
Introduction to turner

Gaston Sanchez
www.gastonsanchez.com

1 Introduction and Motivation

turner is an R package designed to provide a set of handy functions for manipulating vectors
and lists of vectors. The main idea is to make it easier to turn vectors (and lists of vectors)
into other data R structures.

1.1 Why turner?

The package turner was born out of necessity from my involvement withMultiblock Meth-
ods and other multivariate data analysis methods (eg PLS Path Modeling). Although turner

is intended to be used as a lower-level package (i.e. for developing other packages), I hope
that you may find it useful for your own computations.

1.2 A little bit of multiblocks

R is great for working with data in tabular format such as matrices and data frames. However,
there’s no data structure for representing the abstract concept of a multiblock. Basically, a
multiblock could be seen as a matrix divided by blocks (or submatrices). This is a very
informal and simplistic description, but it helps to understand the notion of a multiblock.

So how can we work with multiblocks in R? The trivial solution is to work with several
matrices (one matrix per block). Another solution is to work with arrays. A third solution
is to work with lists of matrices.

A different approach —the one I use— is to work parallelly with one matrix (or a data frame)
and one list. In this case, all the blocks are in a single matrix (or data frame), while the list
contains the information about the blocks. The main advantage of this approach is that you
keep the data in one single object, while the relevant information about the structure of the
blocks is kept in one list.

If we decide to work with the matrix-list duet, we need to be able to extract the information
of the list, and turn it into indixed structures (or other objects) for manipulating the blocks
in the data matrix. turner is my attempt to make it easier (at least for me) to perform such
manipulations.

1

http://www.gastonsanchez.com

2 Indexification

To use turner (once you have installed it), simply load it with the function library():

load package turner

library(turner)

Data in Blocks

To see how we can apply turner, we need to consider some data under a multiblock per-
spective. First let’s start by creating a data matrix with 10 observations and 9 variables.

create a matrix

set.seed = 21

some_data = round(matrix(rnorm(90), 10, 9), 3)

rownames(some_data) = 1:10

colnames(some_data) = paste("X", 1:9, sep='')

take a peek

head(some_data, n=5)

X1 X2 X3 X4 X5 X6 X7 X8 X9

1 0.124 -0.320 0.574 -0.216 -1.543 -2.864 -0.624 1.649 -0.790

2 -0.110 -0.663 0.132 2.549 0.777 0.704 -0.933 0.259 -1.168

3 -0.933 -1.014 -1.046 -1.457 -0.077 1.365 -0.529 -0.058 0.176

4 -0.501 -0.014 0.149 -1.457 -1.151 -1.005 -0.549 1.542 -0.244

5 -0.761 -2.383 0.664 1.038 1.348 1.596 -1.640 -1.012 -0.167

Now, let’s suppose that our data can be divided in 3 blocks. The first block is formed by
variables X1, X2, X3. The second block is formed by variables X4, X5. And the third block
is formed by variables X6, X7, X8, X9. All this information can be stored in a list:

list of blocks

blocks = list(B1 = 1:3, B2 = 4:5, B3 = 6:9)

blocks

$B1

[1] 1 2 3

##

$B2

[1] 4 5

##

$B3

[1] 6 7 8 9

2

Indexed Structures

turner has been designed to work with lists (preferable of vectors) in order to turn them
into indexed structures. Such structures are mostly vectors that map the position indices of
the elements in the list.

indexify()

One common task is to indexify the list of blocks. The idea is to get a vector of indices
representing the membership of the variables to their corresponding block. This is better
understood with the following example:

get indices of blocks

indices = indexify(blocks)

indices

[1] 1 1 1 2 2 3 3 3 3

The indexification of blocks allows us to get an indexed vector indices. This vector contains
as many elements as variables in some data. Moreover, it tells us that: the first three
elements belong to one block, the fourth and fifth elements belong to block 2, and the rest
of the elements belong to block 3.

list to dummy()

Another interesting task is to produce a dummy matrix based on the blocks. This is done
by using the funciton list to dummy():

get dummy matrix based on blocks

dummy = list_to_dummy(blocks)

dummy

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 1 0 0

[3,] 1 0 0

[4,] 0 1 0

[5,] 0 1 0

[6,] 0 0 1

[7,] 0 0 1

[8,] 0 0 1

[9,] 0 0 1

As you can tell, dummy is matrix with as many rows as elements in blocks, and with as many
columns as number of blocks. In turn, the columns of dummy are dummy indicators (hence
the name).

