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A little more generally : structural risk minimization

Assume we minimize the risk over a function space H (polynomials of
a certain degree in our example).
If R∗ is the Bayes risk, we can decompose the Bayes regret :

R(f )− R∗ =

(
R(f )− inf

g∈H
R(g)

)
+

(
inf
g∈H

R(g)− R∗
)
. (1)

The second term is the approximation error: the smallest excess of risk
we can reach using a function of H.
This is a bias term, which does not depend on the data but only on
the size of H.
The first term is the excess of risk of f with respect to the best
function in H.
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A little more generally : structural risk minimization

We consider f̂ obtained by minimizing the empirical risk over H:

f̂ ∈ argmin
g∈H

R̂(g)

We want to bound the excess of risk R(f̂ )− infg∈H R(g) ≥ 0
This term (estimation error) can be decomposed:

R(f̂ )− inf
g∈H

R(g)
∆
=R(f̂ )− R(f ∗H)

=R(f̂ )− R̂(f̂ )

+ R̂(f̂ )− R̂(f ∗H)

+ R̂(f ∗H)− R(f ∗H).
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A little more generally : structural risk minimization

R(f̂ )− inf
g∈H

R(g) =R(f̂ )− R(f ∗H)

=R(f̂ )− R̂(f̂ )

+ R̂(f̂ )− R̂(f ∗H)

+ R̂(f ∗H)− R(f ∗H).

Reminder :
R is the population risk, R̂ the empirical risk, an estimator.
f̂ is the minimizer of R̂ over H, f ∗H is the minimizer of R over H.
We therefore estimate at two levels: the function f and the risk R.

L. Jacob High dimensional statistics January 23, 2017 4 / 40



A little more generally : structural risk minimization

R(f̂ )− inf
g∈H

R(g) = R(f̂ )− R̂(f̂ )

+ R̂(f̂ )− R̂(f ∗H)

+ R̂(f ∗H)− R(f ∗H).

The first term is the difference between the true risk and the
estimated risk, for f̂ .
This is a complex object to study. Statistical learning theory
(Vapnik and Chervonenkis) aims at bounding this quantity as a
function of n and the complexity of H.
The second term is nonpositive by construction.
The third one is easier to control as it involves a deterministic function
and the law of large numbers applies.
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A little more generally : structural risk minimization

We can however bound the first term:

R(f̂ )− R̂(f̂ ) ≤ sup
f ∈H

∣∣∣∣∣E[L(y , f (x))]− 1
n

n∑
i=1

L(yi , f (xi ))

∣∣∣∣∣ ,
and since this quantity also bounds the third term, we get

R(f̂ )− inf
g∈H

R(g) ≤ 2 sup
f ∈H

∣∣∣∣∣E[L(y , f (x))]− 1
n

n∑
i=1

L(yi , f (xi ))

∣∣∣∣∣ .
This bound of the estimation error suggests that it corresponds to a
variance term, which increases with the size of H.
The more complex H is, the more likely it is to contain a function for
which the empirical risk and the population risk are very different.
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A little more generally : structural risk minimization

We can make this notion of size more precise by introducing the
Rademacher complexity of H:

Definition
Let εi , i = 1, . . . , n i.i.d such that P(εi = 1) = P(εi = −1) = 1/2,
Zi , i = 1, . . . , n i.i.d data and H a space of functions defined over this
data, then

R(H) = Eεn1,Zn
1

[
sup
f ∈H

∣∣∣∣∣1n
n∑

i=1

εi f (Zi )

∣∣∣∣∣
]

is the Rademacher complexity of H.

Intuition: R measures the capacity of H to provide functions which align
with noise.
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is the Rademacher complexity of H.

This complexity increases with the size of H and decreases with the size n
of the sample.
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A little more generally : structural risk minimization

We can bound the mean estimation error in terms of the Rademacher
complexity of H.

Proposition

E(x ,y)n1
sup
f ∈H

∣∣∣∣∣E(x ,y)[L(y , f (x))]− 1
n

n∑
i=1

L(yi , f (xi ))

∣∣∣∣∣ ≤ 2R(H).

