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A little more generally : structural risk minimization

@ Assume we minimize the risk over a function space H (polynomials of
a certain degree in our example).

o If R* is the Bayes risk, we can decompose the Bayes regret :
R(f)— R*=(R(f)— inf R inf R(g) — R* ). 1
(f) (R~ ot /@) ) + (it Rl0) - 7). ()

@ The second term is the approximation error: the smallest excess of risk
we can reach using a function of H.

@ This is a bias term, which does not depend on the data but only on
the size of H.

@ The first term is the excess of risk of f with respect to the best
function in H.
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A little more generally : structural risk minimization

e We consider f obtained by minimizing the empirical risk over #:

f € argmin R(g)
geH

e We want to bound the excess of risk R(f) — infgez R(g) >0

@ This term (estimation error) can be decomposed:

R(f) - '"f R(g) £R(F) — R(f;)
=R(f) - R(f)
+ R(f) — R(f)
+ R(f) — R(£).
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A little more generally : structural risk minimization

@ Reminder :

o R is the population risk, R the empirical risk, an estimator.
o f is the minimizer of R over H, f; is the minimizer of R over H.
o We therefore estimate at two levels: the function f and the risk R.
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A little more generally : structural risk minimization

R(F) — inf R(g) = R(F)
)

I
=2

o The first term is the difference between the true risk and the
estimated risk, for f.

@ This is a complex object to study. Statistical learning theory
(Vapnik and Chervonenkis) aims at bounding this quantity as a
function of n and the complexity of H.

@ The second term is nonpositive by construction.

@ The third one is easier to control as it involves a deterministic function
and the law of large numbers applies.
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A little more generally : structural risk minimization

We can however bound the first term:

n

ELL(y. FOON] — - D Ly F ()

i=1

)

R(f) — R(f) < sup
feH

and since this quantity also bounds the third term, we get

R(f) — inf R(g) <2su
(f) Jnf, (g) < fe”ft

ELL(y. FO)] — - D Ly f(x,-))' .

i=1

@ This bound of the estimation error suggests that it corresponds to a
variance term, which increases with the size of H.

@ The more complex #H is, the more likely it is to contain a function for
which the empirical risk and the population risk are very different.

L. Jacob High dimensional statistics January 23, 2017 6 / 40



A little more generally : structural risk minimization

We can make this notion of size more precise by introducing the
Rademacher complexity of H:

Definition

Let €;, i =1,...,ni.id such that P(¢; = 1) = P(¢; = —1) = 1/2,
Zi,i=1,...,niid data and H a space of functions defined over this

data, then
R(H) = Eq,zf lsup Ze,f(z

is the Rademacher complexity of H.

Intuition: YR measures the capacity of # to provide functions which align
with noise.
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A little more generally : structural risk minimization

We can make this notion of size more precise by introducing the
Rademacher complexity of H:

Definition

Let €, i=1,...,niid such that P(¢; = 1) = P(¢; = —1) = 1/2,
Zi,i=1,...,ni.id data and H a space of functions defined over this
data, then

n

LS af(2)

R(H) = Eeg,zf [?gft
i=1

is the Rademacher complexity of #.

This complexity increases with the size of H and decreases with the size n
of the sample.
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A little more generally : structural risk minimization

We can bound the mean estimation error in terms of the Rademacher
complexity of H.

Proposition

E(X7y)r11 ;.:.IEJ?[?[ S 2%(7‘[)

E e [L0 FON] = 3 Ly Fx)
i=1

Therefore,

Eey): [R(f) _ R*} < <min R(g) — R*> + AR(H).

gEH
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A little more generally : structural risk minimization

Therefore

Byt [RU) — 7] < (mip Rg) — ) + 4200,

@ This result illustrates a little more generally the bias variance tradeoff
for risk minimization.

@ It makes explicit the link between complexity and sample size: lots of
points are needed to estimate in large H (otherwise R(H) is large).
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ERM consistency and SRM

Therefore

Bt [RU) — 7] < (mip R(g) — ) + 400,
Concretely, this analysis is at the core of two major elements of statistical
learning (Vapnik and Chervonenkis, late 60's):

@ It is used in learning theory to establish consistency of empirical risk
minimization: only families with bounded complexity allow to learn by
ERM (are consistent).

o It also suggests a strategy to design estimators: build small
classes ‘H which we think contain good approximations.

L. Jacob High dimensional statistics January 23, 2017 10 / 40



A little more generally : structural risk minimization

Eey)y [R(f) - R*} < (;neig[ R(g) — R*> + 4R%(H),

Practical procedure proposed by Vapnik and Chervonenkis: structural risk
minimization:

@ Define nested function sets of increasing complexity.