3

from to()

Sometimes, it is also useful to know the starting and ending positions of the blocks. This
can be done by using the function from to().

get starting and ending positions

start_end = from_to(blocks)

start_end

$from

B1 B2 B3

1 4 6

##

$to

B1 B2 B3

3 5 9

vectors from and to

from = start_end$from

to = start_end$to

from to() provides a list with two vectors: $from and $to. The first vector $from contains
the indices of the starting positions; in turne the second vector $to contains the indices of
the ending positions:
We can extract the first block in some data:

extract first block

some_data[,from[1]:to[1]]

X1 X2 X3

1 0.124 -0.320 0.574

2 -0.110 -0.663 0.132

3 -0.933 -1.014 -1.046

4 -0.501 -0.014 0.149

5 -0.761 -2.383 0.664

6 0.098 -0.159 -1.676

7 -0.426 0.850 0.772

8 -0.691 -1.118 0.594

9 -0.353 -1.513 0.291

10 -0.194 -0.425 -0.516

Obviously we can argue that there is no need to use from and to. We can extract the first
block by just typing:

4

get first block

some_data[,blocks[[1]]]

X1 X2 X3

1 0.124 -0.320 0.574

2 -0.110 -0.663 0.132

3 -0.933 -1.014 -1.046

4 -0.501 -0.014 0.149

5 -0.761 -2.383 0.664

6 0.098 -0.159 -1.676

7 -0.426 0.850 0.772

8 -0.691 -1.118 0.594

9 -0.353 -1.513 0.291

10 -0.194 -0.425 -0.516

Yes, we can use blocks to manipulate the data. But the advantage of from to() comes
when you work with string lists like the following one:

string list

str_list = list(c("a","b","c"), c("d", "e"), c("f","g","h","i"))

In this case you cannot extract the first block by simply typing:

failed attempt

some_data[,str_list[[1]]]

You solve this problem by using from to():

start-end position for 'str_list'

fromto_aux = from_to(str_list)

from1 = fromto_aux$from

to1 = fromto_aux$to

successful attempt

some_data[,from1[1]:to1[1]]

X1 X2 X3

1 0.124 -0.320 0.574

2 -0.110 -0.663 0.132

3 -0.933 -1.014 -1.046

4 -0.501 -0.014 0.149

5 -0.761 -2.383 0.664

6 0.098 -0.159 -1.676

7 -0.426 0.850 0.772

8 -0.691 -1.118 0.594

9 -0.353 -1.513 0.291

10 -0.194 -0.425 -0.516

5

2.1 Working with lists

Among other interesting features of turner is the set of functions for working with lists of
vectors.

lengths()

The function lengths() allows us to get the length of each vector inside a list. This function
has an argument out to specify whether the output is in vector format (default behavior) or
in list format:

say you have some list

some_list = list(1:3, 4:5, 6:9)

length of each vector (vector output)

lengths(some_list, out='vector')

[1] 3 2 4

length of each vector (list output)

lengths(some_list, out='list')

[[1]]

[1] 3

##

[[2]]

[1] 2

##

[[3]]

[1] 4

It is important not to confuse lengths() with length(); the latter only gives you the number
of elements in the list:

compared to 'length()'

length(some_list)

[1] 3

funlist()

Another interesting function in turner is funlist() which takes as arguments a list and a
function. The purpose of funlist() is to apply the given function to the unlisted elements
in the list:

6

sum of all elements in 'some_list'

funlist(some_list, sum)

[1] 45

maixmum of all elements in 'some_list'

funlist(some_list, max)

[1] 9

product of all elements in 'some_list'

funlist(some_list, prod)

[1] 362880

mean value of all elements in 'some_list'

funlist(some_list, mean)

[1] 5

listsize()

The function listsize() —as well as sizelist()— is another related function to work
with lists. It allows us to get the total number of elements contained in a list:

number of elements in 'some_list'

listsize(some_list)

[1] 9

indexify()

Another handy function is listify() which creates a list from a vector of integers:

vector of indices

number_elements = c(3, 1, 5)

list of index vectors based on 'number_elements'

listify(number_elements)

[[1]]

[1] 1 1 1

##

[[2]]

7

[1] 2

##

[[3]]

[1] 3 3 3 3 3

2.2 Other Functions

The following table shows other functions available in turner:

Function Description
df to blocks() splits a data frame into blocks
matrix to blocks() splits a matrix into blocks
vector to dummy() creates a dummy matrix from the elements in a vector
factor to dummy() creates a dummy matrix from the elements in a factor
list to dummy() creates a dummy matrix from the elements in a list
dummy to list() creates an indexed list from a dummy matrix
list to matrix() creates a design-type matrix from the elements in a list

8

	Introduction and Motivation
	Why turner?
	A little bit of multiblocks

	Indexification
	Working with lists
	Other Functions

