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Abstract

Algorithms that create recommendations based on observed data have significant com-
mercial value for online retailers and many other industries. Recommender systems has
a significant research community and studying such systems is part of most modern data
science curricula. While there is an abundance of software that implements recommenda-
tion algorithms, there is little in terms of supporting recommender system research and
education. This paper describes the open-source software recommenderlab which was
created with supporting research and education in mind. The package can be directly
installed in R or downloaded from https://github.com/mhahsler/recommenderlab.
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1. Introduction

Recommender systems apply statistical and knowledge discovery techniques to the problem of
making product recommendations based on previously recorded usage data (Sarwar, Karypis,
Konstan, and Riedl 2000). Creating such automatically generated personalized recommenda-
tions for products including books, songs, TV shows and movies using collaborative filtering
have come a long way since Information Lense, the first system using social filtering was
created more than 30 years ago (Malone, Grant, Turbak, Brobst, and Cohen 1987). Today,
recommender systems are a successful technology used by market leaders in several industries
(e.g., by Amazon, Netflix, and Pandora). In retail, such recommendations can improve con-
version rates by helping the customer to find products she/he wants to buy faster, promote
cross-selling by suggesting additional products and can improve customer loyalty through
creating a value-added relationship (Schafer, Konstan, and Riedl 2001).

Even after 30 years, recommender systems still have a very active research community. It is
often not clear which of the many available algorithms is appropriate for a particular appli-
cation and new approaches are constantly proposed. Many commercially available software
applications implement recommender algorithms, however, this paper focuses on software
support for recommender systems research which includes rapid prototyping algorithms and
thorough evaluation and comparison of algorithms. For this purpose, access to the source
code is paramount. Many open-source projects implementing recommender algorithms have
been initiated over the years. Table 1 provides links to several popular open source imple-
mentations which provide code which can be used by researchers. The extent of (currently
available) functionality as well as the target usage of the available software packages vary
greatly and many projects have been abandoned over the years. A comprehensive list of

https://github.com/mhahsler/recommenderlab
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Software Description Language URL

Apache
Mahout

Machine learning
library includes
collaborative
filtering

Java http://mahout.apache.org/

Crab Components to
create recom-
mender systems

Python https://github.com/muricoca/crab

LensKit Collaborative fil-
tering algorithms
from GroupLens
Research

Python http://lenskit.grouplens.org/

MyMediaLite Recommender
system algo-
rithms.

C#/Mono http://www.mymedialite.net/

SVDFeature Toolkit for
feature-based ma-
trix factorization

C++ https://www.jmlr.org/papers/v13/chen12a.html

Vogoo
PHP LIB

Collaborative fil-
tering engine for
personalizing web
sites

PHP http://sourceforge.net/projects/vogoo/

Table 1: Recommender System Software freely available for research.

recommender systems software is maintained by Jenson (2019).

Most available software focuses on creating recommender applications for deployment as a
production system or they implement a single method as part of a research project. The R
extension package recommenderlab described in this paper was designed for a completely dif-
ferent purpose. It aims at providing a comprehensive research infrastructure for recommender
systems. The focus is on consistent and efficient data handling, easy incorporation of exist-
ing and new algorithms, experiment set up and evaluation of the results. The open-source
programming language R, a popular software environment for statistical computing and data
scientists (R Core Team 2018), is used as the platform since it easily allows the researcher to
either implement and integrate algorithms written in a wide range of programming languages
including R, Python, Java, C/C++ and already provides all needed statistical tools which is
important to provide a useful research environment.

Although developed to support the author’s own research and teaching needs in 2010, there
proved to be a need for research-focused software and the package recommenderlab turned out
to be quite popular. A healthy community of users who file bug reports, suggest improvements
and contribute their own algorithms has grown around the package and is coordinated using
the software’s GitHub page1. Authors not related to the developer have written a textbook
about how to use the package (Gorakala and Usuelli 2015). The package is used in several
university courses to demonstrate the basics of recommender system development. Finally, the

1https://github.com/mhahsler/recommenderlab

http://mahout.apache.org/
https://github.com/muricoca/crab
http://lenskit.grouplens.org/
http://www.mymedialite.net/
https://www.jmlr.org/papers/v13/chen12a.html
http://sourceforge.net/projects/vogoo/
https://github.com/mhahsler/recommenderlab


Michael Hahsler 3

package was employed by several researchers to develop and test their own algorithms (e.g.,
Chen, Chao, and Shah 2013; Buhl, Famulare, Glazier, Harris, McDowell, Waldrip, Barnes, and
Gerber 2016; Beel, Breitinger, Langer, Lommatzsch, and Gipp 2016; Lombardi and Vernero
2017).

Package recommenderlab focuses on collaborative filtering which is based on the idea that
given rating data by many users for many items (e.g., 1 to 5 stars), one can predict a user’s
rating for an item not known to her or him (see, e.g., Goldberg, Nichols, Oki, and Terry
1992) or create for each user a so called top-N lists of recommended items (see, e.g., Sarwar,
Karypis, Konstan, and Riedl 2001; Deshpande and Karypis 2004). The premise is that users
who agreed on the rating for some items typically also tend to agree on the rating for other
items.

recommenderlab provides implementations of many popular algorithms, including the follow-
ing.

• User-based collaborative filtering (UBCF) predicts ratings by aggregating the
ratings of users who have a similar rating history to the active user (Goldberg et al.
1992; Resnick, Iacovou, Suchak, Bergstrom, and Riedl 1994; Shardanand and Maes
1995).

• Item-based collaborative filtering (IBCF) uses item-to-item similarity based on
user ratings to find items that are similar to the items the active user likes (Kitts,
Freed, and Vrieze 2000; Sarwar et al. 2001; Linden, Smith, and York 2003; Deshpande
and Karypis 2004).

• Latent factor models use singular value decomposition (SVD) to estimate missing
ratings using methods like SVD with column-mean imputation, Funk SVD or alternating
least squares (Hu, Koren, and Volinsky 2008; Koren, Bell, and Volinsky 2009).

• Association rule-based recommender (AR) uses association rules to find recom-
mended items (Fu, Budzik, and Hammond 2000; Mobasher, Dai, Luo, and Nakagawa
2001; Geyer-Schulz, Hahsler, and Jahn 2002; Lin, Alvarez, and Ruiz 2002; Demiriz
2004).

• Popular items (POPULAR) is a non-personalized algorithm which recommends to
all users the most popular items they have not rated yet.

• Randomly chosen items (RANDOM) creates random recommendations which can
be used as a baseline for recommender algorithm evaluation.

• Re-recommend liked items (RERECOMMEND) recommends items which the
user has rated highly in the past. These recommendations can be useful for items that
are typically consumed more than once (e.g., listening to songs or buying groceries).

• Hybrid recommendations (HybridRecommender) aggregates the recommenda-
tions of several algorithms (Çano and Morisio 2017).

We will discuss some of these algorithms in the rest of the paper. Detailed information can
be found in the survey book by Desrosiers and Karypis (2011).
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This rest of this paper is structured as follows. Section 2 introduces collaborative filtering
and some of its popular algorithms. In section 3 we discuss the evaluation of recommender
algorithms. We introduce the infrastructure provided by recommenderlab in section 4. In
section 5 we illustrate the capabilities on the package to create and evaluate recommender
algorithms. We conclude with section 6.

