Package 'ssMRCD'

May 15, 2023
Type Package
Title Spatially Smoothed MRCD Estimator
Version 0.1.0
Maintainer Patricia Puchhammer patricia.puchhammer@tuwien.ac.at
Description Estimation of the Spatially Smoothed Minimum Regularized Determinant (ssMRCD) estimator and its usage in an ssMRCD-based outlier detection method as described in Puchhammer and Filzmoser (2023) doi:10.48550/arXiv.2305.05371. Included are also complementary visualization and parameter tuning tools.
License GPL-3
Encoding UTF-8
LazyData true
Imports stats, grDevices, graphics, robustbase, scales, car, dbscan, plot3D, dplyr, ggplot2
RoxygenNote 7.2.3
Suggests knitr, rmarkdown, testthat (>=3.0.0)
Config/testthat/edition 3
Depends R (>=4.0.0)
VignetteBuilder knitr
NeedsCompilation no
Author Patricia Puchhammer [aut, cre, cph], Peter Filzmoser [aut]
Repository CRAN
Date/Publication 2023-05-15 19:20:02 UTC

R topics documented:

contamination_random 2
geo_weights 3
local_outliers_ssMRCD 4
N_structure_gridbased 5
objective_matrix 6
parameter_tuning 7
plot.locOuts 8
plot.ssMRCD 10
rescale_weights 12
restructure_as_list 13
ssMRCD 13
summary.locOuts 15
summary.ssMRCD 16
weatherAUT2021 17
Index 18
contamination_random Contamination Through Swapping

Description

This function swaps observations completely random in order to introduce contamination in the data. Used in parameter_tuning.

Usage

contamination_random(cont, data)

Arguments

cont numeric, amount of contamination in data.
data data whose observations should be switched.

Value

A matrix with switched observations.

Examples

```
    # set seed
set.seed(1)
    # get data
    data(weatherAUT2021)
    # switch 5% of observations
    contamination_random(cont = 0.05, data = weatherAUT2021[,1:6])
```

```
geo_weights Inverse Geographic Weight Matrix
```


Description

Calculates a inverse-distance based weight matrix for the function ssMRCD (see details).

Usage

geo_weights(coordinates, N_assignments)

Arguments

coordinates matrix of coordinates of observations.
N_assignments vector of neighborhood assignments.

Details

First, the centers (means of the coordinates given) c_{i} of each neighborhood is calculated. Then, the Euclidean distance between the centers is calculated and the weight is based on the inverse distance between two neighborhoods,

$$
w_{i j}=\frac{1}{\operatorname{dist}\left(c_{i}, c_{j}\right)}
$$

It is scaled according to a weight matrix.

Value

Returns a weighting matrix W and the coordinates of the centers per neighborhood centersN.

See Also

rescale_weights

Examples

```
coordinates = matrix(rnorm(1000), ncol = 2, nrow = 500)
N_ass = sample(1:5, 500, replace = TRUE)
geo_weights(coordinates, N_ass)
```

local_outliers_ssMRCD Local Outlier Detection Technique based on ssMRCD

Description

This function applies the local outlier detection method based on the spatially smoothed MRCD estimator developed in Puchhammer and Filzmoser (2023).

```
Usage
    local_outliers_ssMRCD(
        data,
        coords,
        N_assignments,
        lambda,
        weights = NULL,
        k = NULL,
        dist = NULL
    )
```


Arguments

data	data matrix with measured values.
coords	matrix of coordinates of observations.
N_assignments	vector of neighborhood assignments.
lambda	scalar used for spatial smoothing (see also ssMRCD).
weights	weight matrix used in ssMRCD.
k	integer, if given the k nearest neighbors per observations are used to calculate next distances. Default value is $k=$ NULL.
dist	scalar, if given the neighbors closer than given distance are used for next dis- tances. If dist is given, dist is used, otherwise k is used.

Value

Returns an object of class "locOuts" with following components:

outliers	indices of found outliers.
next_distance	vector of next distances for all observations.
cutoff	upper fence of adjusted boxplot (see adjbox) used as cutoff value for next distances.
coords	matrix of observation coordinates.
data	matrix of observation values.

