Overview

In this draft vignette of the weightedsurv package (Leon 2024) we illustrate various weighted survival analyses with two breast cancer datasets available in the base R survival library (Therneau 2023) both evaluating hormon replacement therapy in comparison to chemotherapy. The gbsg trial (Schumacher et al. 1994) was randomized, whereas the rotterdam study (Royston and Altman 2013) was observational; Wherein for comparisons of the non-randomized therapy, in contrast to un-adjusted comparisons, propensity-score adjustment (Cole and Hernán 2004) appears to suggest a stronger impact consistent with the randomized trial.

Survival Analysis and KM Plotting

Survival analysis functions allowing for time-dependent and subject-specific (eg, propensity-scores) weighting.

Weighted estimation for: Cox model; Kaplan-Meier treatment survival curves as well as treatment difference along with point-wise and simultaneous confidence bands; and Restricted mean survival time (RMST, Uno et al. (2014)) comparisons where RMST estimates are evaluated across all potential truncation times (point-wise and simultaneous bands).

Summary: Weighted Survival Analysis Capabilities

Analysis functions

df_counting

Prepares a comprehensive dataset for survival analysis using the counting process approach. Computes risk sets, event counts, Kaplan-Meier estimates, log-rank (Fleming-Harrington (\(\rho,\gamma\)) weights) and Cox model results, and quantile estimates for two groups (e.g., treatment and control), optionally handling (subject-specific case) weights (such as inverse probability weights) and stratification.

Time-dependent weights for log-rank statistics are implemented via wt.rg.S function: Supporting a variety of commonly used and custom weighting schemes for weighted log-rank and related tests. The function is flexible and can be used for Fleming-Harrington, Schemper, Xu & O’Quigley (XO), Maggir-Burman (MB), custom time-based, and exponential variants of Fleming-Harrington weights.

Subject-specific (case-weights) are also included in order to implement propensity-score weighted analyses.

Key Features: - Calculates weights for use in weighted log-rank and related survival tests. - Supports standard Fleming-Harrington weights (scheme = "fh"). - Implements Schemper weights (scheme = "schemper"), XO weights (scheme = "XO"), MB weights (scheme = "MB"). - Allows for custom time-based weights (scheme = "custom_time"). - Supports exponential variants of Fleming-Harrington weights (scheme = "fh_exp1", scheme = "fh_exp2").

plot_weighted_km

Creates Kaplan-Meier survival plots for two groups (e.g., treatment vs. control), allowing for the use of weights (such as inverse probability weights) in the estimation. The function can display survival curves, confidence intervals, risk tables, and optionally subgroup curves or additional annotations.

KM_diff

KM_diff compares Kaplan-Meier survival curves between two groups (typically treatment vs. control) using time-to-event data. It calculates survival estimates, their differences, and provides both pointwise and simultaneous confidence intervals. The function can also perform resampling to construct simultaneous confidence bands.

Allows for arbitrary weights (non-negative) to implement (for example) propensity-score adjustment (IPW).

plotKM.band_subgroups

Plots the difference (via KM_diff calculations) in Kaplan-Meier survival curves between two groups (e.g., treatment vs. control), optionally including simultaneous confidence bands and subgroup curves. The function also displays risk tables for the overall population and specified subgroups.

wlr_dhat_estimates

Computes the weighted log-rank test statistic, its variance, the difference in survival between two groups at a specified time point (tzero), the variance of this difference, their covariance, and correlation. It supports flexible time-dependent weighting schemes via the wt.rg.S function.

cumulative_rmst_bands

The cumulative_rmst_bands function calculates and plots cumulative Restricted Mean Survival Time (RMST) estimates and their confidence bands for survival curves, typically comparing two groups (e.g., treatment vs. control).

Key Features

  • Computes cumulative RMST over time for each group.

  • Uses resampling (bootstrap or similar) to estimate confidence bands for the RMST curves.

  • Supports weighted analyses (optional).

