Package ‘purrr’

August 10, 2023
Title Functional Programming Tools
Version 1.0.2

Description A complete and consistent functional programming toolkit for
R.

License MIT + file LICENSE
URL https://purrr.tidyverse.org/, https://github.com/tidyverse/purrr

BugReports https://github.com/tidyverse/purrr/issues
Depends R (>=3.5.0)

Imports cli (>=3.6.1), lifecycle (>= 1.0.3), magrittr (>= 1.5.0),
rlang (>= 1.1.1), vctrs (>=0.6.3)

Suggests covr, dplyr (>= 0.7.8), httr, knitr, lubridate, rmarkdown,
testthat (>= 3.0.0), tibble, tidyselect

LinkingTo cli

VignetteBuilder knitr

Biarch true

Config/Needs/website tidyverse/tidytemplate, tidyr
Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation yes

Author Hadley Wickham [aut, cre] (<https://orcid.org/0000-0003-4757-117X>),
Lionel Henry [aut],
RStudio [cph, fnd]

Maintainer Hadley Wickham <hadley@rstudio.com>
Repository CRAN
Date/Publication 2023-08-10 08:20:07 UTC

https://purrr.tidyverse.org/
https://github.com/tidyverse/purrr
https://github.com/tidyverse/purrr/issues
https://orcid.org/0000-0003-4757-117X

2

R topics documented:

Index

accumulate
array-Coercion
AS_MAPPET + . v v o e e e e e e
attr_gettero
auto_browse
chuck,
COMPOSE .« « o v v v v e e e e et e e e e e
detect

map

keep
keep_at

list_ flatten
list_simplify
list_transpose
Imap L.

NEZAE e
partialo
pluck
pluck depth
pPmap ...
possiblyo
progress_bars,
quietlyo
rate-helpers
reduce

R topics documented:

accumulate

accumulate

Accumulate intermediate results of a vector reduction

Description

accumulate() sequentially applies a 2-argument function to elements of a vector. Each application
of the function uses the initial value or result of the previous application as the first argument. The
second argument is the next value of the vector. The results of each application are returned in a
list. The accumulation can optionally terminate before processing the whole vector in response to a
done () signal returned by the accumulation function.

By contrast to accumulate(), reduce() applies a 2-argument function in the same way, but dis-
cards all results except that of the final function application.

accumulate2() sequentially applies a function to elements of two lists, .x and .y.

Usage

accumulate(
X,
.f,

0

.init,

.dir = c("forward"”, "backward"),

.simplify = N
.ptype = NULL

accumulate2(.x,

Arguments

X

A,

.y, .f, ..., .init, .simplify = NA, .ptype = NULL)

A list or atomic vector.

For accumulate() .f is 2-argument function. The function will be passed the
accumulated result or initial value as the first argument. The next value in se-
quence is passed as the second argument.

For accumulate2(), a 3-argument function. The function will be passed the
accumulated result as the first argument. The next value in sequence from . x is
passed as the second argument. The next value in sequence from .y is passed as
the third argument.

The accumulation terminates early if . f returns a value wrapped in a done ().
Additional arguments passed on to the mapped function.

We now generally recommend against using ... to pass additional (constant)
arguments to . f. Instead use a shorthand anonymous function:

Instead of

X |> map(f, 1, 2, collapse = ",")

do:

x |> map(\(x) f(x, 1, 2, collapse = ","))

.init

.dir

.simplify

.ptype

Value

accumulate

This makes it easier to understand which arguments belong to which function
and will tend to yield better error messages.

If supplied, will be used as the first value to start the accumulation, rather than
using . x[[1]]. This is useful if you want to ensure that reduce returns a correct
value when . x is empty. If missing, and . x is empty, will throw an error.

The direction of accumulation as a string, one of "forward” (the default) or
"backward”. See the section about direction below.

If NA, the default, the accumulated list of results is simplified to an atomic vector
if possible. If TRUE, the result is simplified, erroring if not possible. If FALSE,
the result is not simplified, always returning a list.

If simplify is NA or TRUE, optionally supply a vector prototype to enforce the
output type.

For accumulate2() .y is the second argument of the pair. It needs to be 1
element shorter than the vector to be accumulated (. x). If . init is set, .y needs
to be one element shorted than the concatenation of the initial value and . x.

A vector the same length of . x with the same names as . x.

If . init is supplied, the length is extended by 1. If . x has names, the initial value is given the name
".init", otherwise the returned vector is kept unnamed.

If .dir is "forward” (the default), the first element is the initial value (.init if supplied, or the
first element of . x) and the last element is the final reduced value. In case of a right accumulation,
this order is reversed.

The accumulation terminates early if . f returns a value wrapped in a done(). If the done box is
empty, the last value is used instead and the result is one element shorter (but always includes the
initial value, even when terminating at the first iteration).

Life cycle

accumulate_right() is soft-deprecated in favour of the .dir argument as of rlang 0.3.0. Note that
the algorithm has slightly changed: the accumulated value is passed to the right rather than the left,
which is consistent with a right reduction.

Direction

When . f is an associative operation like + or c(), the direction of reduction does not matter. For
instance, reducing the vector 1:3 with the binary function + computes the sum ((1 + 2) + 3) from
the left, and the same sum (1 + (2 + 3)) from the right.

In other cases, the direction has important consequences on the reduced value. For instance, reduc-
ing a vector with 1ist() from the left produces a left-leaning nested list (or tree), while reducing
list() from the right produces a right-leaning list.

See Also

reduce() when you only need the final reduced value.

accumulate

Examples

With an associative operation, the final value is always the

same, no matter the direction. You'll find it in the first element for a
backward (left) accumulation, and in the last element for forward
(right) one:
1:5 |> accumulate(*+%)
1:5 |> accumulate(*+", .dir = "backward")

The final value is always equal to the equivalent reduction:
1:5 |> reduce(*+")

It is easier to understand the details of the reduction with
‘paste()*.
accumulate(letters[1:5], paste, sep = ".")

Note how the intermediary reduced values are passed to the left
with a left reduction, and to the right otherwise:
accumulate(letters[1:5], paste, sep = ".", .dir = "backward")

By ignoring the input vector (nxt), you can turn output of one step into
the input for the next. This code takes 10 steps of a random walk:
accumulate(1:10, \(acc, nxt) acc + rnorm(1), .init = @)

‘accumulate2()‘ is a version of ‘accumulate()‘ that works with
3-argument functions and one additional vector:

paste2 <- function(acc, nxt, sep = ".") paste(acc, nxt, sep = sep)
letters[1:4] |> accumulate(paste2)
letters[1:4] |> accumulate2(c("-", ".", "-"), paste2)

You can shortcircuit an accumulation and terminate it early by

returning a value wrapped in a done(). In the following example
we return early if the result-so-far, which is passed on the LHS,
meets a condition:

paste3 <- function(out, input, sep = ".") {
if (nchar(out) > 4) {
return(done(out))
}
paste(out, input, sep = sep)
3

letters |> accumulate(paste3)

Note how we get twice the same value in the accumulation. That's

because we have returned it twice. To prevent this, return an empty
done box to signal to accumulate() that it should terminate with the
value of the last iteration:

paste3 <- function(out, input, sep = ".") {
if (nchar(out) > 4) {
return(done())
}
paste(out, input, sep = sep)
3

letters |> accumulate(paste3)

Here the early return branch checks the incoming inputs passed on

the RHS:
paste4 <- function(out, input, sep = ".") {
if (input == "f") {
return(done())
3
paste(out, input, sep = sep)
3

letters |> accumulate(paste4)

Simulating stochastic processes with drift
Not run:

library(dplyr)

library(ggplot2)

map(1:5, \(i) rnorm(100)) [>
set_names(paste@("sim”, 1:5)) [|>
map(\ (1) accumulate(l, \(acc, nxt) .05 + acc + nxt)) |>
map(\(x) tibble(value = x, step = 1:100)) |>
list_rbind(id = "simulation”) [>
ggplot(aes(x = step, y = value)) +
geom_line(aes(color = simulation)) +
ggtitle(”Simulations of a random walk with drift")

End(Not run)

array-coercion

array-coercion Coerce array to list

Description

array_branch() and array_tree() enable arrays to be used with purrr’s functionals by turning
them into lists. The details of the coercion are controlled by the margin argument. array_tree()
creates an hierarchical list (a tree) that has as many levels as dimensions specified in margin, while
array_branch() creates a flat list (by analogy, a branch) along all mentioned dimensions.

Usage

array_branch(array, margin = NULL)

array_tree(array, margin = NULL)

Arguments
array An array to coerce into a list.
margin A numeric vector indicating the positions of the indices to be to be enlisted. If

NULL, a full margin is used. If numeric(@), the array as a whole is wrapped in a

list.

as_mapper 7

Details

When no margin is specified, all dimensions are used by default. When margin is a numeric vector
of length zero, the whole array is wrapped in a list.

Examples

We create an array with 3 dimensions
x <- array(1:12, c(2, 2, 3))

A full margin for such an array would be the vector 1:3. This is
the default if you don't specify a margin

Creating a branch along the full margin is equivalent to
as.list(array) and produces a list of size length(x):
array_branch(x) |> str()

A branch along the first dimension yields a list of length 2
with each element containing a 2x3 array:
array_branch(x, 1) |> str()

A branch along the first and third dimensions yields a list of
length 2x3 whose elements contain a vector of length 2:
array_branch(x, c(1, 3)) [> str()

Creating a tree from the full margin creates a list of lists of
lists:
array_tree(x) |> str()

The ordering and the depth of the tree are controlled by the
margin argument:
array_tree(x, c(3, 1)) [> str()

as_mapper Convert an object into a mapper function

Description

as_mapper is the powerhouse behind the varied function specifications that most purrr functions
allow. It is an S3 generic. The default method forwards its arguments to rlang: :as_function().

Usage
as_mapper(.f, ...)

S3 method for class 'character'

as_mapper(.f, ..., .null, .default = NULL)
S3 method for class 'numeric'
as_mapper(.f, ..., .null, .default = NULL)

as_mapper

S3 method for class 'list'

as_mapper(.f,

Arguments

f

.default, .null

Examples

., .null, .default = NULL)

A function, formula, or vector (not necessarily atomic).
If a function, it is used as is.
If a formula, e.g. ~ .x + 2, it is converted to a function. There are three ways to
refer to the arguments:
* For a single argument function, use .
* For a two argument function, use .x and .y
* For more arguments, use . .1, ..2, ..3etc
This syntax allows you to create very compact anonymous functions. Note that

formula functions conceptually take dots (that’s why you can use . . 1 etc). They
silently ignore additional arguments that are not used in the formula expression.

If character vector, numeric vector, or list, it is converted to an extractor func-
tion. Character vectors index by name and numeric vectors index by position;
use a list to index by position and name at different levels. If a component is not
present, the value of .default will be returned.

Additional arguments passed on to methods.