@ Minimize the empirical risk over each family.

© Choose the solution giving the best generalization performances.
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A little more generally : structural risk minimization

Structural risk minimization:
@ Define nested function sets of increasing complexity.
@ Minimize the empirical risk over each family.
© Choose the solution giving the best generalization performances.

We will study practical instances of this strategy later in this class.
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A little more generally : structural risk minimization

Proof of the previous bound (inspired from Peter Bartlett's slides)

Epen L0 O = = 3 L f(x,-»‘

E(X,y)’l' sup
feM =1
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A little more generally : structural risk minimization

Proof of the previous bound (inspired from Peter Bartlett's slides)

Epen L0 O = = 3 L f(x,-»‘

i=1

xy)"[ ZLyn i ]_,]:’ZL()/Hf(XI))'
i=1

E(xy)y sup

= E(xy)r sup | B
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A little more generally : structural risk minimization

Proof of the previous bound (inspired from Peter Bartlett's slides)

Epen L0 FO] - D Ly f(x,-»‘
i=1

xy)"[ ZL%: X] ]_,]:’ZL(Yhf(Xi))'
XY)"[ ZLyI7 )_7ZLyl7f(Xl ]'
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A little more generally : structural risk minimization

Proof of the previous bound (inspired from Peter Bartlett's slides)

E(xy)y sup

Epen L0 O = = 3 L f(x,-»‘

i=1

L L
= B 90 By | 2 LU f(x;))] 2L f(x,-))‘

= Epopy sup E(x',y')" n Z Lyi: FO)) = Z Lyi» £(xi) ] ‘

= Eqeyy s0p E(X/,y/)n . Z LY, FOD) = L, f(x,-))”
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A little more generally : structural risk minimization

Proof of the previous bound (inspired from Peter Bartlett's slides)
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L L
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A little more generally : structural risk minimization

We now introduce ¢;, i = 1,...,n € {—1,1}. Notice that

Esup |- Ly F(<D) — Ly f(x,'))‘
fen | N
—Esup |~ 36 (LU F()) — Ly, F(x)))]
fen | N

since the data is i.i.d, switching the two terms does not affect the
distribution of the sup.

The equality holds for any choice of ¢;, so we can take the expectation over
a uniform i.i.d choice.
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A little more generally : structural risk minimization

Finally,
1 n
E sup |- e (L(y!, F(x})) — L(y;, f(x;
feﬂn,; (L(yis F(x7)) = Lyi, F(xi)))
n 1 n
< Esup |- eil(y;, f(x))| + E sup Z eiL(yi, f(xi))
e | N fen | N
1 n
= 2E sup eil(yi, f(xi))| = 2R(H
feM ”,Z:; e : ‘ (#).

This proof technique is called symmetrization.
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More intuition about the complexity of a set of functions:

VC dimension

@ In practice, we sometimes use VC dimension of a set of functions to
bound the Rademacher complexity.

@ We restrict ourselves to the sets H of binary valued functions (useful
for classification).

o We say a set Z = (Z1,...,Zy) is shattered by H if
Card {f(Z1),...,f(Zy)|f € H} =2".

@ Interpretation: we can find an f € H assigning 0 to any subset of Z
and 1 to its complement.

e The VC dimension v(#) of H is the largest integer n such that there
exists a set (Z1, ..., Z,) shattered by H.
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More intuition about the complexity of a set of functions:

VC dimension

@ We extend the VC dimension to real valued functions by thresholding
functions at 0.

e Linear functions in p dimensions: H; = {fy(x) = sign(0 " x), 0 € RP}.
@ Includes linear functions and polynomials in our introduction.
e We can show that v(H,) = p.
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More intuition about the complexity of a set of functions:

VC dimension

@ Proof of v(#H,) > p: we build a set of p points in p dimensions
shattered by H,;.

@ Proof of v(H,) < p+ 1: no set of p+ 1 points in p dimensions can
be shattered by a linear function.
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More intuition about the complexity of a set of functions:

VC dimension

@ Proof of v(#H,) > p: we build a set of p points in p dimensions
shattered by H,;.
Let £, be the canonical basis of RP. For any set y € {0,1}” and any
i=1,...,n, fa(e) = y;i by choosing 0; = y;.