  • Plots the RMST curves and their confidence intervals along with simultaneous bands.

oldpar <- par(no.readonly = TRUE)
library(survival)
# to install weightedKMplots
# library(devtools)
# github_install("larry-leon/weightedsurv")
library(weightedsurv)
library(dplyr)

GBSG data analysis example

—- Data Preparation —- Prepare GBSG data

library(survival)
df_gbsg <- gbsg
df_gbsg$tte <- df_gbsg$rfstime / 30.4375
df_gbsg$event <- df_gbsg$status
df_gbsg$treat <- df_gbsg$hormon
df_gbsg$grade3 <- ifelse(df_gbsg$grade == "3", 1, 0)


# Note that these are default names
# For alternative names, for example if the 
# time-to-event outcome (tte) is time_months
# then tte.name <- "time_months"
tte.name <- "tte"
event.name <- "event"
treat.name <- "treat"
arms <- c("treat", "control")

—- Main Analyses —-

GBSG - ITT Analysis

# Returns standard log-rank (FH(0,0) via scheme="fh" rho,gamma = 0 in scheme_params)

dfcount_gbsg <- df_counting(df=df_gbsg, tte.name = tte.name, event.name = event.name, treat.name = treat.name, arms = arms, 
by.risk = 12, scheme = "fh", scheme_params = list(rho = 0, gamma =0), lr.digits = 4, cox.digits =3)

# test default names
#test <- df_counting(df=df_gbsg, by.risk = 12, scheme = "fh", scheme_params = list(rho = 0, gamma =0), lr.digits = 4, cox.digits =3)
# MB weighting
#test <- df_counting(df=df_gbsg, tte.name=tte.name, event.name=event.name, treat.name=treat.name, arms=arms, scheme = "MB", scheme_params = list(mb_tstar = 12))
# 0/1 weighting (0 for time <= t.tau, 1 for time > t.tau)
#test <- df_counting(df=df_gbsg, tte.name=tte.name, event.name=event.name, treat.name=treat.name, arms=arms, scheme = "custom_time", scheme_params = list(t.tau = 6, w0.tau = 0, w1.tau =1))

Show some weight functions

g <- plot_weight_schemes(dfcount_gbsg)
print(g)

—- Plotting —- ## GBSG KM plots

par(mfrow=c(1,2))
# Mine
# Set ymax a little above 1.0 to allow for logrank placement in topleft
# topleft is default; xmed.fraction = 0.65 positions the display of the median estimates below the HR estimates ("topright" legend [default])
# For details, please see summary of xmed.fraction in the Appendix below.

plot_weighted_km(dfcount=dfcount_gbsg, conf.int=FALSE, show.logrank = TRUE, 
                 put.legend.lr = "topleft", ymax = 1.05, xmed.fraction = 0.65)
title(main="GBSG (trial) data un-weighted")


# Compare with survfit
plot_km(df=df_gbsg, tte.name=tte.name, event.name=event.name, treat.name=treat.name)
title(main="GBSG (trial) data un-weighted
      via survfit")

Include 95% CIs

plot_weighted_km(dfcount=dfcount_gbsg, conf.int=TRUE, show.logrank = TRUE, ymax = 1.05)
title(main="GBSG (trial) data un-weighted")

Rotterdam observational data analysis with weighting

—- Propensity Score Weighting (Rotterdam) —-

Prepare Rotterdam data

gbsg_validate <- within(rotterdam, {
  rfstime <- ifelse(recur == 1, rtime, dtime)
  t_months <- rfstime / 30.4375
  time_months <- t_months
  status <- pmax(recur, death)
  ignore <- (recur == 0 & death == 1 & rtime < dtime)
  status2 <- ifelse(recur == 1 | ignore, recur, death)
  rfstime2 <- ifelse(recur == 1 | ignore, rtime, dtime)
  time_months2 <- rfstime2 / 30.4375
  grade3 <- ifelse(grade == "3", 1, 0)
  treat <- hormon
  event <- status2
  tte <- time_months
  id <- as.numeric(1:nrow(rotterdam))
  SG0 <- ifelse(er <= 0, 0, 1)
})

Node positive only to correspond to GBSG population

df_rotterdam <- subset(gbsg_validate, nodes > 0)

Baseline demographics table

library(dplyr)
rotterdam2 <- df_rotterdam %>%
  mutate(
    meno = factor(meno, levels = c(0, 1), labels = c("Pre", "Post")),
    grade3 = factor(grade3, levels = c(0, 1), labels = c("Not Grade 3", "Grade 3")),
    chemo = factor(chemo, levels = c(0, 1), labels = c("No", "Yes")),
    er_negative = factor(ifelse(er == 0, 1, 0), labels = c("ER negative","ER positive"))
  )