Therefore,

E(x ,y)n1

[
R(f̂ )− R∗

]
≤
(
min
g∈H

R(g)− R∗
)

+ 4R(H).
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A little more generally : structural risk minimization

Therefore

E(x ,y)n1

[
R(f̂ )− R∗

]
≤
(
min
g∈H

R(g)− R∗
)

+ 4R(H),

This result illustrates a little more generally the bias variance tradeoff
for risk minimization.
It makes explicit the link between complexity and sample size: lots of
points are needed to estimate in large H (otherwise R(H) is large).
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ERM consistency and SRM

Therefore

E(x ,y)n1

[
R(f̂ )− R∗

]
≤
(
min
g∈H

R(g)− R∗
)

+ 4R(H),

Concretely, this analysis is at the core of two major elements of statistical
learning (Vapnik and Chervonenkis, late 60’s):

It is used in learning theory to establish consistency of empirical risk
minimization: only families with bounded complexity allow to learn by
ERM (are consistent).
It also suggests a strategy to design estimators: build small
classes H which we think contain good approximations.
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A little more generally : structural risk minimization

E(x ,y)n1

[
R(f̂ )− R∗

]
≤
(
min
g∈H

R(g)− R∗
)

+ 4R(H),

Practical procedure proposed by Vapnik and Chervonenkis: structural risk
minimization:

1 Define nested function sets of increasing complexity.
2 Minimize the empirical risk over each family.
3 Choose the solution giving the best generalization performances.
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A little more generally : structural risk minimization

Structural risk minimization:
1 Define nested function sets of increasing complexity.
2 Minimize the empirical risk over each family.
3 Choose the solution giving the best generalization performances.

We will study practical instances of this strategy later in this class.
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A little more generally : structural risk minimization

Proof of the previous bound (inspired from Peter Bartlett’s slides)

E(x ,y)n1
sup
f ∈H

∣∣∣∣∣E(x ,y)[L(y , f (x))]− 1
n

n∑
i=1

L(yi , f (xi ))

∣∣∣∣∣

= E(x ,y)n1
sup
f ∈H

∣∣∣∣∣E(x ′,y ′)n1

[
1
n

n∑
i=1

L(y ′i , f (x ′i ))

]
− 1

n

n∑
i=1

L(yi , f (xi ))

∣∣∣∣∣
= E(x ,y)n1

sup
f ∈H

∣∣∣∣∣E(x ′,y ′)n1

[
1
n

n∑
i=1

L(y ′i , f (x ′i ))− 1
n

n∑
i=1

L(yi , f (xi ))

]∣∣∣∣∣
= E(x ,y)n1

sup
f ∈H

∣∣∣∣∣E(x ′,y ′)n1

[
1
n

n∑
i=1

L(y ′i , f (x ′i ))− L(yi , f (xi ))

]∣∣∣∣∣
≤ E(x ,y)n1

E(x ′,y ′)n1

[
sup
f ∈H

∣∣∣∣∣1n
n∑

i=1

L(y ′i , f (x ′i ))− L(yi , f (xi ))

∣∣∣∣∣
]
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A little more generally : structural risk minimization

We now introduce εi , i = 1, . . . , n ∈ {−1, 1}. Notice that

E sup
f ∈H

∣∣∣∣∣1n
n∑

i=1

L(y ′i , f (x ′i ))− L(yi , f (xi ))

∣∣∣∣∣
= E sup

f ∈H

∣∣∣∣∣1n
n∑

i=1

εi
(
L(y ′i , f (x ′i ))− L(yi , f (xi ))

)∣∣∣∣∣ ,
since the data is i.i.d, switching the two terms does not affect the
distribution of the sup.
The equality holds for any choice of εi , so we can take the expectation over
a uniform i.i.d choice.
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A little more generally : structural risk minimization

Finally,

E sup
f ∈H

∣∣∣∣∣1n
n∑

i=1

εi
(
L(y ′i , f (x ′i ))− L(yi , f (xi ))

)∣∣∣∣∣
≤ E sup

f ∈H

∣∣∣∣∣1n
n∑

i=1

εiL(y ′i , f (x ′i ))

∣∣∣∣∣+ E sup
f ∈H

∣∣∣∣∣1n
n∑

i=1

εiL(yi , f (xi ))

∣∣∣∣∣
= 2E sup

f ∈H

∣∣∣∣∣1n
n∑

i=1

εiL(yi , f (xi ))

∣∣∣∣∣ = 2R(H).