Optional additional argument for extractor functions (i.e. when .f is character,
integer, or list). Returned when value is absent (does not exist) or empty (has
length 0). .null is deprecated; please use .default instead.

as_mapper(\(x) x + 1)

as_mapper(1)

as_mapper(c("a”,

"h o re"))

Equivalent to function(x) x[["a"JI[["b"1IC["c"]]

as_mapper(list(1,

"a". 2))

Equivalent to function(x) x[[1]1[["a"]11CC[21]

as_mapper (list(1,

attr_getter(”a")))

Equivalent to function(x) attr(x[[1]1], "a")

as_mapper(c("a”,

", 7"y, .default = NA)

attr_getter 9

attr_getter Create an attribute getter function

Description

attr_getter() generates an attribute accessor function; i.e., it generates a function for extracting
an attribute with a given name. Unlike the base R attr() function with default options, it doesn’t
use partial matching.

Usage

attr_getter(attr)

Arguments

attr An attribute name as string.

See Also
pluck()

Examples

attr_getter() takes an attribute name and returns a function to
access the attribute:

get_rownames <- attr_getter("row.names")

get_rownames(mtcars)

These getter functions are handy in conjunction with pluck() for
extracting deeply into a data structure. Here we'll first

extract by position, then by attribute:

obj1 <- structure(”obj", obj_attr = "foo")

obj2 <- structure(”obj", obj_attr = "bar")

x <- list(obj1, obj2)

pluck(x, 1, attr_getter("obj_attr”)) # From first object
pluck(x, 2, attr_getter("obj_attr”)) # From second object

auto_browse Wrap a function so it will automatically browse () on error

Description

A function wrapped with auto_browse() will automatically enter an interactive debugger using
browser () when ever it encounters an error.

10 auto_browse

Usage

auto_browse(.f)

Arguments
.f A function to modify, specified in one of the following ways:
* A named function, e.g. mean.
* An anonymous function, e.g. \(x) x + 1or function(x) x + 1.
* A formula, e.g. ~ .x+1. Only recommended if you require backward
compatibility with older versions of R.
Value

A function that takes the same arguments as . f, but returns a different value, as described above.

Adverbs

This function is called an adverb because it modifies the effect of a function (a verb). If you’d like
to include a function created an adverb in a package, be sure to read fag-adverbs-export.

See Also

Other adverbs: compose(), insistently(), negate(), partial(), possibly(), quietly(),
safely(), slowly()

Examples

For interactive usage, auto_browse() is useful because it automatically
starts a browser() in the right place.
f <- function(x) {
y <- 20
if (x >5) {
stop("!")
} else {
X
}
3
if (interactive()) {
map(1:6, auto_browse(f))
3

chuck 11

chuck Get an element deep within a nested data structure, failing if it doesn’t
exist

Description

chuck () implements a generalised form of [[that allow you to index deeply and flexibly into data
structures. If the index you are trying to access does not exist (or is NULL), it will throw (i.e. chuck)
an error.

Usage

chuck(.x, ...)

Arguments

X A vector or environment

A list of accessors for indexing into the object. Can be an positive integer, a
negative integer (to index from the right), a string (to index into names), or an
accessor function (except for the assignment variants which only support names
and positions). If the object being indexed is an S4 object, accessing it by name
will return the corresponding slot.

Dynamic dots are supported. In particular, if your accessors are stored in a list,
you can splice that in with !'!!.

See Also

pluck() for a quiet equivalent.

Examples
x <= list(a =1, b = 2)

When indexing an element that doesn't exist ‘[[‘' sometimes returns NULL:
X[[lly"]]
and sometimes errors:

try(x[[311)

chuck() consistently errors:
try(chuck(x, "y"))
try(chuck(x, 3))

12 compose

compose Compose multiple functions together to create a new function

Description

Create a new function that is the composition of multiple functions, i.e. compose(f, g) is equiva-
lent to function(...) f(g(...)).

Usage
compose(..., .dir = c("backward”, "forward"))
Arguments
Functions to apply in order (from right to left by default). Formulas are con-
verted to functions in the usual way.
Dynamic dots are supported. In particular, if your functions are stored in a list,
you can splice that in with !'!!.

.dir If "backward” (the default), the functions are called in the reverse order, from
right to left, as is conventional in mathematics. If "forward"”, they are called
from left to right.

Value
A function
Adverbs

This function is called an adverb because it modifies the effect of a function (a verb). If you’d like
to include a function created an adverb in a package, be sure to read fag-adverbs-export.

See Also

Other adverbs: auto_browse(), insistently(), negate(), partial(), possibly(), quietly(),
safely(), slowly()

Examples

not_null <- compose(*!", is.null)
not_null(4)
not_null(NULL)

add1 <- function(x) x + 1
compose(add1, add1)(8)

fn <- compose(\(x) paste(x, "foo"), \(x) paste(x, "bar"))
fn("input”)

detect 13

Lists of functions can be spliced with !'!!
fns <- list(
function(x) paste(x, "foo"),
\(x) paste(x, "bar")
)
fn <- compose(!!!fns)
fn("input")

detect Find the value or position of the first match

Description

Find the value or position of the first match

Usage
detect(
X,
.f,
.dir = c("forward”, "backward”),
.right = NULL,
.default = NULL
)
detect_index(.x, .f, ..., .dir = c("forward”, "backward”), .right = NULL)
Arguments
A list or vector.
.f A function, specified in one of the following ways:
* A named function, e.g. mean.
* An anonymous function, e.g. \(x) x + 1or function(x) x + 1.
e A formula, e.g. ~ .x+ 1. You must use .x to refer to the first argument.
Only recommended if you require backward compatibility with older ver-
sions of R.
* A string, integer, or list, e.g. "idx", 1, or list("idx", 1) which are short-
hand for \ (x) pluck(x, "idx"), \(x) pluck(x, 1),and \(x) pluck(x, "idx", 1)
respectively. Optionally supply .default to set a default value if the in-
dexed element is NULL or does not exist.
Additional arguments passed on to . p.

.dir If "forward”, the default, starts at the beginning of the vector and move towards
the end; if "backward”, starts at the end of the vector and moves towards the
beginning.

.right [Deprecated] Please use .dir instead.

.default The value returned when nothing is detected.

14 every

Value
detect the value of the first item that matches the predicate; detect_index the position of the
matching item. If not found, detect returns NULL and detect_index returns 0.

See Also

keep () for keeping all matching values.

Examples

is_even <- function(x) x %% 2 ==

3:10 |> detect(is_even)
3:10 |> detect_index(is_even)

3:10 |> detect(is_even, .dir = "backward")

3:10 |> detect_index(is_even, .dir = "backward")

Since “.f‘ is passed to as_mapper(), you can supply a
lambda-formula or a pluck object:

x <- list(
list(1, foo = FALSE),
list(2, foo = TRUE),
list(3, foo = TRUE)

)

detect(x, "foo")
detect_index(x, "foo")

If you need to find all values, use keep():
keep(x, "foo")

If you need to find all positions, use map_lgl():
which(map_lgl(x, "foo"))

every Do every, some, or none of the elements of a list satisfy a predicate?

Description

¢ some () returns TRUE when . p is TRUE for at least one element.
¢ every() returns TRUE when . p is TRUE for all elements.

¢ none() returns TRUE when .p is FALSE for all elements.

has_element 15

Usage
every(.x, .p, ...)
some(.X, .p, ...)
none(.x, .p, ...)
Arguments
X A list or vector.
.p A predicate function (i.e. a function that returns either TRUE or FALSE) specified
in one of the following ways:
* A named function, e.g. is.character.
* An anonymous function, e.g. \(x) all(x < @) or function(x) all(x <
0).
* A formula, e.g. ~all(.x<®@). You must use .x to refer to the first ar-
gument). Only recommended if you require backward compatibility with
older versions of R.
Additional arguments passed on to .p.
Value

A logical vector of length 1.

Examples

<- list(@:10, 5.5)
|> every(is.numeric)
|> every(is.integer)
|> some(is.integer)
|> none(is.character)

X X X X X

Missing values are propagated:
some(list(NA, FALSE), identity)

If you need to use these functions in a context where missing values are
unsafe (e.g. in “if ()" conditions), make sure to use safe predicates:
if (some(list(NA, FALSE), rlang::is_true)) "foo"” else "bar"”

has_element Does a list contain an object?

Description

Does a list contain an object?

16 head_while
Usage
has_element(.x, .y)
Arguments
. X A list or atomic vector.
.y Object to test for
Examples
x <- list(1:10, 5, 9.9)
X |> has_element(1:10)
X |> has_element(3)
head_while Find head/tail that all satisfies a predicate.
Description
Find head/tail that all satisfies a predicate.
Usage
head_while(.x, .p, ...)
tail_while(.x, .p, ...)
Arguments
X A list or atomic vector.
.p A single predicate function, a formula describing such a predicate function, or a

logical vector of the same length as . x. Alternatively, if the elements of . x are
themselves lists of objects, a string indicating the name of a logical element in
the inner lists. Only those elements where . p evaluates to TRUE will be modified.
Additional arguments passed on to the mapped function.

We now generally recommend against using ... to pass additional (constant)
arguments to . f. Instead use a shorthand anonymous function:

Instead of

X |> map(f, 1, 2, collapse = ",")
do:
x |> map(\(x) f(x, 1, 2, collapse = ","))

This makes it easier to understand which arguments belong to which function
and will tend to yield better error messages.

imap 17

Value

A vector the same type as . x.

Examples

pos <- function(x) x >= @
head_while(5:-5, pos)
tail_while(5:-5, negate(pos))

big <- function(x) x > 100
head_while(0:10, big)
tail_while(0:10, big)

imap Apply a function to each element of a vector, and its index
Description
imap(x, ...), an indexed map, is short hand for map2(x, names(x), ...) if x has names, or
map2(x, seq_along(x), ...) if it does not. This is useful if you need to compute on both the

value and the position of an element.

Usage
imap(.x, .f, ...)

imap_lgl(.x, .f, ...)
imap_chr(.x, .f, ...)
imap_int(.x, .f, ...)
imap_dbl(.x, .f, ...)

iwalk(.x, .f, ...)

Arguments

A list or atomic vector.
f A function, specified in one of the following ways:

* A named function, e.g. paste.

* An anonymous function, e.g. \(x, idx) x + idx or function(x, idx)
x + idx.

* A formula, e.g. ~ .x + .y. You must use .x to refer to the current element
and .y to refer to the current index. Only recommended if you require
backward compatibility with older versions of R.

18 insistently

Additional arguments passed on to the mapped function.

We now generally recommend against using ... to pass additional (constant)
arguments to . f. Instead use a shorthand anonymous function:

Instead of

X |> map(f, 1, 2, collapse = ",")
do:
x |> map(\(x) f(x, 1, 2, collapse = ","))

This makes it easier to understand which arguments belong to which function
and will tend to yield better error messages.

Value

A vector the same length as . x.

See Also

Other map variants: Imap(), map2(), map_depth(), map_if (), map(), modify(), pmap()

Examples

imap_chr(sample(10), paste)

imap_chr(sample(10), \(x, idx) paste@(idx, ": ", x))
iwalk(mtcars, \(x, idx) cat(idx, ": ", median(x), "\n", sep = ""))
insistently Transform a function to wait then retry after an error
Description

insistently() takes a function and modifies it to retry after given amount of time whenever it
erTors.