baseline_table <- create_baseline_table(
  data = rotterdam2,
  treat_var = "treat",
  vars_continuous = c("age", "pgr", "er", "nodes"),
  vars_categorical = c("size","meno","chemo","er_negative"),
  show_pvalue = TRUE,
  show_smd = TRUE
)
baseline_table
Baseline Characteristics by Treatment Arm
Characteristic Control (n=1207) Treatment (n=339) P-value1 SMD2
age Mean (SD) 54.1 (13.2) 62.5 (9.9) <0.001 0.67
pgr Mean (SD) 169.7 (320.6) 108.2 (200.3) <0.001 0.21
er Mean (SD) 160.7 (266.0) 180.6 (271.7) 0.232 0.07
nodes Mean (SD) 5.1 (5.0) 5.7 (4.6) 0.030 0.13
size 0.581 0.03
<=20 397 (32.9%) 104 (30.7%)
20-50 611 (50.6%) 172 (50.7%)
>50 199 (16.5%) 63 (18.6%)
meno <0.001 0.31
Pre 587 (48.6%) 41 (12.1%)
Post 620 (51.4%) 298 (87.9%)
chemo <0.001 0.32
No 655 (54.3%) 311 (91.7%)
Yes 552 (45.7%) 28 (8.3%)
er_negative 1.000 0.00
ER negative 1058 (87.7%) 297 (87.6%)
ER positive 149 (12.3%) 42 (12.4%)
1 P-values: t-test for continuous, chi-square/Fisher's exact for categorical/binary variables
2 SMD = Standardized mean difference

Propensity score model

fit.ps <- glm(treat ~ age + meno + size + grade3 + nodes + pgr + chemo + er, data=df_rotterdam, family="binomial")
pihat <- fit.ps$fitted
pihat.null <- glm(treat ~ 1, family="binomial", data=df_rotterdam)$fitted
wt.1 <- pihat.null / pihat
wt.0 <- (1 - pihat.null) / (1 - pihat)
df_rotterdam$sw.weights <- ifelse(df_rotterdam$treat == 1, wt.1, wt.0)
# truncated weights
df_rotterdam$sw.weights_trunc <- with(df_rotterdam, pmin(pmax(sw.weights, quantile(sw.weights, 0.05)), quantile(sw.weights, 0.95)))

Un-weighted and weighted analyses

dfcount_rotterdam_unwtd <- get_dfcounting(df=df_rotterdam, tte.name=tte.name, event.name=event.name, treat.name=treat.name, arms=arms, by.risk=24)

dfcount_rotterdam_wtd <- get_dfcounting(df=df_rotterdam, tte.name=tte.name, event.name=event.name, treat.name=treat.name, arms=arms, by.risk=24, 
                                  weight.name="sw.weights")

—- Plotting Weighted vs Unweighted —-

par(mfrow=c(1,2))
plot_weighted_km(dfcount=dfcount_rotterdam_unwtd, xmed.fraction = 0.65)
title(main="Rotterdam un-weighted K-M curves")
plot_weighted_km(dfcount=dfcount_rotterdam_wtd, xmed.fraction = 0.65)
title(main="Rotterdam weighted K-M curves")

## Compare with GBSG trial data

par(mfrow=c(1,2))
plot_weighted_km(dfcount=dfcount_gbsg, conf.int = TRUE, xmed.fraction = 0.65, show.logrank = TRUE, ymax = 1.05)
title(main="GBSG (trial) data un-weighted K-M curves")
plot_weighted_km(dfcount=dfcount_rotterdam_wtd, conf.int = TRUE, xmed.fraction = 0.65, show.logrank = TRUE, ymax = 1.05)
title(main="Rotterdam weighted K-M curves")

Simultaneous bands and point-wise CIs

Note that the first graph displays 20 (1st 20) resampled approximations to the centered survival difference

\(\Delta(t) = (\widehat{S_1} - \widehat{S_0})(t) - (S_{1} - S_{0})(t)),\) for timepoints \(t\) within “qtau” quartiles of the event times (i.e., for qtau = 2.5% we calculate \(\Delta\) for time points within the 2.5% and 97.5% quantiles).