This proof technique is called symmetrization.
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More intuition about the complexity of a set of functions:
VC dimension

In practice, we sometimes use VC dimension of a set of functions to
bound the Rademacher complexity.
We restrict ourselves to the sets H of binary valued functions (useful
for classification).
We say a set Z = (Z1, . . . ,Zn) is shattered by H if
Card {f (Z1), . . . , f (Zn)|f ∈ H} = 2n.
Interpretation: we can find an f ∈ H assigning 0 to any subset of Z
and 1 to its complement.
The VC dimension ν(H) of H is the largest integer n such that there
exists a set (Z1, . . . ,Zn) shattered by H.
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More intuition about the complexity of a set of functions:
VC dimension

We extend the VC dimension to real valued functions by thresholding
functions at 0.
Linear functions in p dimensions: HL = {fθ(x) = sign(θ>x), θ ∈ Rp}.
Includes linear functions and polynomials in our introduction.
We can show that ν(HL) = p.
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More intuition about the complexity of a set of functions:
VC dimension

Proof of ν(HL) ≥ p: we build a set of p points in p dimensions
shattered by HL.

Let Ep be the canonical basis of Rp. For any set y ∈ {0, 1}p and any
i = 1, . . . , n, fθ(ei ) = yi by choosing θi = yi .

Proof of ν(HL) < p + 1: no set of p + 1 points in p dimensions can
be shattered by a linear function.
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More intuition about the complexity of a set of functions:
VC dimension

Let x1, . . . , xp+1 ∈ Rp. One of the points can necessarily be written as
a linear combination of the p others.

Without loss of generality, let us write xp+1 =
∑p

i=1 αixi and
fθ(xp+1) =

∑p
i=1 αiθ

>xi .
Let y = (sign(α1), . . . , sign(αp),−1), and assume there exists θ ∈ Rp

such that sign(θ>xi ) = yi , i = 1, . . . , p.
Then necessarily sign(θ>xp+1) = sign(

∑p
i=1 αiθ

>xi ) = 1 since
sign(θ>xi ) = sign(αi ), i = 1, . . . , p.
y can therefore not be obtained by any function of HL, and no set of
p + 1 vectors in Rp is shattered by HL.

L. Jacob High dimensional statistics January 23, 2017 19 / 40



More intuition about the complexity of a set of functions:
VC dimension

Let x1, . . . , xp+1 ∈ Rp. One of the points can necessarily be written as
a linear combination of the p others.
Without loss of generality, let us write xp+1 =

∑p
i=1 αixi and

fθ(xp+1) =
∑p

i=1 αiθ
>xi .

Let y = (sign(α1), . . . , sign(αp),−1), and assume there exists θ ∈ Rp

such that sign(θ>xi ) = yi , i = 1, . . . , p.
Then necessarily sign(θ>xp+1) = sign(

∑p
i=1 αiθ

>xi ) = 1 since
sign(θ>xi ) = sign(αi ), i = 1, . . . , p.
y can therefore not be obtained by any function of HL, and no set of
p + 1 vectors in Rp is shattered by HL.

L. Jacob High dimensional statistics January 23, 2017 19 / 40



More intuition about the complexity of a set of functions:
VC dimension

Let x1, . . . , xp+1 ∈ Rp. One of the points can necessarily be written as
a linear combination of the p others.
Without loss of generality, let us write xp+1 =

∑p
i=1 αixi and

fθ(xp+1) =
∑p

i=1 αiθ
>xi .

Let y = (sign(α1), . . . , sign(αp),−1), and assume there exists θ ∈ Rp

such that sign(θ>xi ) = yi , i = 1, . . . , p.

Then necessarily sign(θ>xp+1) = sign(
∑p

i=1 αiθ
>xi ) = 1 since

sign(θ>xi ) = sign(αi ), i = 1, . . . , p.
y can therefore not be obtained by any function of HL, and no set of
p + 1 vectors in Rp is shattered by HL.

L. Jacob High dimensional statistics January 23, 2017 19 / 40



More intuition about the complexity of a set of functions:
VC dimension

Let x1, . . . , xp+1 ∈ Rp. One of the points can necessarily be written as
a linear combination of the p others.
Without loss of generality, let us write xp+1 =

∑p
i=1 αixi and

fθ(xp+1) =
∑p

i=1 αiθ
>xi .

Let y = (sign(α1), . . . , sign(αp),−1), and assume there exists θ ∈ Rp

such that sign(θ>xi ) = yi , i = 1, . . . , p.
Then necessarily sign(θ>xp+1) = sign(

∑p
i=1 αiθ

>xi ) = 1 since
sign(θ>xi ) = sign(αi ), i = 1, . . . , p.

y can therefore not be obtained by any function of HL, and no set of
p + 1 vectors in Rp is shattered by HL.