2. Collaborative Filtering

To understand the use of the software, a few formal definitions are necessary. We will often
give examples for a movie recommender, but the examples generalize to other types of items
as well. Let U = ¶u1, u2, . . . , um♢ be the set of users and I = ¶i1, i2, . . . , in♢ the set of items.
Ratings are stored in a m × n user-item rating matrix R = (rjl), where each row represents
a user uj with 1 ≤ j ≤ m and columns represent items il with 1 ≤ l ≤ n. We use rj to
denote the row vector of R with the ratings of user uj . Ratings use a specific rating scale.
For example, Netflix uses 1 to 5 stars. and estimated ratings are allowed to be within an
interval of matching range (e.g., [1, 5]). Typically, only a small fraction of ratings are known
and for many cells in R, the values are missing. Missing values represent movies that the
user has not rated and potentially also not seen yet.

Collaborative filtering aims to create recommendations for a user called the active user ua ∈ U .
We define the set of items unknown to user ua as Ia = I \ ¶il ∈ I ♣ ral is not missing♢. The
two typical tasks are to predict ratings for all items in Ia or to create a list containing the
best N recommended items from Ia (i.e., a top-N recommendation list) for ua. Predicting all
missing ratings means completing the row of the rating matrix where the missing values for
items in Ia are replaced by ratings estimated from other data in R. From this point of view,
recommender systems are related to matrix completion problem. Creating a top-N list can
be seen as a second step after predicting ratings for all unknown items in Ia and then taking
the N items with the highest predicted ratings. Some algorithms skip predicting ratings first
and are able to find the top N items directly. A list of top-N recommendations for a user
ua is an partially ordered set TN = (X , ≥), where X ⊂ Ia and ♣X ♣ ≤ N (♣ · ♣ denotes the
cardinality of the set). Note that there may exist cases where top-N lists contain less than
N items. This can happen if ♣Ia♣ < N or if the CF algorithm is unable to identify N items
to recommend. The binary relation ≥ is defined as x ≥ y if and only if r̂ax ≥ r̂ay for all
x, y ∈ X . Furthermore we require that ∀x∈X ∀y∈Ia

r̂ax ≥ r̂ay to ensure that the top-N list
contains only the items with the highest estimated rating.

Typically we deal with a very large number of items with unknown ratings which makes first
predicting rating values for all of them computationally expensive. Some approaches (e.g.,
rule based approaches) can predict the top-N list directly without considering all unknown
items first.

Collaborative filtering algorithms are typically divided into two groups, memory-based CF
and model-based CF algorithms (Breese, Heckerman, and Kadie 1998). Memory-based CF
use the whole (or at least a large sample of the) user database to create recommendations.
The most prominent algorithm is user-based collaborative filtering. The disadvantages of
this approach is scalability since the whole user database has to be processed online for
creating recommendations. Model-based algorithms use the user database to learn a more
compact model (e.g, clusters with users of similar preferences) that is later used to create
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recommendations.

In the following we will present the basics of well known memory and model-based collabo-
rative filtering algorithms. Further information about these algorithms can be found in the
recent survey book chapter by Desrosiers and Karypis (2011).

2.1. User-based Collaborative Filtering

User-based CF (Goldberg et al. 1992; Resnick et al. 1994; Shardanand and Maes 1995) is
a memory-based algorithm which tries to mimics word-of-mouth by analyzing rating data
from many individuals. The assumption is that users with similar preferences will rate items
similarly. Thus missing ratings for a user can be predicted by first finding a neighborhood of
similar users and then aggregate the ratings of these users to form a prediction.

The neighborhood is defined in terms of similarity between users, either by taking a given
number of most similar users (k nearest neighbors) or all users within a given similarity
threshold. Popular similarity measures for CF are the Pearson correlation coefficient and the
Cosine similarity. These measures are defined between two vectors with ratings x and y.

mPearson(x, y) =
1

n − 1

n
∑

l=1



xl − x̄

sx





yl − ȳ

sy



(1)

and
mCosine(x, y) =

x · y

∥x∥∥y∥
, (2)

where n is the number of elements in the rating vectors and missing ratings are skipped in
the calculation. sx and sy is the standard deviation and ∥ · ∥ is the l2-norm of a vector. To
calculate the measure between two users, ux and uy, x = rx and y = ry represent the row
vectors in R with the two users’ profile vectors are used. For calculating similarity using
rating data only the dimensions (items) are used which were rated by both users. Note that
cosine and correlation are in the range [−1, 1], but similarity measures need to be in the range
of [0, 1]. We, use the transformation

s =
m + 1

2
.

Using the similarity, the neighborhood for the active user N (a) ⊂ U can be selected by either
a threshold on the similarity or by taking the k nearest neighbors. Once the users in the
neighborhood are found, their ratings are aggregated to form the predicted rating for the
active user ua. The easiest form is to just average the ratings in the neighborhood. For item
il this is

r̂al =
1

♣N (a)♣

∑

i∈N (a)

ril. (3)

An example of the process of creating recommendations by user-based CF is shown in Figure 1.
To the left is the rating matrix R with 6 users and 8 items and ratings in the range 1 to
5 (stars). We want to create recommendations for the active user ua shown at the bottom
of the matrix. To find the k-neighborhood (i.e., the k nearest neighbors) we calculate the
similarity between the active user and all other users based on their ratings in the database
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Figure 1: User-based collaborative filtering example with (a) rating matrix R and estimated
ratings for the active user, (b), similarites between the active user and the other users sa

(Euclidean distance converted to similarities), and (b) the user neighborhood formation.

and then select the k users with the highest similarity. To the right in Figure 1 we see a
2-dimensional representation of the similarities (users with higher similarity are displayed
closer) with the active user in the center. The k = 3 nearest neighbors (u1, u2 and u3) are
selected and marked in the database to the left. To generate an aggregated estimated rating,
we compute the average ratings in the neighborhood for each item not rated by the active
user. To create a top-N recommendation list, the items are ordered by predicted rating. In
the small example in Figure 1 the order in the top-N list (with N ≥ 4) is i2, i1, i7 and i5.
However, for a real application we probably would not recommend items i7 and i5 because of
their low ratings.

The fact that some users in the neighborhood are more similar to the active user than others
(see Figure 1 (b)) can be incorporated as weights into Equation (3).

r̂al =
1

∑

i∈N (a) sai

∑

i∈N (a)

sairil (4)

sai is the similarity between the active user ua and user ui in the neighborhood.

For rating data, the performance of the recommender algorithm can be improved by removing
user rating bias where some users tend to always use higher ratings while others tend to
use lower ratings. This can be done by normalizing the rating data before applying the
recommender algorithm. Any normalization function h : R

n×m 7→ R
n×m can be used for

preprocessing. Such a function needs to be reversible by h−1 to map the predicted rating
on the normalized scale back to the original rating scale. Normalization is used to remove
individual rating bias by users who consistently always use lower or higher ratings than other
users. The most popular method is to center the rows of the user-item rating matrix by

h(rjl) = rjl − r̄j ,

where r̄j is the mean of all available ratings in row j of the user-item rating matrix R. This
means that ratings are now measured for each user by how much they are above or below the
user’s average rating. The inverse is simply,
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Figure 2: Item-based collaborative filtering

h−1(h(rjl)) = h(rjl) + r̄j = rjl.

Other methods like Z-score normalization which also takes rating variance into account can
be found in the literature (see, e.g., Desrosiers and Karypis 2011).

The two main problems of user-based CF are that the whole user database has to be kept
in memory and that expensive similarity computation between the active user and all other
users in the database has to be performed.

2.2. Item-based Collaborative Filtering

Item-based CF (Kitts et al. 2000; Sarwar et al. 2001; Linden et al. 2003; Deshpande and
Karypis 2004) is a model-based approach which produces recommendations based on the
relationship between items inferred from the rating matrix. The assumption behind this
approach is that users will prefer items that are similar to other items they like.

The model-building step consists of calculating a similarity matrix containing all item-to-
item similarities using a given similarity measure. Popular are again Pearson correlation and
Cosine similarity and Equations 1 and 2 are used. Here the rating vectors x and y are columns
of R representing the ratings for two items.