Usage

insistently(f, rate = rate_backoff(), quiet = TRUE)

Arguments
f A function to modify, specified in one of the following ways:
* A named function, e.g. mean.
* An anonymous function, e.g. \(x) x + 1or function(x) x + 1.
e A formula, e.g. ~.x+ 1. Only recommended if you require backward
compatibility with older versions of R.
rate A rate object. Defaults to jittered exponential backoff.

quiet Hide errors (TRUE, the default), or display them as they occur?

insistently 19

Value

A function that takes the same arguments as . f, but returns a different value, as described above.

Adverbs

This function is called an adverb because it modifies the effect of a function (a verb). If you’d like
to include a function created an adverb in a package, be sure to read fag-adverbs-export.

See Also

httr::RETRY() is a special case of insistently() for HTTP verbs.

Other adverbs: auto_browse(), compose(), negate(), partial(), possibly(), quietly(),
safely(), slowly()

Examples

For the purpose of this example, we first create a custom rate
object with a low waiting time between attempts:
rate <- rate_delay(0.1)

insistently() makes a function repeatedly try to work
risky_runif <- function(lo = 0@, hi = 1) {
y <= runif(1, lo, hi)
if(y <0.9) {
stop(y, " is too small")
}
y

Let's now create an exponential backoff rate with a low waiting
time between attempts:
rate <- rate_backoff(pause_base = 0.1, pause_min = 0.005, max_times = 4)

Modify your function to run insistently.
insistent_risky_runif <- insistently(risky_runif, rate, quiet = FALSE)

set.seed(6) # Succeeding seed
insistent_risky_runif()

set.seed(3) # Failing seed
try(insistent_risky_runif())

You can also use other types of rate settings, like a delay rate

that waits for a fixed amount of time. Be aware that a delay rate

has an infinite amount of attempts by default:

rate <- rate_delay(0.2, max_times = 3)

insistent_risky_runif <- insistently(risky_runif, rate = rate, quiet = FALSE)
try(insistent_risky_runif())

insistently() and possibly() are a useful combination
rate <- rate_backoff(pause_base = 0.1, pause_min = 0.005)

20 keep

possibly_insistent_risky_runif <- possibly(insistent_risky_runif, otherwise = -99)

set.seed(6)
possibly_insistent_risky_runif()

set.seed(3)
possibly_insistent_risky_runif()

keep Keep/discard elements based on their values

Description

keep() selects all elements where . p evaluates to TRUE; discard() selects all elements where .p
evaluates to FALSE. compact () discards elements where . p evaluates to an empty vector.

Usage
keep(.x, .p, ...)

discard(.x, .p, ...)
compact(.x, .p = identity)

Arguments

X A list or vector.

.p A predicate function (i.e. a function that returns either TRUE or FALSE) specified
in one of the following ways:

* A named function, e.g. is.character.

* An anonymous function, e.g. \(x) all(x < @) or function(x) all(x <
0).

e A formula, e.g. ~all(.x<®). You must use .x to refer to the first ar-

gument). Only recommended if you require backward compatibility with
older versions of R.

Additional arguments passed on to . p.
Details

In other languages, keep() and discard() are often called select()/ filter() and reject()/
drop(), but those names are already taken in R. keep() is similar to Filter(), but the argument
order is more convenient, and the evaluation of the predicate function . p is stricter.

See Also

keep_at()/discard_at() to keep/discard elements by name.

keep_at 21

Examples

rep(10, 10) |>
map(sample, 5) |>
keep(function(x) mean(x) > 6)

Or use a formula
rep(10, 10) |>
map (sample, 5) |>
keep(\(x) mean(x) > 6)

Using a string instead of a function will select all list elements
where that subelement is TRUE

x <= rerun(5, a = rbernoulli(1), b = sample(10))

X

X

X

|> keep("a")
|> discard("a")

compact() discards elements that are NULL or that have length zero
list(a = "a", b = NULL, ¢ = integer(@), d = NA, e = list()) |>
compact ()
keep_at Keep/discard elements based on their name/position
Description

Keep/discard elements based on their name/position

Usage

keep_at(x, at)

discard_at(x, at)

Arguments
X A list or atomic vector.
at A logical, integer, or character vector giving the elements to select. Alterna-
tively, a function that takes a vector of names, and returns a logical, integer, or
character vector of elements to select.
[Deprecated]: if the tidyselect package is installed, you can use vars() and
tidyselect helpers to select elements.
See Also

keep()/discard() to keep/discard elements by value.

22

Examples

x <-c(a=1, b =2, cat = 10, dog = 15, elephant = 5, e = 10)
X %>% keep_at(letters)
X %>% discard_at(letters)

Can also use a function
x %>% keep_at(~ nchar(.x) == 3)
%>% discard_at(~ nchar(.x) == 3)

x

list_assign

list_assign Modify a list

Description

* list_assign() modifies the elements of a list by name or position.
* list_modify() modifies the elements of a list recursively.
* list_merge() merges the elements of a list recursively.

list_modify() is inspired by utils: :modifyList().

Usage
list_assign(.x, ..., .is_node = NULL)
list_modify(.x, ..., .is_node = NULL)
list_merge(.x, ..., .is_node = NULL)
Arguments
X List to modify.
New values of a list. Use zap() to remove values.
These values should be either all named or all unnamed. When inputs are all
named, they are matched to . x by name. When they are all unnamed, they are
matched by position.
Dynamic dots are supported. In particular, if your replacement values are stored
in a list, you can splice that in with !'!'!.
.is_node A predicate function that determines whether an element is a node (by returning

TRUE) or a leaf (by returning FALSE). The default value, NULL, treats simple lists
as nodes and everything else (including richer objects like data frames and linear
models) as leaves, using vctrs::vec_is_list(). To recurse into all objects

built on lists use is.list().

list ¢ 23

Examples

x <= list(x = 1:10, y =4, z = list(a =1, b = 2))
str(x)

Update values
str(list_assign(x, a = 1))

Replace values
str(list_assign(x, z = 5))
str(list_assign(x, z = NULL))

str(list_assign(x, z = list(a = 1:5)))
replace recursively, leaving the other elements of z alone
str(list_modify(x, z = list(a = 1:5)))

Remove values
str(list_assign(x, z = zap()))

Combine values with list_merge()
str(list_merge(x, x = 11, z = list(a = 2:5, ¢ = 3)))

All these functions support dynamic dots features. Use !!! to splice
a list of arguments:
1 <- list(new = 1, y = zap(), z = 5)

str(list_assign(x, !!!1))
list_c Combine list elements into a single data structure
Description

* list_c() combines elements into a vector by concatenating them together with vctrs: :vec_c().
e list_rbind() combines elements into a data frame by row-binding them together with vctrs: :vec_rbind().

e list_cbind() combines elements into a data frame by column-binding them together with
vctrs::vec_cbind().

Usage

list_c(x, ..., ptype = NULL)

list_cbind(

X7

*
name_repair = c("unique"”, "universal”, "check_unique"),
size = NULL

list_rbind(x, ..., names_to = rlang::zap(), ptype = NULL)

24

Arguments

X

ptype

name_repair

size

names_to

Examples

x1 <- list(a
list_c(x1)

x2 <= list(

list_flatten

A list. For list_rbind() and list_cbind() the list must only contain only
data frames or NULL.

These dots are for future extensions and must be empty.

An optional prototype to ensure that the output type is always the same.

non

One of "unique”, "universal”, or "check_unique"”. See vctrs: :vec_as_names()
for the meaning of these options.

An optional integer size to ensure that every input has the same size (i.e. number
of rows).

By default, names(x) are lost. To keep them, supply a string to names_to and
the names will be saved into a column with that name. If names_to is supplied
and x is not named, the position of the elements will be used instead of the
names.

1, b=2, c=3)

a = data.frame(x = 1:2),

b
)

data.frame(y = "a")

list_rbind(x2)
list_rbind(x2, names_to = "id")
list_rbind(unname(x2), names_to = "id")

list_cbind(x2)

list_flatten Flatten a list

Description

Flattening a list removes a single layer of internal hierarchy, i.e. it inlines elements that are lists

leaving non-lists alone.

Usage
list_flatten(
X ’

L

name_spec = "{outer}_{inner}",

name_repair = c(”"minimal”, "unique"”, "check_unique", "universal")

)

list_simplity 25

Arguments
X A list.
These dots are for future extensions and must be empty.
name_spec If both inner and outer names are present, control how they are combined.
Should be a glue specification that uses variables inner and outer.
name_repair One of "minimal”, "unique”, "universal”, or "check_unique”. See vctrs: :vec_as_names()
for the meaning of these options.
Value

A list of the same type as x. The list might be shorter if x contains empty lists, the same length if it
contains lists of length 1 or no sub-lists, or longer if it contains lists of length > 1.

Examples

x <- list(1, list(2, 3), list(4, list(5)))
x |> list_flatten() |> str()
x |> list_flatten() |> list_flatten() |> str()

Flat lists are left as is
list(1, 2, 3, 4, 5) |> list_flatten() |> str()

Empty lists will disappear
list(1, list(), 2, list(3)) |> list_flatten() |> str()

Another way to see this is that it reduces the depth of the list
x <= list(

list(),

list(list())

x |> pluck_depth()
x |> list_flatten() |> pluck_depth()

Use name_spec to control how inner and outer names are combined
x <- list(x = list(a =1, b =2), y = list(c =1, d = 2))

x |> list_flatten() |> names()

x |> list_flatten(name_spec = "{outer}") |> names()

x |> list_flatten(name_spec = "{inner}") [|> names()

list_simplify Simplify a list to an atomic or S3 vector

Description

Simplification maintains a one-to-one correspondence between the input and output, implying that
each element of x must contain a one element vector or a one-row data frame. If you don’t
want to maintain this correspondence, then you probably want either 1ist_c()/list_rbind() or
list_flatten().

26 list_transpose

Usage
list_simplify(x, ..., strict = TRUE, ptype = NULL)
Arguments
X A list.
e These dots are for future extensions and must be empty.
strict What should happen if simplification fails? If TRUE, it will error. If FALSE and
ptype is not supplied, it will return x unchanged.
ptype An optional prototype to ensure that the output type is always the same.
Value

A vector the same length as x.

Examples

list_simplify(list(1, 2, 3))

Only works when vectors are length one and have compatible types:
try(list_simplify(list(1, 2, 1:3)))
try(list_simplify(list(1, 2, "x")))

Unless you strict = FALSE, in which case you get the input back:
list_simplify(list(1, 2, 1:3), strict = FALSE)
list_simplify(list(1, 2, "x"), strict = FALSE)

list_transpose Transpose a list

Description

list_transpose() turns a list-of-lists "inside-out". For instance it turns a pair of lists into a list
of pairs, or a list of pairs into a pair of lists. For example, if you had a list of length n where each
component had values a and b, 1ist_transpose() would make a list with elements a and b that
contained lists of length n.

It’s called transpose because x[["a”JI[["b"]]is equivalentto list_transpose(x)[["b"11[["a"]1],
i.e. transposing a list flips the order of indices in a similar way to transposing a matrix.