L. Jacob High dimensional statistics January 23, 2017 19 / 40



More intuition about the complexity of a set of functions:
VC dimension

Let x1, . . . , xp+1 ∈ Rp. One of the points can necessarily be written as
a linear combination of the p others.
Without loss of generality, let us write xp+1 =

∑p
i=1 αixi and

fθ(xp+1) =
∑p

i=1 αiθ
>xi .

Let y = (sign(α1), . . . , sign(αp),−1), and assume there exists θ ∈ Rp

such that sign(θ>xi ) = yi , i = 1, . . . , p.
Then necessarily sign(θ>xp+1) = sign(

∑p
i=1 αiθ

>xi ) = 1 since
sign(θ>xi ) = sign(αi ), i = 1, . . . , p.
y can therefore not be obtained by any function of HL, and no set of
p + 1 vectors in Rp is shattered by HL.

L. Jacob High dimensional statistics January 23, 2017 19 / 40



Summary

We saw how the risk could generally be decomposed as a term of
bias/approximation and a term of variance/estimation.
This decomposition highlights the tradeoff that needs to be dealt with
in inference. This tradeoff is related to the complexity of the set of
functions under consideration:

Sets too simple lead to a large approximation error.
Sets too large lead to a large estimation error.

We defined this notion of complexity more precisely (Rademacher,
VC), and saw it also depended on the number of samples.
These ideas are crucial in modern applications, where we sometimes
have few samples in high dimension.
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Part III

Supervised learning
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Perspective

With these ideas in mind, we now turn to concrete examples of
statistical learning methods.
We focus on penalized empirical risk minimization techniques, which
explicitly implements the bias-variance tradeoff.
Other techniques exist (and perform sometimes very well).
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Supervised learning outline

1 `2 penalties.
2 Ridge regression.
3 Fundamentals of constrained optimization.
4 Support vector machines.
5 Cross validation.

First four points are related to penalized empirical risk minimization.
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Penalized empirical risk minimization
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Reminder: structural risk minimization

1 Define nested function sets of increasing complexity.
2 Minimize the empirical risk over each family.
3 Choose the solution giving the best generalization performances.

Define a complexity measure Ω for functions, and consider the classes

H1 ⊆ H2 ⊆ . . . ,

where Hj = {f ,Ω(f ) ≤ µj} and µ1 < µ2 < ....
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Reminder: structural risk minimization

Define a complexity measure Ω for functions, and consider the classes

H1 ⊆ H2 ⊆ . . . ,

where Hj = {f ,Ω(f ) ≤ µj} and µ1 < µ2 < ....
Then (step 2) we can successively solve:

min
f ∈Hj

n∑
i=1

L(yi , f (xi )),

i.e., minimize the empirical risk while restricting ourselves to sets of
function of increasing complexity.
Note: this results in constrained optimization problems. Solving these
problems for different loss functions and function spaces is an active
research area.
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Remark: equivalence with a penalized estimator

We mostly discuss penalized methods:

min
f

n∑
i=1

L(yi , f (xi )) + λΩ(f )

The first term favors a good fit to the data, the second one favors
regularity of f .
We will show later that the constrained and penalized forms are often
equivalent in some sense (need to introduce some technical tools
before that).
The approach will stay the same: we define an Ω which is relevant for
our problem and we compare the generalization performances of the
functions obtained for decreasing values of λ.
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Usual loss functions

Regression : y ∈ R
`2 : L(yi , f (xi )) = (yi − f (xi ))2 (which we used in introduction),
`1 : L(yi , f (xi )) = |yi − f (xi )| (robust version, less sensitive to large
errors, e.g. median vs mean).

(from J. Mairal’s slides)
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Usual loss functions

Classification : y ∈ {0, 1}
0/1 : L(yi , f (xi )) = 1yi f (xi )≥0,

logistic : L(yi , f (xi )) = log
(
1 + e−yi f (xi )

)
,

hinge : L(yi , f (xi )) = max(0, 1− yi f (xi )).