All pairwise similarities are stored in a n × n similarity matrix S. To reduce the model size
to n × k with k ≪ n, for each item only a list of the k most similar items and their similarity
values are stored. The k items which are most similar to item il is denoted by the set S(l)
which can be seen as the neighborhood of size k of the item. Retaining only k similarities
per item improves the space and time complexity significantly but potentially sacrifices some
recommendation quality (Sarwar et al. 2001).

To make a recommendation based on the model we use the similarities to calculate a weighted
sum of the user’s ratings for related items.

r̂al =
1

∑

i∈S(l) sli

∑

i∈S(l)

slirai (5)

Figure 2 shows an example for n = 8 items with k = 3. For the similarity matrix S only
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the k = 3 largest entries are stored per row (these entries are marked using bold face). For
the example we assume that we have ratings for the active user for items i1, i5 and i8. The
rows corresponding to these items are highlighted in the item similarity matrix. We can now
compute the weighted sum using the similarities (only the reduced matrix with the k = 3
highest ratings is used) and the user’s ratings. The result (below the matrix) shows that i3

has the highest estimated rating for the active user.

Similar to user-based recommender algorithms, user-bias can be reduced by first normalizing
the user-item rating matrix before computing the item-to-item similarity matrix.

Item-based CF is more efficient than user-based CF since the model (reduced similarity ma-
trix) is relatively small (N × k) and can be fully precomputed. Item-based CF is known to
only produce slightly inferior results compared to user-based CF and higher order models
which take the joint distribution of sets of items into account are possible (Deshpande and
Karypis 2004). Furthermore, item-based CF is successfully applied in large scale recommender
systems (e.g., by Amazon.com).

2.3. User and Item-Based CF using 0-1 Data

Less research is available for situations where no large amount of detailed directly elicited
rating data is available. However, this is a common situation and occurs when users do
not want to directly reveal their preferences by rating an item (e.g., because it is to time
consuming). In this case preferences can only be inferred by analyzing usage behavior. For
example, we can easily record in a supermarket setting what items a customer purchases.
However, we do not know why other products were not purchased. The reason might be one
of the following.

• The customer does not need the product right now.

• The customer does not know about the product. Such a product is a good candidate
for recommendation.

• The customer does not like the product. Such a product should obviously not be
recommended.

Mild and Reutterer (2003) and Lee, Jun, Lee, and Kim (2005) present and evaluate recom-
mender algorithms for this setting. The same reasoning is true for recommending pages of
a web site given click-stream data. Here we only have information about which pages were
viewed but not why some pages were not viewed. This situation leads to binary data or
more exactly to 0-1 data where 1 means that we inferred that the user has a preference for
an item and 0 means that either the user does not like the item or does not know about it.
Pan, Zhou, Cao, Liu, Lukose, Scholz, and Yang (2008) call this type of data in the context of
collaborative filtering analogous to similar situations for classifiers one-class data since only
the 1-class is pure and contains only positive examples. The 0-class is a mixture of positive
and negative examples.

In the 0-1 case with rjl ∈ 0, 1 where we define:

rjl =

{

1 user uj is known to have a preference for item il

0 otherwise.
(6)
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Two strategies to deal with one-class data is to assume all missing ratings (zeros) are negative
examples or to assume that all missing ratings are unknown. In addition, Pan et al. (2008)
propose strategies which represent a trade-off between the two extreme strategies based on
wighted low rank approximations of the rating matrix and on negative example sampling
which might improve results across all recommender algorithms.

If we assume that users typically favor only a small fraction of the items and thus most items
with no rating will be indeed negative examples. then we have no missing values and can
use the approaches described above for real valued rating data. However, if we assume all
zeroes are missing values, then this lead to the problem that we cannot compute similarities
using Pearson correlation or Cosine similarity since the not missing parts of the vectors only
contains ones. A similarity measure which only focuses on matching ones and thus prevents
the problem with zeroes is the Jaccard index:

simJaccard(X , Y) =
♣X ∩ Y♣

♣X ∪ Y♣
, (7)

where X and Y are the sets of the items with a 1 in user profiles ua and ub, respectively.
The Jaccard index can be used between users for user-based filtering and between items for
item-based filtering as described above.

2.4. Recommendations for 0-1 Data Based on Association Rules

Recommender systems using association rules produce recommendations based on a depen-
dency model for items given by a set of association rules (Fu et al. 2000; Mobasher et al.
2001; Geyer-Schulz et al. 2002; Lin et al. 2002; Demiriz 2004). The binary profile matrix R

is seen as a database where each user is treated as a transaction that contains the subset of
items in I with a rating of 1. Hence transaction k is defined as Tk = ¶ij ∈ I♣rjk = 1♢ and
the whole transaction data base is D = ¶T1, T2, . . . , TU ♢ where U is the number of users. To
build the dependency model, a set of association rules R is mined from R. Association rules
are rules of the form X → Y where X , Y ⊆ I and X ∩ Y = ∅. For the model we only use
association rules with a single item in the right-hand-side of the rule (♣Y♣ = 1). To select a
set of useful association rules, thresholds on measures of significance and interestingness are
used. Two widely applied measures are:

support(X → Y) = support(X ∪ Y) = Freq(X ∪ Y)/♣D♣ = P̂ (EX ∩ EY)

confidence(X → Y) = support(X ∪ Y)/support(X ) = P̂ (EY ♣EX )

Freq(I) gives the number of transactions in the data base D that contains all items in I. EI

is the event that the itemset I is contained in a transaction.

We now require support(X → Y) > s and confidence(X → Y) > c and also include a length
constraint ♣X ∪ Y♣ ≤ l. The set of rules R that satisfy these constraints form the dependency
model. Although finding all association rules given thresholds on support and confidence is
a hard problem (the model grows in the worse case exponential with the number of items),
algorithms that efficiently find all rules in most cases are available (e.g., Agrawal and Srikant
1994; Zaki 2000; Han, Pei, Yin, and Mao 2004). Also model size can be controlled by l, s and
c.

To make a recommendation for an active user ua given the set of items Ta the user likes and
the set of association rules R (dependency model), the following steps are necessary:
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1. Find all matching rules X → Y for which X ⊆ Ta in R.

2. Recommend N unique right-hand-sides (Y) of the matching rules with the highest
confidence (or another measure of interestingness).

The dependency model is very similar to item-based CF with conditional probability-based
similarity (Deshpande and Karypis 2004). It can be fully precomputed and rules with more
than one items in the left-hand-side (X ), it incorporates higher order effects between more
than two items.

2.5. Other collaborative filtering methods

Over time several other model-based approaches have been developed. A popular simple
item-based approach is the Slope One algorithm (Lemire and Maclachlan 2005). Another
family of algorithms is based on latent factors approach using matrix decomposition (Koren
et al. 2009). More recently, deep learning has become a very popular method for flexible
matrix completion, matrix factorization and collaborative ranking. A comprehensive survey
is presented by Zhang, Yao, Sun, and Tay (2019).

These algorithms are outside the scope of this introductory paper.

3. Evaluation of Recommender Algorithms

Evaluation of recommender systems is an important topic and reviews were presented by Her-
locker, Konstan, Terveen, and Riedl (2004) and Gunawardana and Shani (2009). Typically,
given a rating matrix R, recommender algorithms are evaluated by first partitioning the users
(rows) in R into two sets Utrain ∪ Utest = U . The rows of R corresponding to the training
users Utrain are used to learn the recommender model. Then each user ua ∈ Utest is seen as
an active user. Before creating recommendations some items are withheld from the profile
rua· and it measured either how well the predicted rating matches the withheld value or, for
top-N algorithms, if the items in the recommended list are rated highly by the user. Finally,
the evaluation measures calculated for all test users are averaged.