—- Simultaneous CI bands —-

par(mfrow=c(1,2))
 
 temp <- plotKM.band_subgroups(
    df=df_rotterdam,
    xlabel="Months", ylabel="Survival difference",
    yseq_length=5, cex_Yaxis=0.7, risk_cex=0.7,
    tau_add=42, by.risk = 12, risk_delta=0.075, risk.pad=0.03, ymax.pad = 0.125,
    tte.name = tte.name, treat.name = treat.name, event.name = event.name, weight.name = "sw.weights",
    draws.band = 1000, qtau = 0.025, show_resamples = TRUE
  )
  legend("topleft", c("Difference estimate", "95% pointwise CIs"),
         lwd=c(2,1), col=c("black"), lty=c(1,2), bty="n", cex=0.7)
  title(main="Rotterdam data
        propensity score weighted")

Compare Rotterdam observational data with propensity-score weighting and GBSG randomized data

—- Simultaneous CI bands —-

par(mfrow=c(2,2))
 
 temp <- plotKM.band_subgroups(
    df=df_rotterdam,
    xlabel="Months", ylabel="Survival difference",
    yseq_length=5, cex_Yaxis=0.7, risk_cex=0.7,
    tau_add=42, by.risk = 12, risk_delta=0.075, risk.pad=0.03, ymax.pad = 0.125,
    tte.name = tte.name, treat.name = treat.name, event.name = event.name, weight.name = "sw.weights",
    draws.band = 1000, qtau = 0.025, show_resamples = FALSE
  )
  legend("topleft", c("Difference estimate", "95% pointwise CIs"),
         lwd=c(2,1), col=c("black"), lty=c(1,2), bty="n", cex=0.7)
  title(main="Rotterdam data
        propensity score weighted")

get_bands <- cumulative_rmst_bands(df = df_rotterdam, fit = temp$fit_itt, 
tte.name = tte.name, event.name = event.name, treat.name = treat.name , weight.name = "sw.weights", 
draws_sb = 1000, xlab="months", rmst_max_cex = 0.7)

legend("topleft", c("Cumulative RMST estimate", "95% pointwise CIs"),
         lwd=c(2,1), col=c("black"), lty=c(1,2), bty="n", cex=0.7)

  


temp <- plotKM.band_subgroups(
    df=df_gbsg, 
    Maxtau = NULL,
    xlabel="Months", ylabel="Survival difference",
    yseq_length=5, cex_Yaxis=0.7, risk_cex=0.7,
    by.risk = 6, risk_delta=0.075, risk.pad=0.03,
    tte.name = tte.name, treat.name = treat.name, event.name = event.name, 
    draws.band = 1000, qtau = 0.025, show_resamples = FALSE
  )
  legend("topleft", c("Difference estimate", "95% pointwise CIs"),
         lwd=c(2,1), col=c("black"), lty=c(1,2), bty="n", cex=0.75)
  title(main="GBSG data")

  
get_bands <- cumulative_rmst_bands(df = df_gbsg, fit = temp$fit_itt, 
tte.name = tte.name, event.name = event.name, treat.name = treat.name, 
draws_sb = 1000, xlab="months", rmst_max_cex = 0.75)
  legend("topleft", c("Cumulative RMST estimate", "95% pointwise CIs"),
         lwd=c(2,1), col=c("black"), lty=c(1,2), bty="n", cex=0.75)

Compare GBSG experimental to Rotterdam control

Propensity score model

df_gbsg_treat <- subset(df_gbsg, treat == 1)
df_rotterdam_control <- subset(df_rotterdam, treat == 0)

df_gbsg_treat <- df_gbsg_treat %>%
  mutate(
    size = ifelse(size <= 20, "<=20", ifelse(size > 20 & size <=50, "20-50", ">50")),
  )


# note: GBSG does not have "chemo" variable

df_gbsg_treat <- df_gbsg_treat[,c("tte","event","treat","age","meno","size","grade3","nodes","pgr","er")]
df_rotterdam_control <- df_rotterdam_control[,c("tte","event","treat","age","meno","size","grade3","nodes","pgr","er")]

# cross-trial-comparison (CTC)

df_CTC <- rbind(df_gbsg_treat, df_rotterdam_control)

fit.ps <- glm(treat ~ age + meno + size + grade3 + nodes + pgr + er, data = df_CTC, family="binomial")
pihat <- fit.ps$fitted
pihat.null <- glm(treat ~ 1, family="binomial", data = df_CTC)$fitted
wt.1 <- pihat.null / pihat
wt.0 <- (1 - pihat.null) / (1 - pihat)

df_CTC$sw.weights <- ifelse(df_CTC$treat == 1, wt.1, wt.0)
# truncated weights
df_CTC$sw.weights_trunc <- with(df_CTC, pmin(pmax(sw.weights, quantile(sw.weights, 0.05)), quantile(sw.weights, 0.95)))