@ Proof of v(H,) < p+ 1: no set of p+ 1 points in p dimensions can
be shattered by a linear function.
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More intuition about the complexity of a set of functions:

VC dimension

@ Let x1,...,xp11 € RP. One of the points can necessarily be written as
a linear combination of the p others.
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o Without loss of generality, let us write x,411 = > %_; a;ix; and
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January 23, 2017 19 / 40

L. Jacob High dimensional statistics



More intuition about the complexity of a set of functions:

VC dimension

@ Let x1,...,xp11 € RP. One of the points can necessarily be written as
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More intuition about the complexity of a set of functions:

VC dimension

@ Let x1,...,xp11 € RP. One of the points can necessarily be written as
a linear combination of the p others.

o Without loss of generality, let us write x,411 = > %_; a;ix; and
folxpr1) = 201 il Tx.

o Let y = (sign(c),...,sign(ap),—1), and assume there exists § € R
such that sign(0"x;) = yi,i =1,...,p.

o Then necessarily sign(6 " xp11) = sign(}-5_; ;0" x;) = 1 since
sign(0" x;) = sign(a;),i=1,...,p.

@ y can therefore not be obtained by any function of #,, and no set of
p + 1 vectors in RP is shattered by #,.
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Summary

@ We saw how the risk could generally be decomposed as a term of
bias/approximation and a term of variance/estimation.
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@ We saw how the risk could generally be decomposed as a term of
bias/approximation and a term of variance/estimation.
@ This decomposition highlights the tradeoff that needs to be dealt with

in inference. This tradeoff is related to the complexity of the set of
functions under consideration:

e Sets too simple lead to a large approximation error.
e Sets too large lead to a large estimation error.
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in inference. This tradeoff is related to the complexity of the set of
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e Sets too large lead to a large estimation error.
@ We defined this notion of complexity more precisely (Rademacher,
VC), and saw it also depended on the number of samples.
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@ We saw how the risk could generally be decomposed as a term of
bias/approximation and a term of variance/estimation.
@ This decomposition highlights the tradeoff that needs to be dealt with

in inference. This tradeoff is related to the complexity of the set of
functions under consideration:

e Sets too simple lead to a large approximation error.
e Sets too large lead to a large estimation error.
@ We defined this notion of complexity more precisely (Rademacher,
VC), and saw it also depended on the number of samples.

@ These ideas are crucial in modern applications, where we sometimes
have few samples in high dimension.
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Part |11

Supervised learning
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@ With these ideas in mind, we now turn to concrete examples of
statistical learning methods.

o We focus on penalized empirical risk minimization techniques, which
explicitly implements the bias-variance tradeoff.

@ Other techniques exist (and perform sometimes very well).
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Supervised learning outline

@ /5 penalties.

@ Ridge regression.

© Fundamentals of constrained optimization.
@ Support vector machines.

@ Cross validation.

First four points are related to penalized empirical risk minimization.

L. Jacob High dimensional statistics January 23, 2017 23 / 40



Penalized empirical risk minimization
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Reminder: structural risk minimization

@ Define nested function sets of increasing complexity.
@ Minimize the empirical risk over each family.

© Choose the solution giving the best generalization performances.

Define a complexity measure Q for functions, and consider the classes
HiCHC ..o,

where H; = {f,Q(f) < pj} and p1 < po < ...
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Reminder: structural risk minimization

Define a complexity measure Q for functions, and consider the classes
Hi1 CHy C .o

where H; = {f,Q(f) < pj} and p1 < po < ...
Then (step 2) we can successively solve:

n

min _ L(yi, f(xi)),

i.e., minimize the empirical risk while restricting ourselves to sets of
function of increasing complexity.

Note: this results in constrained optimization problems. Solving these
problems for different loss functions and function spaces is an active
research area.
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Remark: equivalence with a penalized estimator

@ We mostly discuss penalized methods:
min Z} L(yi, f(x))) + 2Q(f)

@ The first term favors a good fit to the data, the second one favors
regularity of f.

o We will show later that the constrained and penalized forms are often
equivalent in some sense (need to introduce some technical tools
before that).

@ The approach will stay the same: we define an Q which is relevant for
our problem and we compare the generalization performances of the
functions obtained for decreasing values of .
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Usual loss functions

Regression : y € R
e /: L(y;, f(x;)) = (vi — f(x;))? (which we used in introduction),

e /1 : L(yi, f(x;)) = |yi — f(xi)| (robust version, less sensitive to large
errors, e.g. median vs mean).

(from J. Mairal's slides)
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Usual loss functions

Classification : y € {0,1}
© 0/1: L(yi, f(xi)) = 1y,¢(x)>0:
o logistic : L(y;, f(x;)) = log (1 + e_y"f("")),
@ hinge : L(y;, f(x;)) = max(0,1 — yif(x)).