To determine how to split U into Utrain and Utest we can use several approaches (Kohavi 1995).

• Splitting: We can randomly assign a predefined proportion of the users to the training
set and all others to the test set.

• Bootstrap sampling: We can sample from Utest with replacement to create the train-
ing set and then use the users not in the training set as the test set. This procedure
has the advantage that for smaller data sets we can create larger training sets and still
have users left for testing.

• k-fold cross-validation: Here we split U into k sets (called folds) of approximately
the same size. Then we evaluate k times, always using one fold for testing and all other
folds for leaning. The k results can be averaged. This approach makes sure that each
user is at least once in the test set and the averaging produces more robust results and
error estimates.
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Table 2: 2x2 confusion matrix

actual / predicted negative positive

negative a b

positive c d

The items withheld in the test data are randomly chosen. Breese et al. (1998) introduced the
four experimental protocols called Given 2, Given 5, Given 10 and All-but-1. For the Given
x protocols for each user x randomly chosen items are given to the recommender algorithm
and the remaining items are withheld for evaluation. For All but x the algorithm gets all but
x withheld items.

In the following we discuss the evaluation of predicted ratings and then of top-N recommen-
dation lists.

3.1. Evaluation of predicted ratings

A typical way to evaluate a prediction is to compute the deviation of the prediction from the
true value. This is the basis for the Mean Average Error (MAE)

MAE =
1

♣K♣

∑

(j,l)∈K

♣rjl − r̂jl♣, (8)

where K is the set of all user-item pairings (j, l) for which we have a predicted rating r̂jl and
a known rating rjl which was not used to learn the recommendation model.

Another popular measure is the Root Mean Square Error (RMSE).

RMSE =

√

∑

(j,l)∈K(rjl − r̂jl)2

♣K♣
(9)

RMSE penalizes larger errors stronger than MAE and thus is suitable for situations where
small prediction errors are not very important.

3.2. Evaluation Top-N recommendations

The items in the predicted top-N lists and the withheld items liked by the user (typically
determined by a simple threshold on the actual rating) for all test users Utest can be aggregated
into a so called confusion matrix depicted in table 2 (see Kohavi and Provost (1998)) which
corresponds exactly to the outcomes of a classical statistical experiment. The confusion matrix
shows how many of the items recommended in the top-N lists (column predicted positive;
d + b) were withheld items and thus correct recommendations (cell d) and how many where
potentially incorrect (cell b). The matrix also shows how many of the not recommended
items (column predicted negative; a + c) should have actually been recommended since they
represent withheld items (cell c).

From the confusion matrix several performance measures can be derived. For the data mining
task of a recommender system the performance of an algorithm depends on its ability to learn
significant patterns in the data set. Performance measures used to evaluate these algorithms
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have their root in machine learning. A commonly used measure is accuracy, the fraction of
correct recommendations to total possible recommendations.

Accuracy =
correct recommendations

total possible recommendations
=

a + d

a + b + c + d
(10)

A common error measure is the mean absolute error (MAE, also called mean absolute deviation
or MAD).

MAE =
1

N

N
∑

i=1

♣ϵi♣ =
b + c

a + b + c + d
, (11)

where N = a+b+c+d is the total number of items which can be recommended and ♣ϵi♣ is the
absolute error of each item. Since we deal with 0-1 data, ♣ϵi♣ can only be zero (in cells a and d
in the confusion matrix) or one (in cells b and c). For evaluation recommender algorithms for
rating data, the root mean square error is often used. For 0-1 data it reduces to the square
root of MAE.

Recommender systems help to find items of interest from the set of all available items. This
can be seen as a retrieval task known from information retrieval. Therefore, standard in-
formation retrieval performance measures are frequently used to evaluate recommender per-
formance. Precision and recall are the best known measures used in information retrieval
(Salton and McGill 1983; van Rijsbergen 1979).

Precision =
correctly recommended items

total recommended items
=

d

b + d
(12)

Recall =
correctly recommended items

total useful recommendations
=

d

c + d
(13)

Often the number of total useful recommendations needed for recall is unknown since the
whole collection would have to be inspected. However, instead of the actual total useful
recommendations often the total number of known useful recommendations is used. Precision
and recall are conflicting properties, high precision means low recall and vice versa. To find
an optimal trade-off between precision and recall a single-valued measure like the E-measure
(van Rijsbergen 1979) can be used. The parameter α controls the trade-off between precision
and recall.

E-measure =
1

α(1/Precision) + (1 − α)(1/Recall)
(14)

A popular single-valued measure is the F-measure. It is defined as the harmonic mean of
precision and recall.

F-measure =
2 Precision Recall

Precision + Recall
=

2

1/Precision + 1/Recall
(15)

It is a special case of the E-measure with α = .5 which places the same weight on both,
precision and recall. In the recommender evaluation literature the F-measure is often referred
to as the measure F1.

Another method used in the literature to compare two classifiers at different parameter set-
tings is the Receiver Operating Characteristic (ROC). The method was developed for signal
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Figure 3: UML class diagram for package recommenderlab (Fowler 2004).

detection and goes back to the Swets model (van Rijsbergen 1979). The ROC-curve is a
plot of the system’s probability of detection (also called sensitivity or true positive rate TPR
which is equivalent to recall as defined in formula 13) by the probability of false alarm (also
called false positive rate FPR or 1− specificity, where specificity = a

a+b
) with regard to model

parameters. A possible way to compare the efficiency of two systems is by comparing the size
of the area under the ROC-curve, where a bigger area indicates better performance.

4. Recommenderlab Infrastructure

recommenderlab is implemented using formal classes in the S4 class system. Figure 3 shows
the main classes and their relationships.

The package uses the abstract ratingMatrix to provide a common interface for rating data.
ratingMatrix implements many methods typically available for matrix-like objects. For exam-
ple, dim(), dimnames(), colCounts(), rowCounts(), colMeans(), rowMeans(), colSums()

and rowSums(). Additionally sample() can be used to sample from users (rows) and image()

produces an image plot.

For ratingMatrix we provide two concrete implementations realRatingMatrix and
binaryRatingMatrix to represent different types of rating matrices R. realRatingMatrix im-
plements a rating matrix with real valued ratings stored in sparse format defined in pack-
age Matrix. Sparse matrices in Matrix typically do not store 0s explicitly, however for
realRatingMatrix we use these sparse matrices such that instead of 0s, NAs are not explic-
itly stored.

binaryRatingMatrix implements a 0-1 rating matrix using the implementation of itemMatrix

defined in package arules. itemMatrix stores only the ones and internally uses a sparse rep-
resentation from package Matrix. With this class structure recommenderlab can be easily
extended to other forms of rating matrices with different concepts for efficient storage in the
future.

Class Recommender implements the data structure to store recommendation models. The
creator method

Recommender(data, method, parameter = NULL)
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takes data as a ratingMatrix, a method name and some optional parameters for the method
and returns a Recommender object. Once we have a recommender object, we can predict
top-N recommendations for active users using

predict(object, newdata, n=10, type=c("topNList", "ratings", "ratingMatrix"),

...).

Predict can return either top-N lists (default setting) or predicted ratings. object is the
recommender object, newdata is the data for the active users. For top-N lists n is the
maximal number of recommended items in each list and predict() will return an objects
of class topNList which contains one top-N list for each active user. For "ratings" and
"ratingMatrix", n is ignored and an object of realRatingMatrix is returned. Each row contains
the predicted ratings for one active user. The difference is, that for "ratings", the items for
which a rating exists in newdata have a NA instead of a predicted/actual ratings.