Baseline demographics table

df_CTC$er_negative <- ifelse(df_CTC$er == 0, 1, 0) 

baseline_table <- create_baseline_table(
  data = df_CTC,
  treat_var = "treat",
  vars_continuous = c("age", "pgr", "er", "nodes"),
  vars_categorical = c("size","meno","er_negative"),
  show_pvalue = TRUE,
  show_smd = TRUE
)
baseline_table
Baseline Characteristics by Treatment Arm
Characteristic Control (n=1207) Treatment (n=246) P-value1 SMD2
age Mean (SD) 54.1 (13.2) 56.6 (9.4) <0.001 0.20
pgr Mean (SD) 169.7 (320.6) 124.3 (249.7) 0.014 0.15
er Mean (SD) 160.7 (266.0) 125.8 (191.1) 0.016 0.14
nodes Mean (SD) 5.1 (5.0) 5.1 (5.3) 0.923 0.01
size <0.001 0.14
20-50 611 (50.6%) 165 (67.1%)
<=20 397 (32.9%) 67 (27.2%)
>50 199 (16.5%) 14 (5.7%)
meno <0.001 0.18
0 587 (48.6%) 59 (24.0%)
1 620 (51.4%) 187 (76.0%)
er_negative 0.501 0.02
0 1058 (87.7%) 220 (89.4%)
1 149 (12.3%) 26 (10.6%)
1 P-values: t-test for continuous, chi-square/Fisher's exact for categorical/binary variables
2 SMD = Standardized mean difference
dfcount_CTC_unwtd <- get_dfcounting(df = df_CTC, tte.name=tte.name, event.name=event.name, treat.name=treat.name, arms=arms, by.risk=24)

dfcount_CTC_wtd <- get_dfcounting(df=df_CTC, tte.name=tte.name, event.name=event.name, treat.name=treat.name, arms=arms, by.risk=24, 
                                  weight.name="sw.weights")
par(mfrow=c(2,2))
plot_weighted_km(dfcount=dfcount_gbsg, conf.int = TRUE, xmed.fraction = 0.65, show.logrank = TRUE, ymax = 1.2, show.med = FALSE)
title(main="GBSG (trial) data un-weighted K-M curves")
plot_weighted_km(dfcount=dfcount_CTC_wtd, conf.int = TRUE, xmed.fraction = 0.65, show.logrank = TRUE, ymax = 1.2, show.med = FALSE)
title(main="CTC weighted K-M curves")
plot_weighted_km(dfcount=dfcount_CTC_unwtd, conf.int = TRUE, xmed.fraction = 0.65, show.logrank = TRUE, ymax = 1.2, show.med = FALSE)
title(main="CTC un-weighted K-M curves")

Cumulative weighted log-rank statistics

We note that the log-rank test restricts comparisons to where both groups have follow-up

As illustrated below we view the cumulative log-rank test. Notice how it is flat for time points \(\approx \geq 80\).

par(mfrow=c(1,1))
ymin <- -1
ymax <- 5
temp <- wlr_cumulative(dfcount_CTC_wtd, scheme_params = list(rho = 0, gamma = 0), scheme = "fh", return_cumulative = TRUE)
with(temp, plot(time, z.score, xlab="time", ylab="cumulative log-rank Z", type="s", ylim=c(ymin,ymax))
)
abline(h = qnorm(0.975), lwd=2, col="red")
abline(v = 80, lwd=1, col="blue", lty=2)

With such dramatic difference in follow-up

It may make more sense to compare K-M differences and RMSTs over comparable ‘horizon’

—- Simultaneous CI bands —-

draws <- 1000
par(mfrow=c(2,2))
 
temp <- plotKM.band_subgroups(
    df=df_gbsg, 
    Maxtau = NULL,
    xlabel="Months", ylabel="Survival difference",
    yseq_length=5, cex_Yaxis=0.7, risk_cex=0.7,
    by.risk = 6, risk_delta=0.075, risk.pad=0.03,
    tte.name = tte.name, treat.name = treat.name, event.name = event.name, 
    draws.band = draws, qtau = 0.025, show_resamples = FALSE
  )
  legend("topleft", c("Difference estimate", "95% pointwise CIs"),
         lwd=c(2,1), col=c("black"), lty=c(1,2), bty="n", cex=0.75)
  title(main="GBSG data")

