This tutorial focuses on, plot_time_series()
, a
workhorse time-series plotting function that:
plotly
plots (great for exploring
& shiny apps)ggplot2
&
plotly
codeplotly
to static
ggplot2
plotsRun the following code to setup for this tutorial.
Let’s start with a popular time series, taylor_30_min
,
which includes energy demand in megawatts at a sampling interval of
30-minutes. This is a single time series.
taylor_30_min
#> # A tibble: 4,032 × 2
#> date value
#> <dttm> <dbl>
#> 1 2000-06-05 00:00:00 22262
#> 2 2000-06-05 00:30:00 21756
#> 3 2000-06-05 01:00:00 22247
#> 4 2000-06-05 01:30:00 22759
#> 5 2000-06-05 02:00:00 22549
#> 6 2000-06-05 02:30:00 22313
#> 7 2000-06-05 03:00:00 22128
#> 8 2000-06-05 03:30:00 21860
#> 9 2000-06-05 04:00:00 21751
#> 10 2000-06-05 04:30:00 21336
#> # ℹ 4,022 more rows
The plot_time_series()
function generates an interactive
plotly
chart by default.
.date_var
) and the numeric variable (.value
)
that changes over time as the first 2 arguments.interactive = TRUE
, the
.plotly_slider = TRUE
adds a date slider to the bottom of
the chart.Next, let’s move on to a dataset with time series groups,
m4_daily
, which is a sample of 4 time series from the M4
competition that are sampled at a daily frequency.
m4_daily %>% group_by(id)
#> # A tibble: 9,743 × 3
#> # Groups: id [4]
#> id date value
#> <fct> <date> <dbl>
#> 1 D10 2014-07-03 2076.
#> 2 D10 2014-07-04 2073.
#> 3 D10 2014-07-05 2049.
#> 4 D10 2014-07-06 2049.
#> 5 D10 2014-07-07 2006.
#> 6 D10 2014-07-08 2018.
#> 7 D10 2014-07-09 2019.
#> 8 D10 2014-07-10 2007.
#> 9 D10 2014-07-11 2010
#> 10 D10 2014-07-12 2002.
#> # ℹ 9,733 more rows
Visualizing grouped data is as simple as grouping the data set with
group_by()
prior to piping into the
plot_time_series()
function. Key points:
group_by()
or by
using the ...
to add groups..facet_ncol = 2
returns a 2-column faceted plot.facet_scales = "free"
allows the x and y-axis of each
plot to scale independently of the other plotsLet’s switch to an hourly dataset with multiple groups. We can showcase:
.value
.color_var
to highlight sub-groups.m4_hourly %>% group_by(id)
#> # A tibble: 3,060 × 3
#> # Groups: id [4]
#> id date value
#> <fct> <dttm> <dbl>
#> 1 H10 2015-07-01 12:00:00 513
#> 2 H10 2015-07-01 13:00:00 512
#> 3 H10 2015-07-01 14:00:00 506
#> 4 H10 2015-07-01 15:00:00 500
#> 5 H10 2015-07-01 16:00:00 490
#> 6 H10 2015-07-01 17:00:00 484
#> 7 H10 2015-07-01 18:00:00 467
#> 8 H10 2015-07-01 19:00:00 446
#> 9 H10 2015-07-01 20:00:00 434
#> 10 H10 2015-07-01 21:00:00 422
#> # ℹ 3,050 more rows
The intent is to showcase the groups in faceted plots, but to
highlight weekly windows (sub-groups) within the data while
simultaneously doing a log()
transformation to the value.
This is simple to do:
.value = log(value)
Applies the Log Transformation.color_var = week(date)
The date column is transformed
to a lubridate::week()
number. The color is applied to each
of the week numbers.