N_assignments vector of neighborhood assignments.
k , dist specifications regarding neighbor comparisons.
centersN coordinates of centers of neighborhoods.
matneighbor matrix storing information which observations where used to calculate next distance for each observation (
ssMRCD object of class "ssMRCD" and output of ssMRCD covariance estimation.

References

Puchhammer P. and Filzmoser P. (2023): Spatially smoothed robust covariance estimation for local outlier detection. doi:10.48550/arXiv.2305.05371

See Also

See also functions ssMRCD, plot.locOuts, summary.locOuts.

Examples

```
# data construction
data = matrix(rnorm(2000), ncol = 4)
coords = matrix(rnorm(1000), ncol = 2)
N_assignments = sample(1:10, 500, replace = TRUE)
lambda = 0.3
# apply function
outs = local_outliers_ssMRCD(data = data,
    coords = coords,
    N_assignments = N_assignments,
    lambda = lambda,
    k = 10)
```

outs

N_structure_gridbased Creates Grid-Based Neighborhood Structure

Description

This function creates a grid-based neighborhood structure for the ssMRCD function using cut-off values for two coordinate axis.

Usage

N_structure_gridbased(x, y, cutx, cuty)

Arguments

x	vector of first coordinate of data set.
y	vector of second coordinate of data set.
cutx	cut-offs for first coordinate.
cuty	cut-offs for second coordinate.

Value

Returns a neighborhood assignment vector for the coordinates x and y .

Examples

```
    # get data
    data(weatherAUT2021)
    # set cut-off values
    cut_lon = c(9:16, 18)
    cut_lat = c(46, 47, 47.5, 48, 49)
    # create neighborhood assignments
    N_structure_gridbased(weatherAUT2021$lon,
        weatherAUT2021$lat,
        cut_lon,
        cut_lat)
```

 objective_matrix Calculation of Objective Function

Description

Calculation of the value of the objective function for the sSMRCD for a given list of matrices, lambda and a weighting matrix according to formula (3) in Puchhammer and Filzmoser (2023).

Usage

objective_matrix(matrix_list, lambda, weights)

Arguments

matrix_list	a list of matrices K_{i}
lambda	scalar smoothing parameter
weights	matrix of weights

Value

Returns the value of the objective function using matrices K_{i}.

References

Puchhammer P. and Filzmoser P. (2023): Spatially smoothed robust covariance estimation for local outlier detection. doi:10.48550/arXiv.2305.05371

Examples

\# construct matrices
$\mathrm{k} 1=\operatorname{matrix}(\mathrm{c}(1,2,3,4)$, nrow $=2)$
k2 $=$ matrix $(c(1,3,5,7)$, nrow $=2)$
\# construct weighting matrix
$W=\operatorname{matrix}(c(0,1,1,0)$, nrow = 2)
objective_matrix(list(k1, k2), 0.5, W)

```
parameter_tuning Parameter Tuning
```


Description

This function provides insight into the effects of different parameter settings.

Usage

```
    parameter_tuning(
        data,
        coords,
        N_assignments,
        lambda = c(0, 0.25, 0.5, 0.75, 0.9),
        weights = NULL,
        k = NULL,
        dist = NULL,
        cont = 0.05,
        repetitions = 5
)
```


Arguments

data	matrix with observations.
coords	matrix of coordinates of these observations.
N_assignments	numeric vector, the neighborhood structure that should be used for ssMRCD.
lambda	scalar, the smoothing parameter.
weights	weighting matrix used in ssMRCD.
k	vector of possible k-values to evaluate.
dist	vector of possible dist-values to evaluate.
cont	level of contamination, between 0 and 1.
repetitions	number of repetitions wanted to have a good picture of the best parameter com-
	bination.

Value

Returns a matrix of average false-negative rate (FNR) values and the total number of outliers found by the method as aproxy for the false-positive rate. Be aware that the FNR does not take into account that there are also natural outliers included in the data set that might or might not be found. Also a plot is returned representing these average. The best parameter selection depends on the goal of the analysis.