  
get_bands <- cumulative_rmst_bands(df = df_gbsg, fit = temp$fit_itt, 
tte.name = tte.name, event.name = event.name, treat.name = treat.name, 
draws_sb = draws, xlab="months", rmst_max_cex = 0.75)
  legend("topleft", c("Cumulative RMST estimate", "95% pointwise CIs"),
         lwd=c(2,1), col=c("black"), lty=c(1,2), bty="n", cex=0.75)



 temp <- plotKM.band_subgroups(
    df=df_CTC,
    xlabel="Months", ylabel="Survival difference",
    yseq_length=5, cex_Yaxis=0.7, risk_cex=0.7,
    tau_add=42, by.risk = 12, risk_delta=0.075, risk.pad=0.03, ymax.pad = 0.125,
    tte.name = tte.name, treat.name = treat.name, event.name = event.name, weight.name ="sw.weights",
    draws.band = draws, qtau = 0.025, show_resamples = FALSE
  )
  legend("topleft", c("Difference estimate", "95% pointwise CIs"),
         lwd=c(2,1), col=c("black"), lty=c(1,2), bty="n", cex=0.7)
  title(main="CTC data")

get_bands <- cumulative_rmst_bands(df = df_CTC, fit = temp$fit_itt, 
tte.name = tte.name, event.name = event.name, treat.name = treat.name , weight.name = "sw.weights", 
draws_sb = draws, xlab="months", rmst_max_cex = 0.7)

legend("topleft", c("Cumulative RMST estimate", "95% pointwise CIs"),
         lwd=c(2,1), col=c("black"), lty=c(1,2), bty="n", cex=0.7)

GBSG subgroup differences along with ITT simultaneous band:

Note that er=0 subgroup was identified as questionable benefit.

—- Subgroup Band Plot —-

par(mfrow=c(1,1))
sg_labs <- c("er == 0","er > 0", "meno == 0", "meno ==1")
sg_cols <- c("blue", "brown", "green", "turquoise")

# Randomly sample colors from the built-in palette
# n_sg <- length(sg_labs)
# set.seed(123) # for reproducibility
# sg_cols <- sample(colors(), n_sg)

  temp <- plotKM.band_subgroups(
    df=df_gbsg,
    sg_labels = sg_labs,
    sg_colors = sg_cols,
    xlabel="Months", ylabel="Survival difference",
    yseq_length=5, cex_Yaxis=0.7, risk_cex=0.7,
    tau_add=42, by.risk=6, risk_delta=0.05, risk.pad=0.03, draws.band = 1000,
    tte.name = tte.name, treat.name = treat.name, event.name = event.name 
  )
  legend("topleft", c("ITT", sg_labs),
         lwd=2, col=c("black", sg_cols), bty="n", cex=0.75)
  title(main="ITT and subgroups")

Look at GBSG er>0 subgroup population

—- Simultaneous CI bands —-

par(mfrow=c(1,2))
  temp <- plotKM.band_subgroups(
    df = subset(df_gbsg, er > 0),
    xlabel="Months", ylabel="Survival difference",
    yseq_length=5, cex_Yaxis=0.7, risk_cex=0.7,
    by.risk=6, risk_delta=0.075, risk.pad=0.03,
    tte.name = tte.name, treat.name = treat.name, event.name = event.name, draws.band = 1000, qtau = 0.025, show_resamples = TRUE
  )
  legend("topleft", c("Difference estimate", "95% pointwise CIs"),
         lwd=c(2,1), col=c("black"), lty=c(1,2), bty="n", cex=0.75)
  title(main="Estrogen receptor positive (er>0) sub-population")

Weighted Cox Analysis of Rotterdam data with time-dependent, and subject-specific [ps weighting] weighting

library(data.table)
## 
## Attaching package: 'data.table'
## The following objects are masked from 'package:dplyr':
## 
##     between, first, last
library(gt)

dfcount <- dfcount_rotterdam_wtd

get_rg <- cox_rhogamma(dfcount = dfcount, scheme = "fh", scheme_params = list(rho = 0, gamma = 0), draws = 1000, verbose = FALSE)

# Note: with case-weights (here propensity-score weighting) recommend asymptotic versions of SEs

res <- data.table()
res$analysis <- "FH(0,0)"
res$z <- get_rg$z.score
res$hr <- get_rg$hr_ci_asy$hr
res$lower <- get_rg$hr_ci_star$lower
res$upper <- get_rg$hr_ci_star$upper
# res$lower <- get_rg$hr_ci_asy$lower
# res$upper <- get_rg$hr_ci_asy$upper