(from J. Mairal’s slides)

Other problems: ranking, multi-class, survival...
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Convexity

0/1 loss counts the number of missclassification, the other ones are
convex approximations.
Convex losses combined with convex penalties lead to convex
objectives for which global optima can be found.
Methods based on convex objectives are also simpler to analyze.
However, this guarantees by no mean that the convex version of a
method performs better than its non-convex counterpart in practice.
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Penalties

We now present an example of penalty, and analyze its effect on the
estimated function.
We restrict ourselves to linear functions f (x) = θ>x , θ ∈ Rp.
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Ridge penalty

A very common penalty is the ridge :

Ω(θ) = ‖θ‖22.

Used in ridge regression combined with the `2 loss and support
vector machines (SVM) combined with the hinge loss.
Leads to functions with the following type of regularity: two points
x , x ′ which are close in Euclidean norm have close evaluations by the
function since by the Cauchy-Schwarz inequality,

|θ>x − θ>x ′| ≤ ‖θ‖2‖x − x ′‖2.
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Ridge penalty

This property can limit the overfit and improve generalization: it
makes functions behave similarly over similar, potentially unobserved
data.
Of course if there is no good predictor with this kind of regularity, the
risk can be high because of the approximation term.
We now study more precisely the influence of the ridge penalty in
terms of bias-variance tradeoff for the linear model:

y = θ̄>x + ε,

where ε is a random variable with mean zero and variance σ2.
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The ridge regression
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Ridge regression: bias and variance

We observe n realizations of the previous linear model, represented by
an X ∈ Rn,p matrix and a Y ∈ Rn vector.
Consider the estimator

θ̂ = argmin
θ

(
‖Y − Xθ‖2 + λ‖θ‖2

)
.

We can show there exists a closed form for this estimator :

θ̂ = (X>X + λI )−1X>Y .

[Exercise] Show that the bias E[θ̂ − θ̄] of θ̂ is −λ(X>X + λI )−1θ̄.
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Ridge regression: bias and variance

E[θ̂] = E[(X>X + λI )−1X>Y ]

= E[(X>X + λI )−1X>
(
X θ̄ + ε

)
]

= (X>X + λI )−1X>X θ̄ + (X>X + λI )−1X>E[ε]

= (X>X + λI )−1X>X θ̄

E[θ̂ − θ̄] = (X>X + λI )−1X>X θ̄ − θ̄

=
(

(X>X + λI )−1X>X − I
)
θ̄

= (X>X + λI )−1(X>X − X>X − λI )θ̄
= −λ(X>X + λI )−1θ̄.
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Ridge regression: bias and variance

We now look at the variance of θ̂ :

Var [θ̂] = Var [(X>X + λI )−1X>Y ]

= (X>X + λI )−1X>Var [Y ]X (X>X + λI )−1

= σ2(X>X + λI )−1X>X (X>X + λI )−1

(reminder : for a deterministic matrix A, Var [AX ] = AVar [X ]A>).
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Ridge regression : bias and variance

Bias (1/3)
The bias −λ(X>X + λI )−1θ̄ increases with λ and tends to −θ̄.
Remark: θ̂ → 0 when λ→∞, so the limit bias is the one incurred by
estimating θ̄ by 0.
If λ = 0 (unpenalized linear regression), the bias is zero.
The amplitude of the bias also depends on the norm of θ̄: if the θ̄
which generated the data has a small norm, the bias/approximation
error incurred by restricting ourselves to small norm estimators is
smaller.
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Ridge regression : bias and variance

Bias (2/3)
A little more precisely, the squared norm of the bias is (λ 6= 0) :

‖ − λ(X>X + λI )−1θ̄‖2 = ‖(λ−1X>X + I )−1θ̄‖2

= ‖UΣU>θ̄‖2 = ‖ΣU>θ̄‖2,

where UΣU> is the spectral decomposition of (λ−1X>X + I )−1.
The eigenvalues of (λ−1X>X + I )−1 are [Exercise] :

Σ = Diag
(
λ−1e2

i + 1
)−1

= Diag
(

λ

e2
i + λ

)
,

where the ei are the singular values of X .
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Ridge regression: bias and variance

Bias (3/3)

‖ − λ(X>X + λI )−1θ̄‖2 =

∥∥∥∥Diag
(

λ

e2
i + λ

)
U>θ̄

∥∥∥∥2

,

Provides the shape of the convergence towards maximum bias as λ
increases.
If n/p is small, X>X typically has small eigenvalues e2

i , and the bias is
larger (even more if θ is aligned with eigenvectors corresponding to
small eigenvalues).
Statistical interpretation: the bias is larger if the vector to be
estimated lies in a direction of low empirical variance of the X .
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