Usage

list_transpose(
X,
template = NULL,
simplify = NA,
ptype = NULL,
default = NULL

list_transpose 27

Arguments
X A list of vectors to transpose.
These dots are for future extensions and must be empty.
template A "template" that describes the output list. Can either be a character vector
(where elements are extracted by name), or an integer vector (where elements
are extracted by position). Defaults to the names of the first element of x, or if
they’re not present, the integer indices.
simplify Should the result be simplified?
* TRUE: simplify or die trying.
* NA: simplify if possible.
* FALSE: never try to simplify, always leaving as a list.
Alternatively, a named list specifying the simplification by output element.
ptype An optional vector prototype used to control the simplification. Alternatively, a
named list specifying the prototype by output element.
default A default value to use if a value is absent or NULL. Alternatively, a named list
specifying the default by output element.
Examples
list_transpose() is useful in conjunction with safely()
x <- list("a", 1, 2)
y <= x |> map(safely(log))
y |> str()
Put all the errors and results together
y |> list_transpose() [> str()
Supply a default result to further simplify
y |> list_transpose(default = list(result = NA)) |> str()
list_transpose() will try to simplify by default:
x <- list(list(a =1, b = 2), list(a = 3, b = 4), list(a = 5, b = 6))
x |> list_transpose()
this makes list_tranpose() not completely symmetric
x |> list_transpose() |> list_transpose()
use simplify = FALSE to always return lists:
x |> list_transpose(simplify = FALSE) [|> str()

X |>
list_transpose(simplify = FALSE) |>
list_transpose(simplify = FALSE) |> str()

Provide an explicit template if you know which elements you want to extract
11 <- list(
list(x =1, y = "one"),
list(z = "deux", x = 2)
)
11 |> list_transpose()
11 |> list_transpose(template
11 |> list_transpose(template

non n_n

C("X“Y y ’ Z))
»

28 Imap

And specify a default if you want to simplify
11 |> list_transpose(template = c("x", "y", "z"), default = NA)

1map Apply a function to list-elements of a list

Description

Imap(), Imap_at() and Imap_if () are similar to map(), map_at() and map_if (), except instead
of mapping over .x[[i]], they instead map over .x[i].

This has several advantages:

* It makes it possible to work with functions that exclusively take a list.
* It allows . f to access the attributes of the encapsulating list, like names ().

e It allows . f to return a larger or small list than it receives changing the size of the output.

Usage
Imap(.x, .f, ...)

Imap_if(.x, .p, .f, ..., .else = NULL)
Imap_at(.x, .at, .f, ...)
Arguments

A list or data frame.
f A function that takes a length-1 list and returns a list (of any length.)

Additional arguments passed on to the mapped function.

We now generally recommend against using ... to pass additional (constant)
arguments to . f. Instead use a shorthand anonymous function:

Instead of

x |> map(f, 1, 2, collapse = ",")
do:
x |> map(\(x) f(x, 1, 2, collapse = ","))

This makes it easier to understand which arguments belong to which function
and will tend to yield better error messages.

.p A single predicate function, a formula describing such a predicate function, or a
logical vector of the same length as . x. Alternatively, if the elements of . x are
themselves lists of objects, a string indicating the name of a logical element in
the inner lists. Only those elements where . p evaluates to TRUE will be modified.

.else A function applied to elements of . x for which . p returns FALSE.

map 29

.at A logical, integer, or character vector giving the elements to select. Alterna-
tively, a function that takes a vector of names, and returns a logical, integer, or
character vector of elements to select.

[Deprecated]: if the tidyselect package is installed, you can use vars() and
tidyselect helpers to select elements.

Value

A list or data frame, matching . x. There are no guarantees about the length.

See Also

Other map variants: imap(), map2(), map_depth(), map_if (), map(), modify(), pmap()

Examples

set.seed(1014)

Let's write a function that returns a larger list or an empty list
depending on some condition. It also uses the input name to name the
output
maybe_rep <- function(x) {

n <- rpois(1, 2)

set_names(rep_len(x, n), paste@(names(x), seq_len(n)))

}

The output size varies each time we map f()
x <- list(a = 1:4, b = letters[5:7], c = 8:9, d = letters[10])
x |> lmap(maybe_rep) |> str()

We can apply f() on a selected subset of x
|> lmap_at(c("a", "d"), maybe_rep) |> str()

x

Or only where a condition is satisfied
|> lmap_if(is.character, maybe_rep) |> str()

x

map Apply a function to each element of a vector

Description

The map functions transform their input by applying a function to each element of a list or atomic
vector and returning an object of the same length as the input.

* map() always returns a list. See the modify() family for versions that return an object of the
same type as the input.

e map_lgl (), map_int(), map_dbl() and map_chr () return an atomic vector of the indicated
type (or die trying). For these functions, .f must return a length-1 vector of the appropriate

type.

30 map

* map_vec() simplifies to the common type of the output. It works with most types of simple
vectors like Date, POSIXct, factors, etc.

* walk() calls . f for its side-effect and returns the input . x.

Usage
map(.x, .f, ..., .progress = FALSE)
map_lgl(.x, .f, ..., .progress = FALSE)
map_int(.x, .f, ..., .progress = FALSE)
map_dbl(.x, .f, ..., .progress = FALSE)
map_chr(.x, .f, ..., .progress = FALSE)
map_vec(.x, .f, ..., .ptype = NULL, .progress = FALSE)
walk(.x, .f, ..., .progress = FALSE)
Arguments
A list or atomic vector.
f A function, specified in one of the following ways:
* A named function, e.g. mean.
* An anonymous function, e.g. \(x) x + 1or function(x) x + 1.
* A formula, e.g. ~ .x+ 1. You must use .x to refer to the first argument.
Only recommended if you require backward compatibility with older ver-
sions of R.
* A string, integer, or list, e.g. "idx", 1, or list("idx", 1) which are short-
hand for \ (x) pluck(x, "idx"),\(x) pluck(x, 1),and \(x) pluck(x, "idx", 1)
respectively. Optionally supply .default to set a default value if the in-
dexed element is NULL or does not exist.
Additional arguments passed on to the mapped function.
We now generally recommend against using ... to pass additional (constant)
arguments to . f. Instead use a shorthand anonymous function:
Instead of
X |> map(f, 1, 2, collapse = ",")
do:
x |> map(\(x) f(x, 1, 2, collapse = ","))
This makes it easier to understand which arguments belong to which function
and will tend to yield better error messages.
.progress Whether to show a progress bar. Use TRUE to turn on a basic progress bar, use a
string to give it a name, or see progress_bars for more details.
.ptype If NULL, the default, the output type is the common type of the elements of the

result. Otherwise, supply a "prototype" giving the desired type of output.

map 31

Value

The output length is determined by the length of the input. The output names are determined by the
input names. The output type is determined by the suffix:

* No suffix: a list; . f() can return anything.

o _1gl1(), _int(), _db1(), _chr() return a logical, integer, double, or character vector respec-
tively; . f() must return a compatible atomic vector of length 1.

» _vec() return an atomic or S3 vector, the same type that . f returns. . f can return pretty much
any type of vector, as long as its length 1.

* walk() returns the input . x (invisibly). This makes it easy to use in a pipe. The return value
of . f() is ignored.

Any errors thrown by . f will be wrapped in an error with class purrr_error_indexed.

See Also

map_if () for applying a function to only those elements of . x that meet a specified condition.

Other map variants: imap(), Imap(), map2(), map_depth(), map_if (), modify(), pmap()

Examples

Compute normal distributions from an atomic vector
1:10 |>
map(rnorm, n = 10)

You can also use an anonymous function
1:10 |>
map(\(x) rnorm(10, x))

Simplify output to a vector instead of a list by computing the mean of the distributions

1:10 |>
map(rnorm, n = 10) |> # output a list
map_dbl(mean) # output an atomic vector

Using set_names() with character vectors is handy to keep track
of the original inputs:
set_names(c("foo", "bar")) |> map_chr(paste@, ":suffix")

Working with lists
favorite_desserts <- list(Sophia = "banana bread”, Eliott = "pancakes”, Karina = "chocolate cake")
favorite_desserts |> map_chr(\(food) paste(food, "rocks!"))

Extract by name or position

.default specifies value for elements that are missing or NULL
11 <- list(list(a = 1L), list(a = NULL, b = 2L), list(b = 3L))
11 [> map("a", .default = "?272?")

11 |> map_int("b"”, .default = NA)

11 |> map_int(2, .default = NA)

Supply multiple values to index deeply into a list
12 <- list(

32
list(num = 1:3, letters[1:31),
list(num = 101:103, letters[4:61),
list()

)
12 |> map(c(2, 2))

Use a list to build an extractor that mixes numeric indices and names,
and .default to provide a default value if the element does not exist

12 |> map(list("num", 3))

12 |> map_int(list("num”, 3), .default = NA)

Working with data frames

Use map_lgl(), map_dbl(), etc to return a vector instead of a list:

mtcars |> map_dbl(sum)

A more realistic example: split a data frame into pieces, fit a
model to each piece, summarise and extract R*2

mtcars |>
split(mtcars$cyl) |>

map(\(df) Im(mpg ~ wt, data = df)) |>

map (summary) |>
map_dbl("r.squared")

map?2

map2 Map over two inputs

Description

These functions are variants of map () that iterate over two arguments at a time.

Usage
map2(.x, .y, .f, ..., .progress = FALSE)
map2_lgl(.x, .y, .f, ..., .progress = FALSE)
map2_int(.x, .y, .f, ..., .progress = FALSE)
map2_dbl(.x, .y, .f, ..., .progress = FALSE)
map2_chr(.x, .y, .f, ..., .progress = FALSE)
map2_vec(.x, .y, .f, ..., .ptype = NULL, .progress = FALSE)

walk2(.x, .y, .f, ..., .progress

FALSE)

map?2

Arguments

X, LY

.progress

.ptype

Value

33

A pair of vectors, usually the same length. If not, a vector of length 1 will be
recycled to the length of the other.

A function, specified in one of the following ways:

¢ A named function.

* An anonymous function, e.g. \(x, y) x + yor function(x, y) x +y.

* A formula, e.g. ~ .x + .y. You must use .x to refer to the current element
of x and .y to refer to the current element of y. Only recommended if you
require backward compatibility with older versions of R.

Additional arguments passed on to the mapped function.

We now generally recommend against using ... to pass additional (constant)
arguments to . f. Instead use a shorthand anonymous function:

Instead of

X |> map(f, 1, 2, collapse = ",")
do:
x |> map(\(x) f(x, 1, 2, collapse = ","))

This makes it easier to understand which arguments belong to which function
and will tend to yield better error messages.

Whether to show a progress bar. Use TRUE to turn on a basic progress bar, use a
string to give it a name, or see progress_bars for more details.

If NULL, the default, the output type is the common type of the elements of the
result. Otherwise, supply a "prototype" giving the desired type of output.

The output length is determined by the length of the input. The output names are determined by the
input names. The output type is determined by the suffix:

* No suffix: a list; . f() can return anything.