Examples

```
# get data set
data("weatherAUT2021")
# make neighborhood assignments
cut_lon = c(9:16, 18)
cut_lat = c(46, 47, 47.5, 48, 49)
N = ssMRCD: :N_structure_gridbased(weatherAUT2021$lon, weatherAUT2021$lat, cut_lon, cut_lat)
table(N)
N[N == 2] = 1
N[N == 3] = 4
N[N == 5] = 4
N[N == 6] = 7
N[N == 11] = 15
N = as.numeric(as.factor(N))
# tune parameters
set.seed(123)
parameter_tuning(data = weatherAUT2021[, 1:6 ],
coords = weatherAUT2021[, c("lon", "lat")],
N_assignments = N,
lambda = c(0.5,0.75),
k = c(10),
repetitions = 1)
```

plot.locOuts Diagnostic Plotsfor Local Outlier Detection

Description

This function plots different diagnostic plots for local outlier detection. It can be applied to an object of class "locOuts" which is the output of the function local_outliers_ssMRCD.

Usage

```
## S3 method for class 'locOuts'
plot(
    x,
    type = c("hist", "spatial", "lines", "3D"),
```

```
    colour = "all",
    focus = NULL,
    pos = NULL,
    alpha = 0.3,
    data = NULL,
    add_map = TRUE,
    ...
)
```


Arguments

x
type
colour character specifying the color scheme (see details). Possible values "all", "onlyOuts", "outScore".
focus an integer being the index of the observation whose neighborhood should be analysed more closely.
pos integer specifying the position of the text "cut-off" in the histogram (see par).
alpha scalar specifying the transparancy level of the points plotted for plot type "spatial", "3D" and "lines".
data optional data frame or matrix used for plot of type "line". Will be used to plot lines based scaled data instead of the data used for local outlier detection.
add_map TRUE if a map should be plotted along the line plot (type = "lines").
... further parameters passed on to base-R plotting functions.

Details

Regarding the parameter type the value "hist" corresponds to a plot of the histogram of the next distances together with the used cutoff-value. When using "spatial" the coordinates of each observation are plotted and colorized according to the color setting. The "lines" plot is used with the index focus of one observation whose out/inlyingness to its neighborhood should by plotted. The whole data set is scaled to the range $[0,1]$ and the scaled value of the selected observation and its neighbors are plotted. Outliers are plotted in orange. The "3D" setting leads to a 3D-plot using the colour setting as height. The view can be adapted using the parameters theta and phi.

For the colour setting possible values are "all" (all next distances are used and colored in an orange palette), "onlyOuts" (only outliers are plotted in orange, inliers are plotted in grey) and "outScore" (the next distance divided by the cutoff value is used to colourize the points; inliers are colorized in blue, outliers in orange).

Value

Returns plots regarding next distances and spatial context.

See Also

local_outliers_ssMRCD

Examples

```
    # set seed
    set.seed(1)
    # make locOuts object
    data = matrix(rnorm(2000), ncol = 4)
    coords = matrix(rnorm(1000), ncol = 2)
    N_assignments = sample(1:10, 500, replace = TRUE)
    lambda = 0.3
    # local outlier detection
    outs = local_outliers_ssMRCD(data = data,
        coords = coords,
        N_assignments = N_assignments,
        lambda = lambda,
        k = 10)
    # plot results
    plot(outs, type = "hist")
    plot(outs, type = "spatial", colour = "outScore")
    plot(outs, type = "3D", colour = "outScore", theta = 0)
    plot(outs, type ="lines", focus = outs$outliers[1])
```

 plot.ssMRCD
 Plot Method for ssMRCD Object

Description

Plots diagnostics for function output of ssMRCD regarding convergence behavior and the resulting covariances matrices.

Usage

```
## S3 method for class 'ssMRCD'
plot(
    x,
    type = c("convergence", "ellipses"),
    centersN = NULL,
    colour_scheme = "none",
    xlim_upper = 9,
    manual_rescale = 1,
    legend = TRUE,
    xlim = NULL,
    ylim = NULL,
)
```


Arguments

X
type
centersN
colour_scheme coloring scheme used for plot type "ellipses", either "trace" or "regularity" or "none".
xlim_upper numeric giving the upper x limit for plot type "convergence".
manual_rescale for plot type "ellipses" numeric used to re-scale ellipse sizes.
legend logical, if color legend should be included.
xlim vector of xlim (see par).
ylim vector of ylim (see par).
... further plotting parameters.

Details

For type = "convergence" a plot is produced displaying the convergence behaviour. Each line represents a different initial value used for the c-step iteration. On the x-axis the iteration step is plotted with the corresponding value of the objective function. Not monotonically lines are plotted in red.

