL,

NAcol = "white", breaks = NULL, border = NA, facets = TRUE,

colkey = NULL, panel.first = NULL, clim = NULL, clab = NULL,

bty = "n", lighting = FALSE, shade = NA, ltheta = -135, lphi = 0,

inttype = 1, add = FALSE, plot = TRUE)

NULL

Here are 4 applications, showing the different options of coloration.

par(mfrow = c(2, 2), mar = c(0, 0, 0, 0))

# Shape 1

M <- mesh(seq(0, 6*pi, length.out = 80),

seq(pi/3, pi, length.out = 80))

u <- M$x ; v <- M$y

x <- u/2 * sin(v) * cos(u)

y <- u/2 * sin(v) * sin(u)

z <- u/2 * cos(v)

surf3D(x, y, z, colvar = z, colkey = FALSE, box = FALSE)

# Shape 2: add border

M <- mesh(seq(0, 2*pi, length.out = 80),

seq(0, 2*pi, length.out = 80))

u <- M$x ; v <- M$y

x <- sin(u)

y <- sin(v)

z <- sin(u + v)

surf3D(x, y, z, colvar = z, border = "black", colkey = FALSE)

# shape 3: uses same mesh, white facets

x <- (3 + cos(v/2)*sin(u) - sin(v/2)*sin(2*u))*cos(v)

y <- (3 + cos(v/2)*sin(u) - sin(v/2)*sin(2*u))*sin(v)

z <- sin(v/2)*sin(u) + cos(v/2)*sin(2*u)

surf3D(x, y, z, colvar = z, colkey = FALSE, facets = FALSE)

# shape 4: more complex colvar

M <- mesh(seq(-13.2, 13.2, length.out = 50),

seq(-37.4, 37.4, length.out = 50))

u <- M$x ; v <- M$y

b <- 0.4; r <- 1 - b^2; w <- sqrt(r)

D <- b*((w*cosh(b*u))^2 + (b*sin(w*v))^2)

x <- -u + (2*r*cosh(b*u)*sinh(b*u)) / D

y <- (2*w*cosh(b*u)*(-(w*cos(v)*cos(w*v)) - sin(v)*sin(w*v))) / D

z <- (2*w*cosh(b*u)*(-(w*sin(v)*cos(w*v)) + cos(v)*sin(w*v))) / D

surf3D(x, y, z, colvar = sqrt(x + 8.3), colkey = FALSE,

border = "black", box = FALSE)
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Figure 4: Surface plots
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4.1. scatter2D and scatter3D

Functions scatter2D and scatter3D draw scatterplots.

args(scatter2D)

function (x, y, ..., colvar = NULL, col = NULL, NAcol = "white",

breaks = NULL, colkey = NULL, clim = NULL, clab = NULL, CI = NULL,

add = FALSE, plot = TRUE)

NULL

args(scatter3D)

function (x, y, z, ..., colvar = z, phi = 40, theta = 40, col = NULL,

NAcol = "white", breaks = NULL, colkey = NULL, panel.first = NULL,

clim = NULL, clab = NULL, bty = "b", CI = NULL, surf = NULL,

add = FALSE, plot = TRUE)

NULL

The dataset quakes is plotted using function scatter3D. Before the 3-D quakes data are
drawn, small dots are added on the bottom and on the depth plane (panelfirst).

par(mfrow = c(1, 1))

panelfirst <- function(pmat) {

zmin <- min(-quakes$depth)

XY <- trans3D(quakes$long, quakes$lat,

z = rep(zmin, nrow(quakes)), pmat = pmat)

scatter2D(XY$x, XY$y, colvar = quakes$mag, pch = ".",

cex = 2, add = TRUE, colkey = FALSE)

xmin <- min(quakes$long)

XY <- trans3D(x = rep(xmin, nrow(quakes)), y = quakes$lat,

z = -quakes$depth, pmat = pmat)

scatter2D(XY$x, XY$y, colvar = quakes$mag, pch = ".",

cex = 2, add = TRUE, colkey = FALSE)

}

with(quakes, scatter3D(x = long, y = lat, z = -depth, colvar = mag,

pch = 16, cex = 1.5, xlab = "longitude", ylab = "latitude",

zlab = "depth, km", clab = c("Richter","Magnitude"),

main = "Earthquakes off Fiji", ticktype = "detailed",

panel.first = panelfirst, theta = 10, d = 2,

colkey = list(length = 0.5, width = 0.5, cex.clab = 0.75))

)
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Figure 5: Scatter plot
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Figure 6: arrows

4.2. arrows3D, arrows2D

Functions arrows2D and arrows3D extend R function arrows with a color variable.

par (mfrow = c(1, 2))

arrows2D(x0 = runif(10), y0 = runif(10),

x1 = runif(10), y1 = runif(10), colvar = 1:10,

code = 3, main = "arrows2D")

arrows3D(x0 = runif(10), y0 = runif(10), z0 = runif(10),

x1 = runif(10), y1 = runif(10), z1 = runif(10),

colvar = 1:10, code = 1:3, main = "arrows3D", colkey = FALSE)
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5. Functions based on image

The image2D function is an extended version of image. It has two S3 methods:

image2D(z =, ...)

image2D.matrix(z, x = NULL, y = NULL, ...,

col = jet.col(100), NAcol = "white", facets = TRUE,

contour = FALSE, colkey = NULL, resfac = 1,

clab = NULL, theta = 0, border = NA)

image2D.array(z, margin = c(1, 2), subset, ask = NULL, ...)