_1g1(Q), _int (), _db1(), _chr() return a logical, integer, double, or character vector respec-

tively; . f() must return a compatible atomic vector of length 1.

» _vec() return an atomic or S3 vector, the same type that . f returns. . f can return pretty much
any type of vector, as long as its length 1.

* walk() returns the input . x (invisibly). This makes it easy to use in a pipe. The return value
of . f() is ignored.

Any errors thrown by . f will be wrapped in an error with class purrr_error_indexed.

See Also

Other map variants: imap(), Imap(), map_depth(), map_if (), map(), modify(), pmap()

34 map_depth

Examples

x <- list(1, 1, 1)
y <- list(10, 20, 30)

map2(x, y, \(x, y) x +y)
Or just
map2(x, y, ‘+%)

Split into pieces, fit model to each piece, then predict
by_cyl <- mtcars |> split(mtcars$cyl)

mods <- by_cyl |> map(\(df) 1m(mpg ~ wt, data = df))
map2(mods, by_cyl, predict)

map_depth Map/modify elements at given depth

Description

map_depth() calls map(.y, .f) on all .y at the specified .depth in .x. modify_depth() calls
modify(.y, .f) on .y at the specified .depth in .x.

Usage
map_depth(.x, .depth, .f, ..., .ragged = .depth < @, .is_node = NULL)
modify_depth(.x, .depth, .f, ..., .ragged = .depth < @, .is_node = NULL)
Arguments
. X A list or atomic vector.
.depth Level of . x to map on. Use a negative value to count up from the lowest level of
the list.
* map_depth(x, @, fun) is equivalent to fun(x).
* map_depth(x, 1, fun) is equivalent to x <- map(x, fun)
* map_depth(x, 2, fun) is equivalent to x <- map(x, \(y) map(y, fun))
f A function, specified in one of the following ways:

* A named function, e.g. mean.
* An anonymous function, e.g. \(x) x + 1or function(x) x + 1.

* A formula, e.g. ~ .x+ 1. You must use .x to refer to the first argument.
Only recommended if you require backward compatibility with older ver-
sions of R.

* A string, integer, or list, e.g. "idx", 1, or list("idx", 1) which are short-
hand for \ (x) pluck(x, "idx"),\(x) pluck(x, 1),and \(x) pluck(x, "idx", 1)
respectively. Optionally supply .default to set a default value if the in-
dexed element is NULL or does not exist.

map_depth

.ragged

.is_node

See Also

35

Additional arguments passed on to the mapped function.

We now generally recommend against using ... to pass additional (constant)
arguments to . f. Instead use a shorthand anonymous function:

Instead of

X |> map(f, 1, 2, collapse = ",")
do:
x |> map(\(x) f(x, 1, 2, collapse = ","))

This makes it easier to understand which arguments belong to which function
and will tend to yield better error messages.

If TRUE, will apply to leaves, even if they’re not at depth .depth. If FALSE, will
throw an error if there are no elements at depth . depth.

A predicate function that determines whether an element is a node (by returning
TRUE) or a leaf (by returning FALSE). The default value, NULL, treats simple lists
as nodes and everything else (including richer objects like data frames and linear
models) as leaves, using vctrs::vec_is_list(). To recurse into all objects
built on lists use is.list().

modify_tree() for a recursive version of modify_depth() that allows you to apply a function to

every leaf or every

node.

Other map variants: imap(), Imap(), map2(), map_if (), map(), modify(), pmap()

Other modify variants: modify_tree(), modify()

Examples

[> str()
|> map_depth(2,

X X X H H =

Equivalent to:

map_depth() ---
Use ‘map_depth()* to recursively traverse nested vectors and map
a function at a certain depth:

<- list(a = list(foo = 1:2, bar = 3:4), b = list(baz = 5:6))

\(y) paste(y, collapse = "/")) |> str()

x |> map(\(y) map(y, \(z) paste(z, collapse = "/"))) |> str()

When ragged is

[> str()

|> map_depth(4,
|> map_depth(3,
|> map_depth(2,
|> map_depth(1,
|> map_depth(0,

X X X X X X X H

modify_depth()
11 <- list(
obj1 = list(

TRUE, *.f()" will also be passed leaves at depth < ‘.depth®

<- list(1, list(1, list(1, list(1, 1))))

\(x) length(unlist(x)), .ragged = TRUE) |> str()
\(x) length(unlist(x)), .ragged = TRUE) |> str()
\(x) length(unlist(x)), .ragged = TRUE) |> str()
\(x) length(unlist(x)), .ragged = TRUE) |> str()
\(x) length(unlist(x)), .ragged = TRUE) |> str()

36 map_if

prop1l = list(paraml = 1:2, param2 = 3:4),
prop2 = list(paraml = 5:6, param2 = 7:8)
)?
obj2 = list(

propl = list(paraml = 9:10, param2 = 11:12),
prop2 = list(parami 12:14, param2 = 15:17)
)
)

In the above list, "obj" is level 1, "prop"” is level 2 and "param”
is level 3. To apply sum() on all params, we map it at depth 3:
11 |> modify_depth(3, sum) |> str()

modify() lets us pluck the elements propl/param2 in objl and obj2:
11 |> modify(c("propl”, "param2")) [> str()

But what if we want to pluck all param2 elements? Then we need to
act at a lower level:
11 |> modify_depth(2, "param2") [|> str()

modify_depth() can be with other purrr functions to make them operate at
a lower level. Here we ask pmap() to map paste() simultaneously over all
elements of the objects at the second level. paste() is effectively

mapped at level 3.

11 |> modify_depth(2, \(x) pmap(x, paste, sep =" / ")) |> str()
map_if Apply a function to each element of a vector conditionally
Description

The functions map_if () and map_at() take .x as input, apply the function .f to some of the
elements of . x, and return a list of the same length as the input.

* map_if () takes a predicate function .p as input to determine which elements of . x are trans-
formed with . f.

* map_at() takes a vector of names or positions . at to specify which elements of . x are trans-
formed with . f.

Usage
map_if(.x, .p, .f, ..., .else = NULL)
map_at(.x, .at, .f, ..., .progress = FALSE)
Arguments

X A list or atomic vector.

map_if

.else
.at

.progress

See Also

37

A single predicate function, a formula describing such a predicate function, or a
logical vector of the same length as . x. Alternatively, if the elements of . x are
themselves lists of objects, a string indicating the name of a logical element in
the inner lists. Only those elements where . p evaluates to TRUE will be modified.

A function, specified in one of the following ways:

* A named function, e.g. mean.
* An anonymous function, e.g. \(x) x + 1or function(x) x + 1.

* A formula, e.g. ~.x+ 1. You must use .x to refer to the first argument.
Only recommended if you require backward compatibility with older ver-
sions of R.

* A string, integer, or list, e.g. "idx"”, 1, or list("idx", 1) which are short-
hand for \(x) pluck(x, "idx"), \(x) pluck(x, 1), and \(x) pluck(x, "idx", 1)
respectively. Optionally supply .default to set a default value if the in-
dexed element is NULL or does not exist.
Additional arguments passed on to the mapped function.

We now generally recommend against using ... to pass additional (constant)
arguments to . f. Instead use a shorthand anonymous function:

Instead of

x |> map(f, 1, 2, collapse = ",")
do:
x |> map(\(x) f(x, 1, 2, collapse = ","))

This makes it easier to understand which arguments belong to which function
and will tend to yield better error messages.

A function applied to elements of . x for which . p returns FALSE.

A logical, integer, or character vector giving the elements to select. Alterna-
tively, a function that takes a vector of names, and returns a logical, integer, or
character vector of elements to select.

[Deprecated]: if the tidyselect package is installed, you can use vars() and
tidyselect helpers to select elements.

Whether to show a progress bar. Use TRUE to turn on a basic progress bar, use a
string to give it a name, or see progress_bars for more details.

Other map variants: imap(), Imap (), map2(), map_depth(), map(), modify (), pmap()

Examples

Use a predicate function to decide whether to map a function:
iris |> map_if(is.factor, as.character) |> str()

Specify an alternative with the

\

.else’ argument:

iris |> map_if(is.factor, as.character, .else = as.integer) |> str()

Use numeric vector of positions select elements to change:
iris |> map_at(c(4, 5), is.numeric) |> str()

38 modify

Use vector of names to specify which elements to change:
iris |> map_at("Species”, toupper) |> str()

modify Modify elements selectively

Description

Unlike map () and its variants which always return a fixed object type (list for map(), integer vector
for map_int (), etc), the modify() family always returns the same type as the input object.

e modify() is a shortcut for x[[i]] <- f(x[[i1]1); return(x).

e modify_if() only modifies the elements of x that satisfy a predicate and leaves the others
unchanged. modify_at() only modifies elements given by names or positions.

* modify2() modifies the elements of .x but also passes the elements of .y to .f, just like
map2(). imodify() passes the names or the indices to . f like imap() does.

* modify_in() modifies a single element in a pluck() location.

Usage
modify(.x, .f, ...)

modify_if(.x, .p, .f, ..., .else = NULL)
modify_at(.x, .at, .f, ...)
modify2(.x, .y, .f, ...)

imodify(.x, .f, ...)

Arguments
. X A vector.
f A function specified in the same way as the corresponding map function.

Additional arguments passed on to the mapped function.

We now generally recommend against using ... to pass additional (constant)
arguments to . f. Instead use a shorthand anonymous function:

Instead of

X |> map(f, 1, 2, collapse = ",")
do:
x |> map(\(x) f(x, 1, 2, collapse = ","))

This makes it easier to understand which arguments belong to which function
and will tend to yield better error messages.

modify

.else

.at

Details

39

A single predicate function, a formula describing such a predicate function, or a
logical vector of the same length as . x. Alternatively, if the elements of . x are
themselves lists of objects, a string indicating the name of a logical element in
the inner lists. Only those elements where . p evaluates to TRUE will be modified.

A function applied to elements of . x for which .p returns FALSE.

A logical, integer, or character vector giving the elements to select. Alterna-
tively, a function that takes a vector of names, and returns a logical, integer, or
character vector of elements to select.

[Deprecated]: if the tidyselect package is installed, you can use vars() and
tidyselect helpers to select elements.

A vector, usually the same length as . x.

Since the transformation can alter the structure of the input; it’s your responsibility to ensure that
the transformation produces a valid output. For example, if you’re modifying a data frame, . f must
preserve the length of the input.

Value

An object the same class as . x

Genericity

modify() and variants are generic over classes that implement length(), [[and [[<- methods. If
the default implementation is not compatible for your class, you can override them with your own

methods.

If you implement your own modify () method, make sure it satisfies the following invariants:

modify(x, identity) ===
modify(x, compose(f, g)) === modify(x, g) [|> modify(f)

These invariants are known as the functor laws in computer science.