For type = "ellipses" and more than a 2-dimensional data setting plotting the exact tolerance ellipse is not possible anymore. Instead the two eigenvectors with highest eigenvalue from the MCD used on the full data set without neighborhood assignments are taken and used as axis for the tolerance ellipses of the ssMRCD covariance estimators. The tolerance ellipse for the global MCD covariance is plotted in grey in the upper left corner. It is possible to set the colour scheme to "trace" to see the overall amount of variabilty and compare the plotted covariance and the real trace to see how much variance is not plotted. For "regularity" the regularization of each covariance is shown.

Value

Returns plots of the ssMRCD methodology and results.

See Also

ssMRCD, summary.ssMRCD,local_outliers_ssMRCD, plot.locOuts

Examples

```
# set seed
set.seed(1)
# create data set
data = matrix(rnorm(2000), ncol = 4)
coords = matrix(rnorm(1000), ncol = 2)
```

```
    N_assignments = sample(1:10, 500, replace = TRUE)
    lambda = 0.3
    # calculate ssMRCD by using the local outlier detection method
    outs = local_outliers_ssMRCD(data = data,
                coords = coords,
                N_assignments = N_assignments,
                lambda = lambda,
                k = 10)
    # plot ssMRCD object included in outs
    plot(x = outs$ssMRCD,
        centersN = outs$centersN,
        colour_scheme = "trace",
        legend = FALSE)
```

 rescale_weights Rescale Weight Matrix

Description

Given a matrix with values for neighborhood influences the function rescales the matrix in order to get an appropriate weight matrix used for the function ssMRCD.

Usage

rescale_weights(W)

Arguments

W weight matrix with diagonals equal to zero and at least one positive entry per row.

Value

An appropriately scaled weight matrix.

See Also

ssMRCD, local_outliers_ssMRCD, geo_weights

Examples

```
W = matrix(c(0, 1, 2,
    1, 0, 1,
    2, 1, 0), nrow = 3)
rescale_weights(W)
```

```
restructure_as_list Restructure Data Matrix as List
```


Description

This function restructures neighborhood information given by a data matrix containing all information and one neighborhood assignment vector. It returns a list of data matrices used in ssMRCD.

Usage

restructure_as_list(data, neighborhood_vec)

Arguments

```
    data data matrix with all observations.
    neighborhood_vec
            numeric neighborhood assignment vector. Should contain numbers from 1 to N
            and not leave integers out.
```


Value

Returns a list containing the observations per neighborhood assignment.

Examples

```
    \# data matrix
    data \(=\) matrix (rnorm(n = 3000), ncol = 3)
    N_assign \(=\) sample(x = 1:10, size \(=1000\), replace \(=\) TRUE)
    restructure_as_list(data, N_assign)
```

 ssMRCD Spatially Smoothed MRCD Estimator

Description

The ssMRCD function calculates the spatially smoothed MRCD estimator from Puchhammer and Filzmoser (2023).

Usage

```
    ssMRCD(
        x,
        weights,
        lambda,
        TM = NULL,
        alpha = 0.75,
        maxcond = 50,
        maxcsteps = 200,
        n_initialhsets = NULL
    )
```


Arguments

$x \quad a \operatorname{list}$ of matrices containing the observations per neighborhood sorted which can be obtained by the function restructure_as_list.
weights weighting matrix, symmetrical, rows sum up to one and diagonals need to be zero (see also geo_weights or rescale_weights .
lambda numeric between 0 and 1 .
TM target matrix (optional), default value is the covMcd from robustbase.
alpha numeric, proportion of values included, between 0.5 and 1 .
maxcond optional, maximal condition number used for rho-estimation.
maxcsteps maximal number of c-steps before algorithm stops.
n_initialhsets number of initial h-sets, default is 6 times number of neighborhoods.