The actual implementations for the recommendation algorithms are managed using the reg-
istry mechanism provided by package registry. The registry called recommenderRegistry

and stores recommendation method names and a short description. Generally, the registry
mechanism is hidden from the user and the creator function Recommender() uses it in the
background to map a recommender method name to its implementation. However, the reg-
istry can be directly queried by

recommenderRegistry$get_entries()

and new recommender algorithms can be added by the user. We will give and example for
this feature in the examples section of this paper.

To evaluate recommender algorithms package recommenderlab provides the infrastructure to
create and maintain evaluation schemes stored as an object of class evaluationScheme from
rating data. The creator function

evaluationScheme(data, method="split", train=0.9, k=10, given=3)

creates the evaluation scheme from a data set using a method (e.g., simple split, bootstrap
sampling, k-fold cross validation). Testing is perfomed by withholding items (parameter
given). Breese et al. (1998) introduced the four experimental witholding protocols called
Given 2, Given 5, Given 10 and All-but-1. During testing, the Given x protocol presents
the algorithm with only x randomly chosen items for the test user, and the algorithm is
evaluated by how well it is able to predict the withheld items. For All-but-x, a generalization
of All-but-1, the algorithm sees all but x withheld ratings for the test user. given controls
x in the evaluations scheme. Positive integers result in a Given x protocol, while negative
values produce a All-but-x protocol.

The function evaluate() is then used to evaluate several recommender algorithms using
an evaluation scheme resulting in a evaluation result list (class evaluationResultList) with
one entry (class evaluationResult) per algorithm. Each object of evaluationResult contains
one or several object of confusionMatrix depending on the number of evaluations specified
in the evaluationScheme (e.g., k for k-fold cross validation). With this infrastructure several
recommender algorithms can be compared on a data set with a single line of code.
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In the following, we will illustrate the usage of recommenderlab with several examples.

5. Examples

This fist few example shows how to manage data in recommender lab and then we create and
evaluate recommenders. First, we load the package.

R> library("recommenderlab")

5.1. Coercion to and from rating matrices

For this example we create a small artificial data set as a matrix.

R> m <- matrix(sample(c(as.numeric(0:5), NA), 50,

+ replace=TRUE, prob=c(rep(.4/6,6),.6)), ncol=10,

+ dimnames=list(user=paste("u", 1:5, sep=''),

+ item=paste("i", 1:10, sep='')))

R> m

item

user i1 i2 i3 i4 i5 i6 i7 i8 i9 i10

u1 NA 2 3 5 NA 5 NA 4 NA NA

u2 2 NA NA NA NA NA NA NA 2 3

u3 2 NA NA NA NA 1 NA NA NA NA

u4 2 2 1 NA NA 5 NA 0 2 NA

u5 5 NA NA NA NA NA NA 5 NA 4

With coercion, the matrix can be easily converted into a realRatingMatrix object which stores
the data in sparse format (only non-NA values are stored explicitly; NA values are represented
by a dot).

R> r <- as(m, "realRatingMatrix")

R> r

5 x 10 rating matrix of class ‘realRatingMatrix’ with 19 ratings.

R> getRatingMatrix(r)

5 x 10 sparse Matrix of class "dgCMatrix"

item

user

u1 . 2 3 5 . 5 . 4.000e+00 . .

u2 2 . . . . . . . 2 3

u3 2 . . . . 1 . . . .

u4 2 2 1 . . 5 . 2.225e-308 2 .

u5 5 . . . . . . 5.000e+00 . 4
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The realRatingMatrix can be coerced back into a matrix which is identical to the original
matrix.

R> identical(as(r, "matrix"),m)

[1] TRUE

It can also be coerced into a list of users with their ratings for closer inspection or into a
data.frame with user/item/rating tuples.

R> as(r, "list")

$`0`

i2 i3 i4 i6 i8

2 3 5 5 4

$`1`

i1 i9 i10

2 2 3

$`2`

i1 i6

2 1

$`3`

i1 i2 i3 i6 i8 i9

2.000e+00 2.000e+00 1.000e+00 5.000e+00 2.225e-308 2.000e+00

$`4`

i1 i8 i10

5 5 4

R> head(as(r, "data.frame"))

user item rating

5 u1 i2 2

7 u1 i3 3

9 u1 i4 5

10 u1 i6 5

13 u1 i8 4

1 u2 i1 2

The data.frame version is especially suited for writing rating data to a file (e.g., by
write.csv()). Coercion from data.frame (user/item/rating tuples) and list into a sparse
rating matrix is also provided. This way, external rating data can easily be imported into
recommenderlab.
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5.2. Normalization

An important operation for rating matrices is to normalize the entries to, e.g., centering to
remove rating bias by subtracting the row mean from all ratings in the row. This is can be
easily done using normalize().

R> r_m <- normalize(r)

R> r_m

5 x 10 rating matrix of class ‘realRatingMatrix’ with 19 ratings.

Normalized using center on rows.

R> getRatingMatrix(r_m)

5 x 10 sparse Matrix of class "dgCMatrix"

item

user

u1 . -1.800e+00 -0.8 1.2 . 1.2 . 0.2000 . .

u2 -3.333e-01 . . . . . . . -3.333e-01 0.6667

u3 5.000e-01 . . . . -0.5 . . . .

u4 2.225e-308 2.225e-308 -1.0 . . 3.0 . -2.0000 2.225e-308 .

u5 3.333e-01 . . . . . . 0.3333 . -0.6667

Normalization can be reversed using denormalize().

R> denormalize(r_m)

5 x 10 rating matrix of class ‘realRatingMatrix’ with 19 ratings.

Small portions of rating matrices can be visually inspected using image().

R> image(r, main = "Raw Ratings")

R> image(r_m, main = "Normalized Ratings")

Figure 4 shows the resulting plots.

5.3. Binarization of data

A matrix with real valued ratings can be transformed into a 0-1 matrix with binarize() and
a user specified threshold (min_ratings) on the raw or normalized ratings. In the following
only items with a rating of 4 or higher will become a positive rating in the new binary rating
matrix.

R> r_b <- binarize(r, minRating=4)

R> r_b

5 x 10 rating matrix of class ‘binaryRatingMatrix’ with 7 ratings.
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Figure 4: Image plot the artificial rating data before and after normalization.

R> as(r_b, "matrix")

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10

u1 FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE

u2 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

u3 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

u4 FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE

u5 TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE

5.4. Inspection of data set properties

We will use the data set Jester5k for the rest of this section. This data set comes with rec-

ommenderlab and contains a sample of 5000 users from the anonymous ratings data from the
Jester Online Joke Recommender System collected between April 1999 and May 2003 (Gold-
berg, Roeder, Gupta, and Perkins 2001). The data set contains ratings for 100 jokes on a
scale from −10 to +10. All users in the data set have rated 36 or more jokes.

R> data(Jester5k)

R> Jester5k

5000 x 100 rating matrix of class ‘realRatingMatrix’ with 363209 ratings.

Jester5k contains 363209 ratings. For the following examples we use only a subset of the data
containing a sample of 1000 users (we set the random number generator seed for reproducibil-
ity). For random sampling sample() is provided for rating matrices.

R> set.seed(1234)

R> r <- sample(Jester5k, 1000)

R> r
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1000 x 100 rating matrix of class ‘realRatingMatrix’ with 74323 ratings.

This subset still contains 74323 ratings. Next, we inspect the ratings for the first user. We
can select an individual user with the extraction operator.