See Also

Other map variants: imap(), Imap (), map2(), map_depth(), map_if (), map(), pmap()

Other modify variants: map_depth(), modify_tree()

Examples

Convert factors to characters

iris |>

modify_if(is.factor, as.character) |>

str()

Specify which columns to map with a numeric vector of positions:
mtcars |> modify_at(c(1, 4, 5), as.character) |> str()

https://wiki.haskell.org/Functor#Functor_Laws

40 modify_in
Or with a vector of names:
mtcars |> modify_at(c("cyl”, "am"), as.character) |> str()
list(x = sample(c(TRUE, FALSE), 100, replace = TRUE), y = 1:100) |>
list_transpose(simplify = FALSE) |>
modify_if ("x", \(1) list(x = 1$x, y = 1$y * 100)) |>
list_transpose()
Use modify2() to map over two vectors and preserve the type of
the first one:
x <= c(foo = 1L, bar = 2L)
y <- c(TRUE, FALSE)
modify2(x, y, \(x, cond) if (cond) x else 0L)
Use a predicate function to decide whether to map a function:
modify_if(iris, is.factor, as.character)
Specify an alternative with the ‘.else‘ argument:
modify_if(iris, is.factor, as.character, .else = as.integer)
modify_in Modify a pluck location
Description
* assign_in() takes a data structure and a pluck location, assigns a value there, and returns the
modified data structure.
» modify_in() applies a function to a pluck location, assigns the result back to that location
with assign_in(), and returns the modified data structure.
Usage
modify_in(.x, .where, .f, ...)
assign_in(x, where, value)
Arguments

X, X A vector or environment

.where, where A pluck location, as a numeric vector of positions, a character vector of names,
or a list combining both. The location must exist in the data structure.

f A function to apply at the pluck location given by .where.
Arguments passed to . f.

value A value to replace in . x at the pluck location. Use zap() to instead remove the
element.

modify_tree 41

See Also

pluck()

Examples

Recall that pluck() returns a component of a data structure that
might be arbitrarily deep

x <- list(list(bar = 1, foo = 2))

pluck(x, 1, "foo")

Use assign_in() to modify the pluck location:
str(assign_in(x, list(1, "foo"), 100))

Or zap to remove it

str(assign_in(x, list(1, "foo"), zap()))

Like pluck(), this works even when the element (or its parents) don't exist
pluck(x, 1, "baz")
str(assign_in(x, list(2, "baz"), 100))

modify_in() applies a function to that location and update the
element in place:
modify_in(x, list(1, "foo"), \(x) x * 200)

Additional arguments are passed to the function in the ordinary way:
modify_in(x, list(1, "foo"), ‘+%, 100)

modify_tree Recursively modify a list

Description

modify_tree() allows you to recursively modify a list, supplying functions that either modify each
leaf or each node (or both).

Usage

modify_tree(
X7

leaf = identity,
is_node = NULL,
pre = identity,
post = identity

42 negate
Arguments
X A list.
Reserved for future use. Must be empty
leaf A function applied to each leaf.
is_node A predicate function that determines whether an element is a node (by returning
TRUE) or a leaf (by returning FALSE). The default value, NULL, treats simple lists
as nodes and everything else (including richer objects like data frames and linear
models) as leaves, using vctrs::vec_is_list(). To recurse into all objects
built on lists use is.list().
pre, post Functions applied to each node. pre is applied on the way "down", i.e. before
the leaves are transformed with leaf, while post is applied on the way "up",
i.e. after the leaves are transformed.
See Also

Other modify variants: map_depth(), modify()

Examples

x <- list(list(a = 2:1, ¢ = list(b1 = 2), b = list(c2 = 3, c1 = 4)))
X |> str(Q)

Transform each leaf
x |> modify_tree(leaf = \(x) x + 100) |> str()

Recursively sort the nodes
sort_named <- function(x) {
nms <- names(x)
if (!is.null(nms)) {
x[order(nms)]
} else {
X
}
3

x |> modify_tree(post = sort_named) |> str()

negate Negate a predicate function so it selects what it previously rejected

Description

Negating a function changes TRUE to FALSE and FALSE to TRUE.

Usage

negate(.p)

partial 43

Arguments
.p A predicate function (i.e. a function that returns either TRUE or FALSE) specified
in one of the following ways:
* A named function, e.g. is.character.
* An anonymous function, e.g. \(x) all(x < @) or function(x) all(x <
).
e A formula, e.g. ~all(.x<®). You must use .x to refer to the first ar-
gument). Only recommended if you require backward compatibility with
older versions of R.
Value

A new predicate function.

Adverbs

This function is called an adverb because it modifies the effect of a function (a verb). If you’d like
to include a function created an adverb in a package, be sure to read fag-adverbs-export.

See Also

Other adverbs: auto_browse(), compose(), insistently(), partial (), possibly(), quietly(),
safely(), slowly()

Examples

x <= list(x = 1:10, y = rbernoulli(10), z = letters)

x |> keep(is.numeric) |> names()

x |> keep(negate(is.numeric)) |> names()

Same as

X |> discard(is.numeric)

partial Partially apply a function, filling in some arguments

Description

Partial function application allows you to modify a function by pre-filling some of the arguments.
It is particularly useful in conjunction with functionals and other function operators.

Usage

partial(
.f,
.env = deprecated(),
.lazy = deprecated(),
.first = deprecated()
)

44 partial
Arguments
.f a function. For the output source to read well, this should be a named function.
named arguments to . f that should be partially applied.
Pass an empty ... = argument to specify the position of future arguments
relative to partialised ones. See rlang::call_modify() to learn more about
this syntax.
These dots support quasiquotation. If you unquote a value, it is evaluated only
once at function creation time. Otherwise, it is evaluated each time the function
is called.
.env [Deprecated] The environments are now captured via quosures.
.lazy [Deprecated] Please unquote the arguments that should be evaluated once at
function creation time with !!.
.first [Deprecated] Please pass an empty argument ... = to specify the position of
future arguments.
Details
partial() creates a function that takes ... arguments. Unlike compose() and other function

operators like negate(), it doesn’t reuse the function signature of . f. This is because partial()
explicitly supports NSE functions that use substitute() on their arguments. The only way to
support those is to forward arguments through dots.

Other unsupported patterns:

e It is not possible to call partial() repeatedly on the same argument to pre-fill it with a
different expression.

* Itis not possible to refer to other arguments in pre-filled argument.

Value

A function that takes the same arguments as . f, but returns a different value, as described above.

Adverbs

This function is called an adverb because it modifies the effect of a function (a verb). If you’d like
to include a function created an adverb in a package, be sure to read fag-adverbs-export.

See Also

Other adverbs: auto_browse(), compose(), insistently(), negate(), possibly(), quietly(),
safely(), slowly()

Examples

Partial is designed to replace the use of anonymous functions for
filling in function arguments. Instead of:
compactl <- function(x) discard(x, is.null)

we can write:

pluck 45

compact2 <- partial(discard, .p = is.null)

partial() works fine with functions that do non-standard
evaluation

my_long_variable <- 1:10

plot2 <- partial(plot, my_long_variable)

plot2()

plot2(runif(10), type = "1")

Note that you currently can't partialise arguments multiple times:
my_mean <- partial(mean, na.rm = TRUE)

my_mean <- partial(my_mean, na.rm = FALSE)

try(my_mean(1:10))

The evaluation of arguments normally occurs "lazily". Concretely,

this means that arguments are repeatedly evaluated across invocations:
f <- partial(runif, n = rpois(1, 5))

f‘

fO

fO

You can unquote an argument to fix it to a particular value.

Unquoted arguments are evaluated only once when the function is created:
f <- partial(runif, n = !lrpois(1, 5))

.F

fO

fO

By default, partialised arguments are passed before new ones:
my_list <- partial(list, 1, 2)
my_list("foo")

Control the position of these arguments by passing an empty
... = argument:

my_list <- partial(list, 1, ... =, 2)

my_list("foo")

pluck Safely get or set an element deep within a nested data structure

Description

pluck() implements a generalised form of [[that allow you to index deeply and flexibly into data
structures. It always succeeds, returning .default if the index you are trying to access does not
exist or is NULL.

pluck<-() is the assignment equivalent, allowing you to modify an object deep within a nested
data structure.

pluck_exists() tells you whether or not an object exists using the same rules as pluck (i.e. a NULL
element is equivalent to an absent element).

46 pluck

Usage
pluck(.x, ..., .default = NULL)
pluck(.x, ...) <- value
pluck_exists(.x, ...)
Arguments
X, X A vector or environment
A list of accessors for indexing into the object. Can be an positive integer, a
negative integer (to index from the right), a string (to index into names), or an
accessor function (except for the assignment variants which only support names
and positions). If the object being indexed is an S4 object, accessing it by name
will return the corresponding slot.
Dynamic dots are supported. In particular, if your accessors are stored in a list,
you can splice that in with !'!!.
.default Value to use if target is NULL or absent.
value A value to replace in . x at the pluck location. Use zap() to instead remove the
element.
Details

* You can pluck or chuck with standard accessors like integer positions and string names, and
also accepts arbitrary accessor functions, i.e. functions that take an object and return some
internal piece.

This is often more readable than a mix of operators and accessors because it reads linearly
and is free of syntactic cruft. Compare: accessor (x[[1]])$foo to pluck(x, 1, accessor,
"foo").

» These accessors never partial-match. This is unlike $ which will select the disp object if you
write mtcars$di.

See Also

attr_getter () for creating attribute getters suitable for use with pluck () and chuck(). modify_in()
for applying a function to a pluck location.

Examples

Let's create a list of data structures:
obj1 <- list("a"”, list(1, elt = "foo"))
obj2 <- list("b", list(2, elt = "bar"))
x <- list(obj1, obj2)

pluck() provides a way of retrieving objects from such data
structures using a combination of numeric positions, vector or
list names, and accessor functions.

pluck_depth 47

Numeric positions index into the list by position, just like “[[‘:
pluck(x, 1)
same as x[[1]1]

Index from the back
pluck(x, -1)
same as x[[2]]

pluck(x, 1, 2)
same as x[[1]]1C[2]1]

Supply names to index into named vectors:
pluck(x, 1, 2, "elt")
same as x[[111C[2]11C["elt"]1]

By default, pluck() consistently returns ‘NULL' when an element
does not exist:

pluck(x, 10)

try(xC[1e11)

You can also supply a default value for non-existing elements:
pluck(x, 10, .default = NA)

The map() functions use pluck() by default to retrieve multiple
values from a list:

map_chr(x, 1)

map_int(x, c(2, 1))

pluck() also supports accessor functions:
my_element <- function(x) x[[2]]1$elt
pluck(x, 1, my_element)

pluck(x, 2, my_element)

Even for this simple data structure, this is more readable than
the alternative form because it requires you to read both from
right-to-left and from left-to-right in different parts of the
expression:

my_element(x[[1]1])

If you have a list of accessors, you can splice those in with “!!!%:
idx <- list(1, my_element)
pluck(x, !!!lidx)

pluck_depth Compute the depth of a vector

Description

The depth of a vector is how many levels that you can index/pluck into it. pluck_depth() was
previously called vec_depth().