Value

An object of class "ssMRCD" containing the following elements:
MRCDcov List of ssMRCD-covariance matrices sorted by neighborhood.
MRCDicov List of inverse ssMRCD-covariance matrices sorted by neighborhood.
MRCDmu List of ssMRCD-mean vectors sorted by neighborhood.
$m X \quad$ List of data matrices sorted by neighborhood.
$N \quad$ Number of neighborhoods.
mT Target matrix.
rho Vector of regularization values sorted by neighborhood.
alpha Scalar what percentage of observations should be used.
h Vector of how many observations are used per neighborhood, sorted.

numiter	The number of iterations for the best initial h-set combination.
c_alpha	Consistency factor for normality.
weights	The weighting matrix.
lambda	Smoothing factor.
obj_fun_values	A matrix with objective function values for all initial h-set combinations (rows) and iterations (columns).
best6pack initial h-set combinations with best objective function value after c-step iterations. Kcovreturns MRCD-estimates without smoothing.	

References

Puchhammer P. and Filzmoser P. (2023): Spatially smoothed robust covariance estimation for local outlier detection. doi:10.48550/arXiv.2305.05371

See Also

```
plot.ssMRCD, summary.ssMRCD, restructure_as_list
```


Examples

```
# create data set
x1 = matrix(runif(200), ncol = 2)
x2 = matrix(rnorm(200), ncol = 2)
x = list(x1, x2)
# create weighting matrix
W = matrix(c(0, 1, 1, 0), ncol = 2)
# calculate ssMRCD
ssMRCD(x, weights = W, lambda = 0.5)
```

summary.locOuts Summary of Local Outlier Detection

Description

Prints a summary of the locOuts object obtained by the function local_outliers_ssMRCD.

Usage

\#\# S3 method for class 'locOuts'
summary (object, ...)

Arguments

$$
\begin{array}{ll}
\text { object } & \text { a locOuts object. } \\
\ldots & \text { further parameters passed on. }
\end{array}
$$

Value

Prints a summary of the locOuts object.

See Also

plot.locOuts

Examples

```
# set seed
set.seed(1)
# make locOuts object
data = matrix(rnorm(2000), ncol = 4)
coords = matrix(rnorm(1000), ncol = 2)
N_assignments = sample(1:10, 500, replace = TRUE)
lambda = 0.3
# local outlier detection
outs = local_outliers_ssMRCD(data = data,
                    coords = coords,
                        N_assignments = N_assignments,
                        lambda = lambda,
                        k = 10)
# summary method
summary(outs)
```

summary.ssMRCD Summary Method for ssMRCD Object

Description

Summarises most important information of output ssMRCD.

Usage

\#\# S3 method for class 'ssMRCD'
summary (object, ...)

Arguments

object object of class "ssMRCD", output of ssMRCD.
... further parameters.

Value

Prints a summary of the ssMRCD object.

See Also

See also ssMRCD, plot.ssMRCD.

```
weatherAUT2021 Austrian Weather Data 2021
```


Description

This data is a subset of the GeoSphere Austria monthly weather data of 2021 averaged using the median. Stations with missing values are removed.

Usage

weatherAUT2021

Format

A data frame with 183 rows and 10 columns:
name Unique name of the weather station in German.
lon, lat Longitude and latitude of the weather station.
alt Altitude of the weather station (meter).
p Average air pressure (hPa).
s Monthly sum of sunshine duration (hours).
vv Wind velocity (meter/second).
t Air temperature in 2 meters above the ground in $\left({ }^{\circ} \mathrm{C}\right)$.
rsum Average daily sum of precipitation (mm).
rel Relative air humidity (percent).

Source

The original data was downloaded here (December 2022): https://data. hub. zamg. ac . at/dataset/ klima-v1-1m.

References

Data Source: GeoSphere Austria - https://data.hub.zamg.ac.at.

Examples

```
data(weatherAUT2021)
```

summary (weatherAUT2021)

Index

```
* datasets
    weatherAUT2021,17
adjbox,4
contamination_random,2
geo_weights, 3, 11, 12, 14
local_outliers_ssMRCD, 4, 8, 9, 11, 12,15
N_structure_gridbased, 5
objective_matrix,6
par, 9, 11
parameter_tuning, 2,7
plot.locOuts, 5, 8, 11,16
plot.ssMRCD, 10, 15,17
rescale_weights, 3, 12,14
restructure_as_list, 13, 14, 15
ssMRCD, 3-7, 10-13, 13, 16, 17
summary.locOuts, 5, 15
summary.ssMRCD, 11, 15,16
weatherAUT2021,17
```