(from J. Mairal's slides)

Other problems: ranking, multi-class, survival...
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@ 0/1 loss counts the number of missclassification, the other ones are
convex approximations.

@ Convex losses combined with convex penalties lead to convex
objectives for which global optima can be found.

@ Methods based on convex objectives are also simpler to analyze.

@ However, this guarantees by no mean that the convex version of a
method performs better than its non-convex counterpart in practice.
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@ We now present an example of penalty, and analyze its effect on the
estimated function.

o We restrict ourselves to linear functions f(x) = 6'x, 8 € RP.
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Ridge penalty

@ A very common penalty is the ridge :
Q(9) = |19113.

@ Used in ridge regression combined with the ¢, loss and support
vector machines (SVM) combined with the hinge loss.

@ Leads to functions with the following type of regularity: two points
x, x" which are close in Euclidean norm have close evaluations by the
function since by the Cauchy-Schwarz inequality,

107 x = 07X < [|6]|2]lx = X[l2-
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Ridge penalty

@ This property can limit the overfit and improve generalization: it
makes functions behave similarly over similar, potentially unobserved
data.

@ Of course if there is no good predictor with this kind of regularity, the
risk can be high because of the approximation term.

@ We now study more precisely the influence of the ridge penalty in
terms of bias-variance tradeoff for the linear model:

yzH_Tx—i—a,

where ¢ is a random variable with mean zero and variance o2.
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The ridge regression

L. Jacob High dimensional statistics January 23, 2017 34 / 40



Ridge regression: bias and variance

@ We observe n realizations of the previous linear model, represented by
an X € R™P matrix and a Y € R” vector.

@ Consider the estimator
0 = argmin (||Y — X0|* + \[|0]]%) .
9
@ We can show there exists a closed form for this estimator :
0=(X"X+A)IXTY.

o [Exercise] Show that the bias E[§ — 8] of § is —A(XT X + A\/)~14.
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Ridge regression: bias and variance

E[A] = E[(XTX + M)7IXTY]
=E[(XTX+AM)IXT (X0 +¢)]
= (XX +A)IXTXO+ (XTX + M) IXTE[e]
=(X"X+X)IXTX0

E[l -0l = (X" X+X)IXTX0-0
= (XTX +A)IXTX - /) g
=(XTX+M)IXTX=XTX=\)b
= AXTX+ )14
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Ridge regression: bias and variance

We now look at the variance of § :

Var[0] = Var[(XTX + A)71XTY]
= (XX +AN)IX T Var[YIX(XTX + A)7E
=2(XTX +AN)IXTX(XTX + ANt

(reminder : for a deterministic matrix A, Var[AX] = AVar[X]AT).
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Ridge regression : bias and variance

Bias (1/3)
o The bias —A\(X "X + A/)~10 increases with \ and tends to —.
@ Remark: @_—> 0 when A — oo, so the limit bias is the one incurred by
estimating 6 by 0.
o If A =0 (unpenalized linear regression), the bias is zero.

e The amplitude of the bias also depends on the norm of : if the §
which generated the data has a small norm, the bias/approximation
error incurred by restricting ourselves to small norm estimators is
smaller.
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Ridge regression : bias and variance

Bias (2/3)
@ A little more precisely, the squared norm of the bias is (A # 0) :
= AXTX + AN = [(ATIXTX + 1) 7102
= |[UEUT9|I* = IzUTd)1%,

where UL U is the spectral decomposition of (A™1XTX + /)71
o The eigenvalues of (A\™1XTX + /)71 are [Exercise] :
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Ridge regression : bias and variance

Bias (2/3)
@ A little more precisely, the squared norm of the bias is (A # 0) :
= AXTX + AN = [(ATIXTX + 1) 7102
= |[UEUT9|I* = IzUTd)1%,

where UL U is the spectral decomposition of (A™1XTX + /)71
o The eigenvalues of (A\™1XTX + /)71 are [Exercise] :

A
¥ = Diag (A2 +1) ' =D
1ag( e + ) 1ag( +)\>

where the ¢; are the singular values of X.
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Ridge regression: bias and variance

Bias (3/3)

2

)

_ A _
T —17)12 . T
= MXTX +AN)710|2 = “Dlag<eg+)\> uTa

1

@ Provides the shape of the convergence towards maximum bias as \
increases.

e If n/pis small, X T X typically has small eigenvalues e?, and the bias is
larger (even more if 0 is aligned with eigenvectors corresponding to
small eigenvalues).

@ Statistical interpretation: the bias is larger if the vector to be
estimated lies in a direction of low empirical variance of the X.
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