# compare with coxph() 
#cat("Comparison with coxph with weighting, coxph:", dfcount$cox_results$cox_text, "\n")
#cat("Mine:", get_rg$cox_text_star, "\n")

res_update <- res

get_rg <- cox_rhogamma(dfcount = dfcount, scheme = "fh", scheme_params = list(rho = 0, gamma = 1), draws = 1000, verbose = FALSE)

res <- data.table()
res$analysis <- "FH(0,1)"
res$hr <- get_rg$hr_ci_asy$hr
res$lower <- get_rg$hr_ci_star$lower
res$upper <- get_rg$hr_ci_star$upper
res$z <- get_rg$z.score


res_update <- rbind(res_update, res)
get_rg <- cox_rhogamma(dfcount = dfcount, scheme = "fh_exp2", draws = 1000, verbose = FALSE)
res <- data.table()
res$analysis <- "FH_exp2"
res$hr <- get_rg$hr_ci_asy$hr
res$lower <- get_rg$hr_ci_star$lower
res$upper <- get_rg$hr_ci_star$upper
res$z <- get_rg$z.score

res_update <- rbind(res_update, res)

get_rg <- cox_rhogamma(dfcount = dfcount, scheme = "MB", scheme_params = list(mb_tstar = 12), draws = 1000, verbose = FALSE)
res <- data.table()
res$analysis <- "MB(12)"


res$hr <- get_rg$hr_ci_asy$hr
res$lower <- get_rg$hr_ci_star$lower
res$upper <- get_rg$hr_ci_star$upper
res$z <- get_rg$z.score
res_update <- rbind(res_update, res)


get_rg <- cox_rhogamma(dfcount = dfcount, scheme = "custom_time", scheme_params = list(t.tau = 6, w0.tau = 0, w1.tau = 1), draws = 1000, verbose = FALSE)
res <- data.table()
res$analysis <- "zero_one(6)"
res$hr <- get_rg$hr_ci_asy$hr
res$lower <- get_rg$hr_ci_star$lower
res$upper <- get_rg$hr_ci_star$upper
res$z <- get_rg$z.score
res_update <- rbind(res_update, res)


res_update %>% gt()  %>% fmt_number(decimals = 3) 
analysis z hr lower upper
FH(0,0) 5.894 0.632 0.494 0.824
FH(0,1) 4.188 0.693 0.513 0.954
FH_exp2 5.502 0.650 0.504 0.855
MB(12) 5.893 0.632 0.494 0.825
zero_one(6) 5.928 0.619 0.481 0.813

Some checks on results

Check weighted K-M SE’s with survfit

dfcount_rotterdam_wtd <- get_dfcounting(df=df_rotterdam, tte.name=tte.name, event.name=event.name, treat.name=treat.name, arms=arms, by.risk=24, 
                                  weight.name="sw.weights", check.seKM = TRUE, draws = 0)

Check SE’s calculated via resampling (draws = 5000)

Note that draws = 5000 does not take much time, but can be reduced to around 500 for sufficient accuracy.

dfcount_rotterdam_wtd <- get_dfcounting(df=df_rotterdam, tte.name=tte.name, event.name=event.name, treat.name=treat.name, arms=arms, by.risk=24, 
                                  weight.name="sw.weights", check.seKM = TRUE, draws = 5000)

Compare with the adjustedCurves package

# Compare with adjustedCurves
library(adjustedCurves)
library(pammtools)
## 
## Attaching package: 'pammtools'
## The following object is masked from 'package:stats':
## 
##     filter
df_rotterdam$hormon2 <- with(df_rotterdam, factor(hormon, labels=c("No","Yes")))

ps_model <- glm(hormon2 ~ age+meno+size+grade+nodes+pgr+chemo+er, data = df_rotterdam, family="binomial")

iptw <- adjustedsurv(data=df_rotterdam, variable="hormon2", ev_time="time_months", event = "status", method = "iptw_km", treatment_model = ps_model, conf_int = TRUE)

Compare KM plots with adjustedCurves package

plot_weighted_km(dfcount=dfcount_rotterdam_wtd, conf.int = TRUE)
 title(main="Rotterdam weighted K-M curves")

 plot(iptw, conf_int = TRUE, legend.title = "Hormonal therapy")
## Ignoring unknown labels:
## • linetype : "Hormonal therapy"