R> rowCounts(r[1,])

u20648

74

R> as(r[1,], "list")

$`0`

j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12

-2.86 1.75 -4.03 -5.78 2.23 -5.44 -3.40 8.74 -4.51 3.74 0.15 -0.39

j13 j14 j15 j16 j17 j18 j19 j20 j21 j22 j23 j24

-1.94 5.97 -7.77 1.26 2.18 -2.14 1.17 -8.64 -1.36 1.21 4.95 -9.81

j25 j26 j27 j28 j29 j30 j31 j32 j33 j34 j35 j36

-3.35 3.01 2.33 1.36 9.08 -7.72 -9.42 0.97 -5.83 -0.83 6.36 3.54

j37 j38 j39 j40 j41 j42 j43 j44 j45 j46 j47 j48

-3.64 0.87 2.23 3.54 -7.96 -1.41 2.62 -8.45 -0.29 -9.76 -4.47 3.11

j49 j50 j51 j52 j53 j54 j55 j56 j57 j58 j59 j60

6.26 4.95 -9.17 -8.01 5.49 -5.97 1.70 5.00 4.13 -2.18 0.49 2.77

j61 j62 j63 j64 j65 j66 j67 j68 j69 j70 j72 j81

-3.01 8.35 -2.77 -3.25 5.39 5.49 -1.31 -3.74 2.96 0.15 4.81 5.15

j85 j92

2.23 -8.40

R> rowMeans(r[1,])

u20648

-0.4232

The user has rated 74 jokes, the list shows the ratings and the user’s rating average is -
0.423243243243243 .

Next, we look at several distributions to understand the data better. getRatings() extracts
a vector with all non-missing ratings from a rating matrix.

R> hist(getRatings(r), breaks=100)

In the histogram in Figure 5 shoes an interesting distribution where all negative values occur
with a almost identical frequency and the positive ratings more frequent with a steady decline
towards the rating 10. Since this distribution can be the result of users with strong rating
bias, we look next at the rating distribution after normalization.

R> hist(getRatings(normalize(r)), breaks=100)
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Figure 5: Raw rating distribution for as sample of Jester.
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Figure 6: Histogram of normalized ratings using row centering (left) and Z-score normalization
(right).



Michael Hahsler 21
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Figure 7: Distribution of the number of rated items per user (left) and of the average ratings
per joke (right).

R> hist(getRatings(normalize(r, method="Z-score")), breaks=100)

Figure 6 shows that the distribution of ratings ins closer to a normal distribution after row
centering and Z-score normalization additionally reduces the variance to a range of roughly
−3 to +3 standard deviations. It is interesting to see that there is a pronounced peak of
ratings between zero and two.

Finally, we look at how many jokes each user has rated and what the mean rating for each
Joke is.

R> hist(rowCounts(r), breaks=50)

R> hist(colMeans(r), breaks=20)

Figure 7 shows that there are unusually many users with ratings around 70 and users who
have rated all jokes. The average ratings per joke look closer to a normal distribution with a
mean above 0.

5.5. Creating a recommender

A recommender is created using the creator function Recommender(). Available recommenda-
tion methods are stored in a registry. The registry can be queried. Here we are only interested
in methods for real-valued rating data.

R> recommenderRegistry$get_entries(dataType = "realRatingMatrix")

$HYBRID_realRatingMatrix

Recommender method: HYBRID for realRatingMatrix Description:
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Hybrid recommender that aggegates several recommendation

strategies using weighted averages. Reference: NA

Parameters:

recommenders weights aggregation_type

1 NULL NULL "sum"

$ALS_realRatingMatrix

Recommender method: ALS for realRatingMatrix Description:

Recommender for explicit ratings based on latent factors,

calculated by alternating least squares algorithm. Reference:

Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, Rong Pan

(2008). Large-Scale Parallel Collaborative Filtering for the

Netflix Prize, 4th Int'l Conf. Algorithmic Aspects in

Information and Management, LNCS 5034.

Parameters:

normalize lambda n_factors n_iterations min_item_nr seed

1 NULL 0.1 10 10 1 NULL

$ALS_implicit_realRatingMatrix

Recommender method: ALS_implicit for realRatingMatrix Description:

Recommender for implicit data based on latent factors,

calculated by alternating least squares algorithm. Reference:

Yifan Hu, Yehuda Koren, Chris Volinsky (2008). Collaborative

Filtering for Implicit Feedback Datasets, ICDM '08 Proceedings

of the 2008 Eighth IEEE International Conference on Data Mining,

pages 263-272.

Parameters:

lambda alpha n_factors n_iterations min_item_nr seed

1 0.1 10 10 10 1 NULL

$IBCF_realRatingMatrix

Recommender method: IBCF for realRatingMatrix Description:

Recommender based on item-based collaborative filtering.

Reference: NA

Parameters:

k method normalize normalize_sim_matrix alpha na_as_zero

1 30 "cosine" "center" FALSE 0.5 FALSE

$LIBMF_realRatingMatrix

Recommender method: LIBMF for realRatingMatrix Description: Matrix

factorization with LIBMF via package recosystem

(https://cran.r-project.org/web/packages/recosystem/vignettes/introduction.html).

Reference: NA

Parameters:

dim costp_l2 costq_l2 nthread verbose

1 10 0.01 0.01 1 FALSE
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$POPULAR_realRatingMatrix

Recommender method: POPULAR for realRatingMatrix Description:

Recommender based on item popularity. Reference: NA

Parameters:

normalize

1 "center"

aggregationRatings

1 new("standardGeneric", .Data = function (x, na.rm = FALSE, dims = 1,

aggregationPopularity

1 new("standardGeneric", .Data = function (x, na.rm = FALSE, dims = 1,

$RANDOM_realRatingMatrix

Recommender method: RANDOM for realRatingMatrix Description:

Produce random recommendations (real ratings). Reference: NA

Parameters: None

$RERECOMMEND_realRatingMatrix

Recommender method: RERECOMMEND for realRatingMatrix Description:

Re-recommends highly rated items (real ratings). Reference: NA

Parameters:

randomize minRating

1 1 NA

$SVD_realRatingMatrix

Recommender method: SVD for realRatingMatrix Description:

Recommender based on SVD approximation with column-mean

imputation. Reference: NA

Parameters:

k maxiter normalize

1 10 100 "center"

$SVDF_realRatingMatrix

Recommender method: SVDF for realRatingMatrix Description:

Recommender based on Funk SVD with gradient descend

(https://sifter.org/~simon/journal/20061211.html). Reference: NA

Parameters:

k gamma lambda min_epochs max_epochs min_improvement normalize verbose

1 10 0.015 0.001 50 200 0.000001 "center" FALSE

$UBCF_realRatingMatrix

Recommender method: UBCF for realRatingMatrix Description:

Recommender based on user-based collaborative filtering.

Reference: NA

Parameters:

method nn sample weighted normalize min_matching_items

1 "cosine" 25 FALSE TRUE "center" 0

min_predictive_items
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1 0

Next, we create a recommender which generates recommendations solely on the popularity
of items (the number of users who have the item in their profile). We create a recommender
from the first 1000 users in the Jester5k data set.

R> r <- Recommender(Jester5k[1:1000], method = "POPULAR")

R> r

Recommender of type ‘POPULAR’ for ‘realRatingMatrix’

learned using 1000 users.

The model can be obtained from a recommender using getModel().

R> names(getModel(r))

[1] "topN" "ratings" "normalize"

[4] "aggregationRatings" "aggregationPopularity" "verbose"

R> getModel(r)$topN

Recommendations as ‘topNList’ with n = 100 for 1 users.

In this case the model has a top-N list to store the popularity order and further elements
(average ratings, if it used normalization and the used aggregation function).

Recommendations are generated by predict() (consistent with its use for other types of
models in R). The result are recommendations in the form of an object of class TopNList.
Here we create top-5 recommendation lists for two users who were not used to learn the
model.

R> recom <- predict(r, Jester5k[1001:1002], n=5)

R> recom

Recommendations as ‘topNList’ with n = 5 for 2 users.

The result contains two ordered top-N recommendation lists, one for each user. The recom-
mended items can be inspected as a list.