48 pmap

Usage
pluck_depth(x, is_node = NULL)

Arguments
X A vector
is_node Optionally override the default criteria for determine an element can be recursed
within. The default matches the behaviour of pluck() which can recurse into
lists and expressions.
Value
An integer.
Examples
x <- list(
list(),
list(list()),
list(list(list(1)))
)

pluck_depth(x)
X |> map_int(pluck_depth)

pmap Map over multiple input simultaneously (in "parallel”)

Description

These functions are variants of map () that iterate over multiple arguments simultaneously. They are
parallel in the sense that each input is processed in parallel with the others, not in the sense of multi-
core computing, i.e. they share the same notion of "parallel” as base: : pmax() and base: :pmin().

Usage
pmap(.1, .f, ..., .progress = FALSE)
pmap_lgl(.1, .f, ..., .progress = FALSE)
pmap_int(.1, .f, ..., .progress = FALSE)
pmap_dbl(.1, .f, ..., .progress = FALSE)
pmap_chr(.1, .f, ..., .progress = FALSE)
pmap_vec(.1l, .f, ..., .ptype = NULL, .progress = FALSE)

pwalk(.1l, .f, ..., .progress = FALSE)

pmap 49

Arguments

.1 A list of vectors. The length of .1 determines the number of arguments that . f
will be called with. Arguments will be supply by position if unnamed, and by
name if named.

Vectors of length 1 will be recycled to any length; all other elements must be
have the same length.

A data frame is an important special case of .1. It will cause .f to be called
once for each row.
.f A function, specified in one of the following ways:
* A named function.
* An anonymous function, e.g. \(x, y, z) x +y / zor function(x, vy,
zZ)x+y/z
* Aformula,e.g. ~..1+..2/ ..3. This syntax is not recommended as you
can only refer to arguments by position.
Additional arguments passed on to the mapped function.
We now generally recommend against using ... to pass additional (constant)
arguments to . f. Instead use a shorthand anonymous function:

Instead of

X |> map(f, 1, 2, collapse = ",")

do:

x |> map(\(x) f(x, 1, 2, collapse = ","))

This makes it easier to understand which arguments belong to which function
and will tend to yield better error messages.

.progress Whether to show a progress bar. Use TRUE to turn on a basic progress bar, use a
string to give it a name, or see progress_bars for more details.

.ptype If NULL, the default, the output type is the common type of the elements of the
result. Otherwise, supply a "prototype" giving the desired type of output.

Value

The output length is determined by the length of the input. The output names are determined by the
input names. The output type is determined by the suffix:

* No suffix: a list; . f() can return anything.

e _1g1(), _int(), _db1l(), _chr() return a logical, integer, double, or character vector respec-
tively; . f() must return a compatible atomic vector of length 1.

e _vec() return an atomic or S3 vector, the same type that . f returns. . f can return pretty much
any type of vector, as long as its length 1.

* walk() returns the input . x (invisibly). This makes it easy to use in a pipe. The return value
of . f() is ignored.

Any errors thrown by . f will be wrapped in an error with class purrr_error_indexed.

See Also
Other map variants: imap(), Imap(), map2(), map_depth(), map_if (), map(), modify()

50 pmap

Examples

x <- list(1, 1, 1)

y <- list(10, 20, 30)

z <- list(100, 200, 300)
pmap(list(x, y, z), sum)

Matching arguments by position
pmap(list(x, y, z), function(first, second, third) (first + third) * second)

Matching arguments by name
1 <- list(a=x, b=y, c=2)
pmap(l, function(c, b, a) (a + ¢c) * b)

Vectorizing a function over multiple arguments
df <- data.frame(
x = c("apple”, "banana", "cherry"),
pattern = c("p", "n", "h"),
replacement = c("P", "N", "H"),
stringsAsFactors = FALSE
)
pmap (df, gsub)
pmap_chr(df, gsub)

Use ‘...‘ to absorb unused components of input list .1
df <- data.frame(
X = 1:3,
y = 10:12,
z = letters[1:3]
)
plus <- function(x, y) x +y
Not run:
this won't work
pmap(df, plus)

End(Not run)

but this will

plus2 <- function(x, y, ...) x +y
pmap_dbl(df, plus2)

The "p" for "parallel” in pmap() is the same as in base::pmin()
and base: :pmax()
df <- data.frame(
x =c(1, 2, 5),
y = c(5, 4, 8)
)
all produce the same result
pmin(dfx, dfy)
map2_dbl (dfx, dfy, min)
pmap_dbl(df, min)

possibly 51

possibly Wrap a function to return a value instead of an error

Description

Create a modified version of . f that return a default value (otherwise) whenever an error occurs.

Usage

possibly(.f, otherwise = NULL, quiet = TRUE)

Arguments
f A function to modify, specified in one of the following ways:
* A named function, e.g. mean.
* An anonymous function, e.g. \(x) x + 1or function(x) x + 1.
* A formula, e.g. ~.x+ 1. Only recommended if you require backward
compatibility with older versions of R.
otherwise Default value to use when an error occurs.
quiet Hide errors (TRUE, the default), or display them as they occur?
Value

A function that takes the same arguments as . f, but returns a different value, as described above.

Adverbs

This function is called an adverb because it modifies the effect of a function (a verb). If you’d like
to include a function created an adverb in a package, be sure to read fag-adverbs-export.

See Also

Other adverbs: auto_browse(), compose(), insistently(), negate(), partial(), quietly(),
safely(), slowly()

Examples

To replace errors with a default value, use possibly().
list("a", 10, 100) |>
map_dbl (possibly(log, NA_real_))

The default, NULL, will be discarded with ‘list_c()®
list("a", 10, 100) |>

map(possibly(log)) |>

list_c()

52 progress_bars

progress_bars Progress bars in purrr

Description

purrr’s map functions have a . progress argument that you can use to create a progress bar. . progress
can be:

FALSE, the default: does not create a progress bar.
* TRUE: creates a basic unnamed progress bar.
* A string: creates a basic progress bar with the given name.

* A named list of progress bar parameters, as described below.

It’s good practice to name your progress bars, to make it clear what calculation or process they
belong to. We recommend keeping the names under 20 characters, so the whole progress bar fits
comfortably even on on narrower displays.

Progress bar parameters:
e clear: whether to remove the progress bar from the screen after termination. Defaults to
TRUE.

» format: format string. This overrides the default format string of the progress bar type. It
must be given for the custom type. Format strings may contain R expressions to evaluate
in braces. They support cli pluralization, and styling and they can contain special progress
variables.

» format_done: format string for successful termination. By default the same as format.
» format_failed: format string for unsuccessful termination. By default the same as format.

* name: progress bar name. This is by default the empty string and it is displayed at the
beginning of the progress bar.

* show_after: numeric scalar. Only show the progress bar after this number of seconds. It
overrides the cli.progress_show_after global option.

* type: progress bar type. Currently supported types are:
— iterator: the default, a for loop or a mapping function,
— tasks: a (typically small) number of tasks,
— download: download of one file,

— custom: custom type, format must not be NULL for this type. The default display is
different for each progress bar type.

Further documentation:

purrr’s progress bars are powered by cli, so see Introduction to progress bars in cli and Advanced
cli progress bars for more details.

https://cli.r-lib.org/articles/progress.html
https://cli.r-lib.org/articles/progress-advanced.html
https://cli.r-lib.org/articles/progress-advanced.html

quietly 53

quietly Wrap a function to capture side-effects

Description

Create a modified version of . f that captures side-effects along with the return value of the function
and returns a list containing the result, output, messages and warnings.

Usage
quietly(.f)

Arguments
.f A function to modify, specified in one of the following ways:
* A named function, e.g. mean.
* An anonymous function, e.g. \(x) x + 1or function(x) x + 1.
* A formula, e.g. ~.x+1. Only recommended if you require backward
compatibility with older versions of R.
Value

A function that takes the same arguments as . f, but returns a different value, as described above.

Adverbs

This function is called an adverb because it modifies the effect of a function (a verb). If you’d like
to include a function created an adverb in a package, be sure to read fag-adverbs-export.

See Also

Other adverbs: auto_browse(), compose(), insistently(), negate(), partial(), possibly(),
safely(), slowly()

Examples

f <- function() {
print("Hi!")
message("Hello")
warning("How are ya?")
"Gidday"

3

fO

f_quiet <- quietly(f)
str(f_quiet())

54

rate-helpers

rate-helpers Create delaying rate settings

Description

These helpers create rate settings that you can pass to insistently() and slowly(). You can also
use them in your own functions with rate_sleep().

Usage

rate_delay(pause = 1, max_times = Inf)

rate_backoff(
pause_base = 1,
pause_cap = 60,
pause_min 1,
max_times = 3,
jitter = TRUE

)
is_rate(x)
Arguments
pause Delay between attempts in seconds.
max_times Maximum number of requests to attempt.

pause_base, pause_cap
rate_backoff () uses an exponential back-off so that each request waits pause_base
* 21 seconds, up to a maximum of pause_cap seconds.

pause_min Minimum time to wait in the backoff; generally only necessary if you need
pauses less than one second (which may not be kind to the server, use with
caution!).
jitter Whether to introduce a random jitter in the waiting time.
X An object to test.
Examples

A delay rate waits the same amount of time:
rate <- rate_delay(0.02)
for (i in 1:3) rate_sleep(rate, quiet = FALSE)

A backoff rate waits exponentially longer each time, with random
jitter by default:

rate <- rate_backoff(pause_base = 0.2, pause_min = 0.005)

for (i in 1:3) rate_sleep(rate, quiet = FALSE)

reduce 55

reduce Reduce a list to a single value by iteratively applying a binary function

Description

reduce() is an operation that combines the elements of a vector into a single value. The combina-
tion is driven by . f, a binary function that takes two values and returns a single value: reducing f
over 1:3 computes the value f(f(1, 2), 3).

Usage

reduce(.x, .f, ..., .init, .dir = c("forward”, "backward"))

reduce2(.x, .y, .f, ..., .init)

Arguments

X A list or atomic vector.

.f For reduce(), a 2-argument function. The function will be passed the accumu-
lated value as the first argument and the "next" value as the second argument.

For reduce2(), a 3-argument function. The function will be passed the accu-
mulated value as the first argument, the next value of . x as the second argument,
and the next value of .y as the third argument.

The reduction terminates early if . f returns a value wrapped in a done ().

Additional arguments passed on to the mapped function.

We now generally recommend against using ... to pass additional (constant)
arguments to . f. Instead use a shorthand anonymous function:

Instead of

x |> map(f, 1, 2, collapse = ",")

do:

x |> map(\(x) f(x, 1, 2, collapse = ","))

This makes it easier to understand which arguments belong to which function
and will tend to yield better error messages.

.init If supplied, will be used as the first value to start the accumulation, rather than
using . x[[1]]. This is useful if you want to ensure that reduce returns a correct
value when . x is empty. If missing, and . x is empty, will throw an error.

.dir The direction of reduction as a string, one of "forward" (the default) or "backward”.
See the section about direction below.

.y For reduce2() and accumulate2(), an additional argument that is passed to
.f. If init is not set, .y should be 1 element shorter than . x.

56 reduce

Direction

When . f is an associative operation like + or c(), the direction of reduction does not matter. For
instance, reducing the vector 1:3 with the binary function + computes the sum ((1 + 2) + 3) from
the left, and the same sum (1 + (2 + 3)) from the right.