Compare SE’s with adjustedCurves package

# Check SEs
par(mfrow=c(1,2))

df_mine <- dfcount_rotterdam_wtd

df_check <- subset(iptw$adj, group == "No")
yymax <- max(c(sqrt(df_mine$sig2_surv0[df_mine$idv0.check]), df_check$se))
toget <- df_mine$idv0.check
tt <- df_mine$at_points[toget]
yy <- sqrt(df_mine$sig2_surv0)[toget]
plot(tt,yy, type="s", lty=1, col="lightgrey", lwd=4, ylim=c(0,yymax), xlab="time", ylab="SEs")
with(df_check, lines(time, se, type="s", lty=2, lwd=1, col="red"))
title(main="Control SEs")


df_check <- subset(iptw$adj, group == "Yes")
yymax <- max(c(sqrt(df_mine$sig2_surv1[df_mine$idv1.check]), df_check$se))
toget <- df_mine$idv1.check
tt <- df_mine$at_points[toget]
yy <- sqrt(df_mine$sig2_surv1)[toget]
plot(tt,yy, type="s", lty=1, col="lightgrey", lwd=4, ylim=c(0,yymax), xlab="time", ylab="SEs")
with(df_check, lines(time, se, type="s", lty=2, lwd=1, col="red"))
title(main = "Treat SEs")

Check log-rank statistics

# dfcount_gbsg contains logrank (chisq) stats from specified scheme (default is standard logrank rho=0 and gamma=0) from 3 sources:
# (1) wlr_estimates function 
# (2) survdiff which only provides rho options so gamma !=0 is not available
# (3) z_score_calculations function (from a Cox score-test perspective)
check_results(dfcount_gbsg)
## 
## Test Statistic Comparison:
## (These should be approximately equal)
## 
##    zlr_sq logrank_chisq  zCox_sq
##  8.564781      8.564781 8.564781
## 
## Relative difference: 1.286e-12%
# Check wlr_dhat_estimates which calculates from any scheme based on counting dataset 
# In addition, calculates dhat's at tzero as well as correlation with log-rank
temp <- wlr_dhat_estimates(dfcounting = dfcount_gbsg, scheme_params = list(rho = 0, gamma = 0), scheme = "fh", tzero = 12)
temp$z.score^2
## [1] 8.564781
  1. Stratified by grade, just for illustration
res <- df_counting(df=df_gbsg, tte.name=tte.name, event.name=event.name, treat.name=treat.name, arms=arms, strata.name="grade")

stratified

with(res,lr_stratified^2/sig2_lr_stratified)
## [1] 7.395797
# survdiff stratified
res$logrank_results$chisq
## [1] 7.395797
 # Cox score stratified
with(res,z.score_stratified^2)
## [1] 7.395797

non-stratified (should be same as above results without stratification)

with(res,lr^2/sig2_lr)
## [1] 8.564781
with(res,z.score^2)
## [1] 8.564781
# Restore when done
par(oldpar)
Cole, Stephen R., and Miguel A. Hernán. 2004. “Adjusted Survival Curves with Inverse Probability Weights.” Computer Methods and Programs in Biomedicine 75 (1): 45–49. https://doi.org/10.1016/j.cmpb.2003.10.004.
Leon, Larry. 2024. “Weightedsurv: Weighted Survival Analysis in R.” https://github.com/larry-leon/weightedsurv.
Royston, Patrick, and Douglas G. Altman. 2013. “External Validation of a Cox Prognostic Model: Principles and Methods.” BMC Medical Research Methodology 13: 33. https://doi.org/10.1186/1471-2288-13-33.
Schumacher, M, G Bastert, H Bojar, K Hübner, M Olschewski, W Sauerbrei, C Schmoor, C Beyerle, R L Neumann, and H F Rauschecker. 1994. “Randomized 2 x 2 Trial Evaluating Hormonal Treatment and the Duration of Chemotherapy in Node-Positive Breast Cancer Patients. German Breast Cancer Study Group.” Journal of Clinical Oncology 12 (10): 2086–93. https://doi.org/10.1200/JCO.1994.12.10.2086.
Therneau, Terry M. 2023. A Package for Survival Analysis in r. https://CRAN.R-project.org/package=survival.
Uno, Hajime, Brian Claggett, Lu Tian, Eiji Inoue, Peter Gallo, Toshio Miyata, Deborah Schrag, et al. 2014. “Moving Beyond the Hazard Ratio in Quantifying the Between-Group Difference in Survival Analysis.” Journal of Clinical Oncology 32 (22): 2380–85. https://doi.org/10.1200/JCO.2014.55.2208.