R> as(recom, "list")

$u15553

[1] "j89" "j72" "j93" "j76" "j87"

$u7886

[1] "j89" "j72" "j93" "j76" "j1"
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Since the top-N lists are ordered, we can extract sublists of the best items in the top-N . For
example, we can get the best 3 recommendations for each list using bestN().

R> recom3 <- bestN(recom, n = 3)

R> recom3

Recommendations as ‘topNList’ with n = 3 for 2 users.

R> as(recom3, "list")

$u15553

[1] "j89" "j72" "j93"

$u7886

[1] "j89" "j72" "j93"

Many recommender algorithms can also predict ratings. This is also implemented using
predict() with the parameter type set to "ratings".

R> recom <- predict(r, Jester5k[1001:1002], type="ratings")

R> recom

2 x 100 rating matrix of class ‘realRatingMatrix’ with 72 ratings.

R> as(recom, "matrix")[,1:10]

j1 j2 j3 j4 j5 j6 j7 j8 j9 j10

u15553 NA NA NA NA NA NA NA NA NA NA

u7886 4.005 2.918 2.944 0.998 NA NA NA NA 2.319 NA

Predicted ratings are returned as an object of realRatingMatrix. The prediction contains NA

for the items rated by the active users. In the example we show the predicted ratings for the
first 10 items for the two active users.

Alternatively, we can also request the complete rating matrix which includes the original
ratings by the user.

R> recom <- predict(r, Jester5k[1001:1002], type="ratingMatrix")

R> recom

2 x 100 rating matrix of class ‘realRatingMatrix’ with 200 ratings.

R> as(recom, "matrix")[,1:10]

j1 j2 j3 j4 j5 j6 j7 j8 j9 j10

u15553 6.756 5.669 5.695 3.749 5.616 6.989 4.683 4.802 5.070 6.790

u7886 4.005 2.918 2.944 0.998 2.865 4.238 1.932 2.050 2.319 4.039
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5.6. Evaluation of predicted ratings

Next, we will look at the evaluation of recommender algorithms. recommenderlab imple-
ments several standard evaluation methods for recommender systems. Evaluation starts with
creating an evaluation scheme that determines what and how data is used for training and
testing. Here we create an evaluation scheme which splits the first 1000 users in Jester5k
into a training set (90%) and a test set (10%). For the test set 15 items will be given to the
recommender algorithm and the other items will be held out for computing the error.

R> e <- evaluationScheme(Jester5k[1:1000], method="split", train=0.9,

+ given=15, goodRating=5)

R> e

Evaluation scheme with 15 items given

Method: ‘split’ with 1 run(s).

Training set proportion: 0.900

Good ratings: >=5.000000

Data set: 1000 x 100 rating matrix of class ‘realRatingMatrix’ with 74164 ratings.

We create two recommenders (user-based and item-based collaborative filtering) using the
training data.

R> r1 <- Recommender(getData(e, "train"), "UBCF")

R> r1

Recommender of type ‘UBCF’ for ‘realRatingMatrix’

learned using 900 users.

R> r2 <- Recommender(getData(e, "train"), "IBCF")

R> r2

Recommender of type ‘IBCF’ for ‘realRatingMatrix’

learned using 900 users.

Next, we compute predicted ratings for the known part of the test data (15 items for each
user) using the two algorithms.

R> p1 <- predict(r1, getData(e, "known"), type="ratings")

R> p1

100 x 100 rating matrix of class ‘realRatingMatrix’ with 8398 ratings.

R> p2 <- predict(r2, getData(e, "known"), type="ratings")

R> p2

100 x 100 rating matrix of class ‘realRatingMatrix’ with 8220 ratings.
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Finally, we can calculate the error between the prediction and the unknown part of the test
data.

R> error <- rbind(

+ UBCF = calcPredictionAccuracy(p1, getData(e, "unknown")),

+ IBCF = calcPredictionAccuracy(p2, getData(e, "unknown"))

+ )

R> error

RMSE MSE MAE

UBCF 4.511 20.34 3.527

IBCF 4.513 20.36 3.414

In this example user-based collaborative filtering produces a smaller prediction error.

5.7. Evaluation of a top-N recommender algorithm

For this example we create a 4-fold cross validation scheme with the the Given-3 protocol,
i.e., for the test users all but three randomly selected items are withheld for evaluation.

R> scheme <- evaluationScheme(Jester5k[1:1000], method="cross", k=4, given=3,

+ goodRating=5)

R> scheme

Evaluation scheme with 3 items given

Method: ‘cross-validation’ with 4 run(s).

Good ratings: >=5.000000

Data set: 1000 x 100 rating matrix of class ‘realRatingMatrix’ with 74164 ratings.

Next we use the created evaluation scheme to evaluate the recommender method popular.
We evaluate top-1, top-3, top-5, top-10, top-15 and top-20 recommendation lists.

R> results <- evaluate(scheme, method="POPULAR", type = "topNList",

+ n=c(1,3,5,10,15,20))

POPULAR run fold/sample [model time/prediction time]

1 [0.002sec/0.071sec]

2 [0.003sec/0.072sec]

3 [0.002sec/0.066sec]

4 [0.002sec/0.065sec]

R> results

Evaluation results for 4 folds/samples using method ‘POPULAR’.
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The result is an object of class EvaluationResult which contains several confusion matrices.
getConfusionMatrix() will return the confusion matrices for the 4 runs (we used 4-fold cross
evaluation) as a list. In the following we look at the first element of the list which represents
the first of the 4 runs.

R> getConfusionMatrix(results)[[1]]

TP FP FN TN N precision recall TPR FPR n

[1,] 0.444 0.480 19.26 76.87 97.05 0.4805 0.03339 0.03339 0.006267 1

[2,] 1.248 1.524 18.46 75.82 97.05 0.4502 0.08151 0.08151 0.018945 3

[3,] 2.068 2.552 17.64 74.80 97.05 0.4476 0.12923 0.12923 0.031553 5

[4,] 4.000 5.240 15.70 72.11 97.05 0.4329 0.24999 0.24999 0.064720 10

[5,] 5.792 8.068 13.91 69.28 97.05 0.4179 0.35324 0.35324 0.101047 15

[6,] 7.056 11.424 12.65 65.92 97.05 0.3818 0.40865 0.40865 0.144694 20

For the first run we have 6 confusion matrices represented by rows, one for each of the six
different top-N lists we used for evaluation. n is the number of recommendations per list.
TP, FP, FN and TN are the entries for true positives, false positives, false negatives and true
negatives in the confusion matrix. The remaining columns contain precomputed performance
measures. The average for all runs can be obtained from the evaluation results directly using
avg().

R> avg(results)

TP FP FN TN N precision recall TPR FPR n

[1,] 0.426 0.500 18.13 77.94 97 0.4599 0.03213 0.03213 0.006175 1

[2,] 1.200 1.578 17.36 76.87 97 0.4320 0.08543 0.08543 0.019344 3

[3,] 1.959 2.671 16.60 75.77 97 0.4231 0.13093 0.13093 0.032626 5

[4,] 3.829 5.431 14.73 73.01 97 0.4135 0.24897 0.24897 0.066779 10

[5,] 5.497 8.393 13.06 70.05 97 0.3957 0.35092 0.35092 0.103529 15

[6,] 6.830 11.690 11.72 66.76 97 0.3687 0.42391 0.42391 0.144721 20

Evaluation results can be plotted using plot(). The default plot is the ROC curve which
plots the true positive rate (TPR) against the false positive rate (FPR).

R> plot(results, annotate=TRUE)

For the plot where we annotated the curve with the size of the top-N list is shown in Fig-
ure 8. By using "prec/rec" as the second argument, a precision-recall plot is produced (see
Figure 9).