In other cases, the direction has important consequences on the reduced value. For instance, reduc-
ing a vector with 1ist () from the left produces a left-leaning nested list (or tree), while reducing
list () from the right produces a right-leaning list.

Life cycle

reduce_right() is soft-deprecated as of purrr 0.3.0. Please use the .dir argument of reduce()
instead. Note that the algorithm has changed. Whereas reduce_right () computed f(f(3, 2), 1),
reduce(.dir = \"backward\") computes (1, f(2, 3)). This is the standard way of reducing
from the right.

To update your code with the same reduction as reduce_right(), simply reverse your vector and
use a left reduction:

Before:
reduce_right(1:3, f)

After:
reduce(rev(1:3), f)

reduce2_right() is soft-deprecated as of purrr 0.3.0 without replacement. It is not clear what
algorithmic properties should a right reduction have in this case. Please reach out if you know
about a use case for a right reduction with a ternary function.

See Also

accumulate() for a version that returns all intermediate values of the reduction.

Examples

Reducing ‘+‘ computes the sum of a vector while reducing ‘**
computes the product:

1:3 |> reduce(*+")

1:10 |> reduce(***")

By ignoring the input vector (nxt), you can turn output of one step into
the input for the next. This code takes 10 steps of a random walk:
reduce(1:10, \(acc, nxt) acc + rnorm(1), .init = @)

When the operation is associative, the direction of reduction
does not matter:

reduce(1:4, “+%)

reduce(1:4, “+%, .dir = "backward")

However with non-associative operations, the reduced value will
be different as a function of the direction. For instance,

safely 57

“list()" will create left-leaning lists when reducing from the
right, and right-leaning lists otherwise:

str(reduce(1:4, list))

str(reduce(1:4, list, .dir = "backward"))

reduce2() takes a ternary function and a second vector that is
one element smaller than the first vector:

paste2 <- function(x, y, sep = ".") paste(x, y, sep = sep)
letters[1:4] |> reduce(paste2)
letters[1:4] |> reduce2(c("-", ".", "="), paste2)

x <= list(c(o, 1), c(2, 3), c(4, 5))
y <- list(c(6, 7), c(8, 9))
reduce2(x, y, paste)

You can shortcircuit a reduction and terminate it early by

returning a value wrapped in a done(). In the following example
we return early if the result-so-far, which is passed on the LHS,
meets a condition:

paste3 <- function(out, input, sep = ".") {
if (nchar(out) > 4) {
return(done(out))
}
paste(out, input, sep = sep)
3

letters |> reduce(paste3)

Here the early return branch checks the incoming inputs passed on

the RHS:
paste4 <- function(out, input, sep = ".") {
if (input == "j") {
return(done(out))
}
paste(out, input, sep = sep)
3

letters |> reduce(paste4)

safely Wrap a function to capture errors

Description

Creates a modified version of . f that always succeeds. It returns a list with components result
and error. If the function succeeds, result contains the returned value and error is NULL. If an
error occurred, error is an error object and result is either NULL or otherwise.

Usage

safely(.f, otherwise = NULL, quiet = TRUE)

58 safely

Arguments
f A function to modify, specified in one of the following ways:
* A named function, e.g. mean.
* An anonymous function, e.g. \(x) x + 1or function(x) x + 1.
* A formula, e.g. ~ .x+1. Only recommended if you require backward
compatibility with older versions of R.
otherwise Default value to use when an error occurs.
quiet Hide errors (TRUE, the default), or display them as they occur?
Value

A function that takes the same arguments as . f, but returns a different value, as described above.

Adverbs

This function is called an adverb because it modifies the effect of a function (a verb). If you’d like
to include a function created an adverb in a package, be sure to read fag-adverbs-export.

See Also

Other adverbs: auto_browse(), compose(), insistently(), negate(), partial(), possibly(),
quietly(), slowly()

Examples

safe_log <- safely(log)
safe_log(10)
safe_log("a")

list("a", 10, 100) |>
map(safe_log) |>
transpose()

This is a bit easier to work with if you supply a default value
of the same type and use the simplify argument to transpose():
safe_log <- safely(log, otherwise = NA_real_)
list("a", 10, 100) |>

map(safe_log) |>

transpose() |>

simplify_all()

slowly 59

slowly Wrap a function to wait between executions

Description

slowly() takes a function and modifies it to wait a given amount of time between each call.

Usage

slowly(f, rate = rate_delay(), quiet = TRUE)

Arguments
f A function to modify, specified in one of the following ways:
* A named function, e.g. mean.
* An anonymous function, e.g. \(x) x + 1or function(x) x + 1.
* A formula, e.g. ~ .x+1. Only recommended if you require backward
compatibility with older versions of R.
rate A rate object. Defaults to a constant delay.
quiet Hide errors (TRUE, the default), or display them as they occur?
Value

A function that takes the same arguments as . f, but returns a different value, as described above.

Adverbs
This function is called an adverb because it modifies the effect of a function (a verb). If you’d like
to include a function created an adverb in a package, be sure to read fag-adverbs-export.

See Also
Other adverbs: auto_browse (), compose(), insistently(), negate(), partial(), possibly(),
quietly(), safely()

Examples

For these example, we first create a custom rate
with a low waiting time between attempts:
rate <- rate_delay(0.1)

slowly() causes a function to sleep for a given time between calls:
slow_runif <- slowly(\(x) runif(1), rate = rate, quiet = FALSE)
out <- map(1:5, slow_runif)

Index

x adverbs chuck, 11
auto_browse, 9 compact (keep), 20
compose, 12 compose, 10,12, 19,43, 44, 51, 53, 58, 59
insistently, 18 compose(), 44
negate, 42
partial, 43 detect, 13
possibly, 51 detect_index (detect), 13
quietly, 53 discard (keep), 20
safely, 57 discard(), 21
slowly, 59 discard_at (keep_at), 21
* map variants discard_at(), 20
imap, 17 done(), 3, 4, 55
1map, 28 Dynamic dots, 11, 12, 22,46
map, 29
map2, 32 every, 14
map_depth, 34

fag-adverbs-export, 10, 12, 19,43, 44, 51,

map_if, 36 53,58, 59
modify, 38 Filter(), 20
pmap, 48

+x modify variants has_element, 15
mapTdepth, 34 head_while, 16
modify, 38 httr::RETRY(), 19

modify_tree, 41
imap, 17, 29, 31, 33, 35, 37, 39, 49

accumulate, 3 imap(), 38
accumulate(), 56 imap_chr (imap), 17
accumulate?2 (accumulate), 3 imap_dbl (imap), 17
array-coercion, 6 imap_int (imap), 17
array_branch (array-coercion), 6 imap_lgl (imap), 17
array_tree (array-coercion), 6 imodify (modify), 38
as_mapper, 7 insistently, 10, 12, 18,43, 44,51, 53, 58, 59
assign_in (modify_in), 40 insistently(), 19, 54
assign_in(), 40 is.list(), 22, 35,42
attr_getter,9 is_rate (rate-helpers), 54
attr_getter(), 46 iwalk (imap), 17
auto_browse, 9, 12, 19,43, 44, 51, 53, 58, 59

keep, 20
base: :pmax(), 48 keep(), 14,21
base: :pmin(), 48 keep_at, 21
browser(), 9 keep_at(), 20

60

INDEX

list_assign, 22

list_c, 23

list_c(), 25

list_cbind (list_c), 23
list_flatten, 24
list_flatten(), 25
list_merge (list_assign), 22
list_modify (list_assign), 22
list_rbind(list_c), 23
list_rbind(), 25
list_simplify, 25
list_transpose, 26

Imap, 18, 28, 31, 33, 35, 37, 39, 49
Imap_at (1map), 28

Imap_if (1map), 28

map, 18, 29, 29, 33, 35, 37, 39, 49
map(), 32, 38, 48

map2, 18, 29, 31, 32, 35, 37, 39, 49
map2(), 38

map2_chr (map2), 32

map2_dbl (map2), 32

map2_int (map2), 32

map2_lgl (map2), 32

map2_vec (map2), 32

map_at (map_if), 36

map_chr (map), 29

map_dbl (map), 29

map_depth, 18, 29, 31, 33, 34, 37, 39, 42, 49

map_if, 18, 29, 31, 33, 35, 36, 39, 49
map_if (), 31

map_int (map), 29

map_lgl (map), 29

map_vec (map), 29

modify, 18, 29, 31, 33, 35, 37, 38,42, 49
modify(), 29

modify2 (modify), 38

modify_at (modify), 38
modify_depth (map_depth), 34
modify_if (modify), 38
modify_in, 40

modify_in(), 38, 46
modify_tree, 35, 39, 41
modify_tree(), 35

names(), 28

negate, 10, 12, 19,42, 44, 51, 53, 58, 59
negate(), 44

none (every), 14

partial, 10, 12, 19, 43,43, 51, 53, 58, 59
pluck, 40, 45
pluck(), 9, 11, 38, 41

pluck<- (pluck), 45
pluck_depth, 47

pluck_exists (pluck), 45
pluralization, 52

pmap, 18, 29, 31, 33, 35, 37, 39, 48
pmap_chr (pmap), 48

pmap_dbl (pmap), 48

pmap_int (pmap), 48

pmap_lgl (pmap), 48

pmap_vec (pmap), 48

possibly, 10, 12, 19, 43, 44, 51, 53, 58, 59

progress variables, 52
progress_bars, 30, 33, 37,49, 52
purrr_error_indexed, 31, 33, 49
pwalk (pmap), 48

quietly, 70, 12, 19,43, 44, 51, 53, 58, 59

rate, 18, 59

rate-helpers, 54

rate_backoff (rate-helpers), 54
rate_delay (rate-helpers), 54
rate_sleep(), 54

reduce, 55

reduce(), 4

reduce?2 (reduce), 55
rlang::as_function(), 7
rlang::call_modify(), 44

safely, 10, 12, 19,43, 44, 51, 53, 57, 59
simplified, 27

slowly, 10, 12, 19,43, 44,51, 53, 58, 59
slowly(), 54

some (every), 14

styling, 52

tail_while (head_while), 16
utils::modifyList(), 22

vctrs::vec_as_names(), 24, 25
vctrs::vec_c(), 23
vctrs::vec_cbind(), 23

vetrs: :vec_is_list(), 22, 35,42
vctrs::vec_rbind(), 23
vec_depth (pluck_depth), 47

61

62 INDEX

walk (map), 29
walk2 (map2), 32

	accumulate
	array-coercion
	as_mapper
	attr_getter
	auto_browse
	chuck
	compose
	detect
	every
	has_element
	head_while
	imap
	insistently
	keep
	keep_at
	list_assign
	list_c
	list_flatten
	list_simplify
	list_transpose
	lmap
	map
	map2
	map_depth
	map_if
	modify
	modify_in
	modify_tree
	negate
	partial
	pluck
	pluck_depth
	pmap
	possibly
	progress_bars
	quietly
	rate-helpers
	reduce
	safely
	slowly
	Index