The data set Oxsat has oxygen saturation values in the ocean, at 2dg horizontal resolution,
and for 33 depth intervals.

names(Oxsat)

[1] "lon" "lat" "depth" "val" "name" "units"

dim(Oxsat$val)

[1] 180 90 33

Function image2D.array plots several depth intervals at once, looping over the first and
second margin. The color key is added in a separate figure.

sub <- c(1, 5, 9)

image2D(z = Oxsat$val, subset = sub,

x = Oxsat$lon, y = Oxsat$lat,

margin = c(1, 2), NAcol = "black", colkey = FALSE,

xlab = "longitude", ylab = "latitude",

main = paste("depth ", Oxsat$depth[sub], " m"),

clim = c(0, 115), mfrow = c(2, 2))

colkey(clim = c(0, 115), clab = c("O2 saturation", "percent"))



Karline Soetaert 13

Figure 7: image2D function
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6. Composite figures

It is also possible to make a composite figure combining several functions.

persp3D(z = volcano, zlim = c(-60, 200), phi = 20,

colkey = list(length = 0.2, width = 0.4, shift = 0.15,

cex.axis = 0.8, cex.clab = 0.85), lighting = TRUE, lphi = 90,

clab = c("","height","m"), bty = "f", plot = FALSE)

# create gradient in x-direction

Vx <- volcano[-1, ] - volcano[-nrow(volcano), ]

# add as image with own color key, at bottom

image3D(z = -60, colvar = Vx/10, add = TRUE,

colkey = list(length = 0.2, width = 0.4, shift = -0.15,

cex.axis = 0.8, cex.clab = 0.85),

clab = c("","gradient","m/m"), plot = FALSE)

# add contour

contour3D(z = -60+0.01, colvar = Vx/10, add = TRUE,

col = "black", plot = TRUE)
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Figure 8: Several color keys in composite figure
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Figure 9: adding a legend to boxplot

7. plotting with legends and colorkeys

As from version 1.4, a new feature has been added, allowing plotting functions to have col-
orkeys, or legends that are positioned outside of the plotting region. See ?legendplot.

For instance, to put a legend outside of a boxplot:

pm <- par(mar = c(4,3,4,2))

legend.plt(formula = len ~ dose:supp, data = ToothGrowth,

boxwex = 0.5, col = c("orange", "yellow"),

main = "Guinea Pigs' Tooth Growth",

xlab = "Vitamin C dose mg", ylab = "tooth length",

sep = ":", lex.order = TRUE, ylim = c(0, 35), yaxs = "i",

method = "boxplot", legend.side = 2,

legend = list(legend = c("Ascorbic acid", "Orange juice"),

fill = c("yellow", "orange")))
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Figure 10: adding a colorkey

To add a colorkey

n <- 100

colorkey.plt(method = "pie", x = rep(1, n), labels = "",

col = rainbow(n), border = NA,

main = "colorkeyplot with 'pie'",

colorkey = list(col = rainbow(n), clim = c(1,n)))
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8. Issues

8.1. Specifying axes limits

There are two ways in which the axes limits can be set, either allowing the 3D data to overflow
the axes, or to be clipped. Consider the following code, which is based on a demo from the
rgl package (Adler et al. 2020). In this code, the iris data set is fitted with two models, and
the data plotted using scatter3D and the fitted surfaces using persp3D.

The z-axis limits are set to c(1, 9); plotting is postponed until all objects have been added
(this avoids clogging - see next subsection). Then the result is plotted using plotdev (this
plots the graph on any device that has been opened). The first time, without specifying the
axes limits, the second time setting the axes limits.

nout <- 30

xout <- with(iris, seq(min(Sepal.Length), max(Sepal.Length), length = nout))

yout <- with(iris, seq(min(Sepal.Width) , max(Sepal.Width), length = nout))

xy <- expand.grid(Sepal.Length = xout, Sepal.Width = yout)

# Fit two models, linear and quadratic

mod <- with(iris, lm(Petal.Length ~Sepal.Length + Sepal.Width))

mod2 <- with(iris, lm(Petal.Length ~Sepal.Length + Sepal.Width +

I(Sepal.Length^2) + I(Sepal.Width^2) +

I(Sepal.Length*Sepal.Width)))

# prodict at new values

zpred.1 <- matrix(

predict(mod, newdata = xy), nrow = nout, ncol = nout)

zpred.2 <- matrix(

predict(mod2, newdata = xy), nrow = nout, ncol = nout)

# make graph, postpone plotting till the end

par(mfrow = c(1, 2))

with(iris,

scatter3D(Sepal.Length, Sepal.Width, Petal.Length,

colvar = as.numeric(Species), colkey = FALSE,

col = c("blue", "red", "gold"), bty = "b",

xlab = 'SL', ylab = 'PL', zlab = 'SW', zlim = c(1, 9),

pch = 16, cex = 2, theta = 0, plot = FALSE))

persp3D(x = xout, y = yout, z = zpred.1, facets = NA,

add = TRUE, col = "blue", plot = FALSE)

persp3D(x = xout, y = yout, z = zpred.2,

add = TRUE, col = "green", plot = FALSE)

# plot using traditional device

plotdev(theta = -50, alpha = 0.5)

plotdev(theta = -50, alpha = 0.5, zlim = c(1, 9))

# if you want to see this in rgl:

# library(plot3Drgl)

#plotrgl(alpha = 0.5)
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Figure 11: calling plotdev() with axes limits causes the figure to be clipped

8.2. Preventing clogging of the figures

When a lot of objects are added then the ultimate figure may appear clogged. This is because
each time something is added, all the objects are redrawn on top of what was already there
- the only thing that is not redrawn are the axes and titles. To create ‘slim’ figures, use
plotdev() (e.g. see previous section).

9. Finally

This vignette was made with Sweave (Leisch 2002).
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