R> plot(results, "prec/rec", annotate=TRUE)

5.8. Comparing recommender algorithms

Comparing top-N recommendations

The comparison of several recommender algorithms is one of the main functions of recom-

menderlab. For comparison also evaluate() is used. The only change is to use evaluate()
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Figure 8: ROC curve for recommender method POPULAR.
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Figure 9: Precision-recall plot for method POPULAR.
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with a list of algorithms together with their parameters instead of a single method name. In
the following we use the evaluation scheme created above to compare the five recommender
algorithms: random items, popular items, user-based CF, item-based CF, and SVD approxi-
mation. Note that when running the following code, the CF based algorithms are very slow.

For the evaluation we use a “all-but-5” scheme. This is indicated by a negative number for
given.

R> set.seed(2016)

R> scheme <- evaluationScheme(Jester5k[1:1000], method="split", train = .9,

+ given=-5, goodRating=5)

R> scheme

Evaluation scheme using all-but-5 items

Method: ‘split’ with 1 run(s).

Training set proportion: 0.900

Good ratings: >=5.000000

Data set: 1000 x 100 rating matrix of class ‘realRatingMatrix’ with 74164 ratings.

R> algorithms <- list(

+ "random items" = list(name="RANDOM", param=NULL),

+ "popular items" = list(name="POPULAR", param=NULL),

+ "user-based CF" = list(name="UBCF", param=list(nn=50)),

+ "item-based CF" = list(name="IBCF", param=list(k=50)),

+ "SVD approximation" = list(name="SVD", param=list(k = 50))

+ )

R> ## run algorithms

R> results <- evaluate(scheme, algorithms, type = "topNList",

+ n=c(1, 3, 5, 10, 15, 20))

RANDOM run fold/sample [model time/prediction time]

1 [0.002sec/0.006sec]

POPULAR run fold/sample [model time/prediction time]

1 [0.006sec/0.027sec]

UBCF run fold/sample [model time/prediction time]

1 [0.003sec/0.148sec]

IBCF run fold/sample [model time/prediction time]

1 [0.031sec/0.008sec]

SVD run fold/sample [model time/prediction time]

1 [0.065sec/0.008sec]

The result is an object of class evaluationResultList for the five recommender algorithms.

R> results

List of evaluation results for 5 recommenders:
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$`random items`

Evaluation results for 1 folds/samples using method ‘RANDOM’.

$`popular items`

Evaluation results for 1 folds/samples using method ‘POPULAR’.

$`user-based CF`

Evaluation results for 1 folds/samples using method ‘UBCF’.

$`item-based CF`

Evaluation results for 1 folds/samples using method ‘IBCF’.

$`SVD approximation`

Evaluation results for 1 folds/samples using method ‘SVD’.

Individual results can be accessed by list subsetting using an index or the name specified
when calling evaluate().

R> names(results)

[1] "random items" "popular items" "user-based CF"

[4] "item-based CF" "SVD approximation"

R> results[["user-based CF"]]

Evaluation results for 1 folds/samples using method ‘UBCF’.

Again plot() can be used to create ROC and precision-recall plots (see Figures 10 and 11).
Plot accepts most of the usual graphical parameters like pch, type, lty, etc. In addition
annotate can be used to annotate the points on selected curves with the list length.

R> plot(results, annotate=c(1,3), legend="bottomright")

R> plot(results, "prec/rec", annotate=3, legend="topleft")

For this data set and the given evaluation scheme popular items and the user-based CF
methods clearly outperform the other methods. In Figure 10 we see that they dominate
(almost completely) the other method since for each length of top-N list they provide a
better combination of TPR and FPR.

Comparing ratings

Next, we evaluate not top-N recommendations, but how well the algorithms can predict
ratings.

R> ## run algorithms

R> results <- evaluate(scheme, algorithms, type = "ratings")
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Figure 10: Comparison of ROC curves for several recommender methods for the given-3
evaluation scheme.
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RANDOM run fold/sample [model time/prediction time]

1 [0.001sec/0.002sec]

POPULAR run fold/sample [model time/prediction time]

1 [0.003sec/0.005sec]

UBCF run fold/sample [model time/prediction time]

1 [0.001sec/0.127sec]

IBCF run fold/sample [model time/prediction time]

1 [0.039sec/0.004sec]

SVD run fold/sample [model time/prediction time]

1 [0.061sec/0.004sec]

The result is again an object of class evaluationResultList for the five recommender algorithms.

R> results

List of evaluation results for 5 recommenders:

$`random items`

Evaluation results for 1 folds/samples using method ‘RANDOM’.

$`popular items`

Evaluation results for 1 folds/samples using method ‘POPULAR’.

$`user-based CF`

Evaluation results for 1 folds/samples using method ‘UBCF’.

$`item-based CF`

Evaluation results for 1 folds/samples using method ‘IBCF’.

$`SVD approximation`

Evaluation results for 1 folds/samples using method ‘SVD’.

R> plot(results, ylim = c(0,100))

Plotting the results shows a barplot with the root mean square error, the mean square error
and the mean absolute error (see Figures 12).

Using a 0-1 data set

For comparison we will check how the algorithms compare given less information. We convert
the data set into 0-1 data and instead of a all-but-5 we use the given-3 scheme.

R> Jester_binary <- binarize(Jester5k, minRating=5)

R> Jester_binary <- Jester_binary[rowCounts(Jester_binary)>20]

R> Jester_binary

1840 x 100 rating matrix of class ‘binaryRatingMatrix’ with 67728 ratings.
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R> scheme_binary <- evaluationScheme(Jester_binary[1:1000],

+ method="split", train=.9, k=1, given=3)

R> scheme_binary

Evaluation scheme with 3 items given

Method: ‘split’ with 1 run(s).

Training set proportion: 0.900

Good ratings: NA

Data set: 1000 x 100 rating matrix of class ‘binaryRatingMatrix’ with 36619 ratings.

R> results_binary <- evaluate(scheme_binary, algorithms,

+ type = "topNList", n=c(1,3,5,10,15,20))

RANDOM run fold/sample [model time/prediction time]

1 [0.001sec/0.006sec]

POPULAR run fold/sample [model time/prediction time]

1 [0.001sec/0.012sec]

UBCF run fold/sample [model time/prediction time]

1 [0.001sec/0.214sec]

IBCF run fold/sample [model time/prediction time]

1 [0.057sec/0.007sec]

SVD run fold/sample [model time/prediction time]

1

Note that SVD does not implement a method for binary data and is thus skipped.

R> plot(results_binary, annotate=c(1,3), legend="topright")

From Figure 13 we see that given less information, the performance of user-based CF suffers
the most and the simple popularity based recommender performs almost a well as item-based
CF.

Similar to the examples presented here, it is easy to compare different recommender algo-
rithms for different data sets or to compare different algorithm settings (e.g., the influence of
neighborhood formation using different distance measures or different neighborhood sizes).

5.9. Implementing a new recommender algorithm

Adding a new recommender algorithm to recommenderlab is straight forward since it uses
a registry mechanism to manage the algorithms. To implement the actual recommender
algorithm we need to implement a creator function which takes a training data set, trains
a model and provides a predict function which uses the model to create recommendations
for new data. The model and the predict function are both encapsulated in an object of
class Recommender.

For examples look at the files starting with RECOM in the packages R directory. A good
examples is in RECOM_POPULAR.R.
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6. Conclusion

In this paper we described the R extension package recommenderlab which is especially
geared towards developing and testing recommender algorithms. The package allows to create
evaluation schemes following accepted methods and then use them to evaluate and compare
recommender algorithms. recommenderlab currently includes several standard algorithms
and adding new recommender algorithms to the package is facilitated by the built in registry
mechanism to manage algorithms. In the future we will add more and more of these algorithms
to the package and we hope that some algorithms will also be contributed by other researchers.
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