

High dimensional statistics for genomic data

Laurent Jacob

January 23, 2017

A little more generally : structural risk minimization

- Assume we minimize the risk over a function space \mathcal{H} (polynomials of a certain degree in our example).
- If R^* is the Bayes risk, we can decompose the **Bayes regret** :

$$R(f) - R^* = \left(R(f) - \inf_{g \in \mathcal{H}} R(g) \right) + \left(\inf_{g \in \mathcal{H}} R(g) - R^* \right). \quad (1)$$

- The second term is the approximation error: the smallest excess of risk we can reach using a function of \mathcal{H} .
- This is a **bias** term, which does not depend on the data but only on the size of \mathcal{H} .
- The first term is the excess of risk of f with respect to the best function in \mathcal{H} .

A little more generally : structural risk minimization

- We consider \hat{f} obtained by minimizing the empirical risk over \mathcal{H} :

$$\hat{f} \in \arg \min_{g \in \mathcal{H}} \hat{R}(g)$$

- We want to bound the excess of risk $R(\hat{f}) - \inf_{g \in \mathcal{H}} R(g) \geq 0$
- This term (estimation error) can be decomposed:

$$\begin{aligned} R(\hat{f}) - \inf_{g \in \mathcal{H}} R(g) &\stackrel{\Delta}{=} R(\hat{f}) - R(f_{\mathcal{H}}^*) \\ &= R(\hat{f}) - \hat{R}(\hat{f}) \\ &\quad + \hat{R}(\hat{f}) - \hat{R}(f_{\mathcal{H}}^*) \\ &\quad + \hat{R}(f_{\mathcal{H}}^*) - R(f_{\mathcal{H}}^*). \end{aligned}$$

A little more generally : structural risk minimization

$$\begin{aligned} R(\hat{f}) - \inf_{g \in \mathcal{H}} R(g) &= R(\hat{f}) - R(f_{\mathcal{H}}^*) \\ &= R(\hat{f}) - \hat{R}(\hat{f}) \\ &\quad + \hat{R}(\hat{f}) - \hat{R}(f_{\mathcal{H}}^*) \\ &\quad + \hat{R}(f_{\mathcal{H}}^*) - R(f_{\mathcal{H}}^*). \end{aligned}$$

- Reminder :

- R is the **population** risk, \hat{R} the **empirical** risk, an estimator.
- \hat{f} is the minimizer of \hat{R} over \mathcal{H} , $f_{\mathcal{H}}^*$ is the minimizer of R over \mathcal{H} .
- We therefore estimate at two levels: the function f and the risk R .

A little more generally : structural risk minimization

$$\begin{aligned} R(\hat{f}) - \inf_{g \in \mathcal{H}} R(g) &= R(\hat{f}) - \hat{R}(\hat{f}) \\ &\quad + \hat{R}(\hat{f}) - \hat{R}(f_{\mathcal{H}}^*) \\ &\quad + \hat{R}(f_{\mathcal{H}}^*) - R(f_{\mathcal{H}}^*). \end{aligned}$$

- The first term is the difference between the true risk and the estimated risk, for \hat{f} .
- This is a complex object to study. **Statistical learning theory** (Vapnik and Chervonenkis) aims at bounding this quantity as a function of n and the complexity of \mathcal{H} .
- The second term is nonpositive by construction.
- The third one is easier to control as it involves a deterministic function and the law of large numbers applies.

A little more generally : structural risk minimization

We can however bound the first term:

$$R(\hat{f}) - \hat{R}(\hat{f}) \leq \sup_{f \in \mathcal{H}} \left| \mathbf{E}[L(y, f(x))] - \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i)) \right|,$$

and since this quantity also bounds the third term, we get

$$R(\hat{f}) - \inf_{g \in \mathcal{H}} R(g) \leq 2 \sup_{f \in \mathcal{H}} \left| \mathbf{E}[L(y, f(x))] - \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i)) \right|.$$

- This bound of the estimation error suggests that it corresponds to a **variance** term, which increases with the size of \mathcal{H} .
- The more complex \mathcal{H} is, the more likely it is to contain a function for which the empirical risk and the population risk are very different.

A little more generally : structural risk minimization

We can make this notion of size more precise by introducing the **Rademacher complexity** of \mathcal{H} :

Definition

Let $\epsilon_i, i = 1, \dots, n$ i.i.d such that $\mathbb{P}(\epsilon_i = 1) = \mathbb{P}(\epsilon_i = -1) = 1/2$, $Z_i, i = 1, \dots, n$ i.i.d data and \mathcal{H} a space of functions defined over this data, then

$$\mathfrak{R}(\mathcal{H}) = \mathbf{E}_{\epsilon_1^n, Z_1^n} \left[\sup_{f \in \mathcal{H}} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i f(Z_i) \right| \right]$$

is the Rademacher complexity of \mathcal{H} .

Intuition: \mathfrak{R} measures the capacity of \mathcal{H} to provide functions which align with noise.

A little more generally : structural risk minimization

We can make this notion of size more precise by introducing the **Rademacher complexity** of \mathcal{H} :

Definition

Let $\epsilon_i, i = 1, \dots, n$ i.i.d such that $\mathbb{P}(\epsilon_i = 1) = \mathbb{P}(\epsilon_i = -1) = 1/2$, $Z_i, i = 1, \dots, n$ i.i.d data and \mathcal{H} a space of functions defined over this data, then

$$\mathfrak{R}(\mathcal{H}) = \mathbf{E}_{\epsilon_1^n, Z_1^n} \left[\sup_{f \in \mathcal{H}} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i f(Z_i) \right| \right]$$

is the Rademacher complexity of \mathcal{H} .

This complexity increases with the size of \mathcal{H} and decreases with the size n of the sample.

A little more generally : structural risk minimization

We can bound the mean estimation error in terms of the Rademacher complexity of \mathcal{H} .

Proposition

$$\mathbf{E}_{(x,y)_1^n} \sup_{f \in \mathcal{H}} \left| \mathbf{E}_{(x,y)}[L(y, f(x))] - \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i)) \right| \leq 2\mathfrak{R}(\mathcal{H}).$$

Therefore,

$$\mathbf{E}_{(x,y)_1^n} \left[R(\hat{f}) - R^* \right] \leq \left(\min_{g \in \mathcal{H}} R(g) - R^* \right) + 4\mathfrak{R}(\mathcal{H}).$$

A little more generally : structural risk minimization

Therefore

$$\mathbf{E}_{(x,y)_1^n} \left[R(\hat{f}) - R^* \right] \leq \left(\min_{g \in \mathcal{H}} R(g) - R^* \right) + 4\mathfrak{R}(\mathcal{H}),$$

- This result illustrates a little more generally the bias variance tradeoff for risk minimization.
- It makes explicit the link between complexity and sample size: lots of points are needed to estimate in large \mathcal{H} (otherwise $\mathfrak{R}(\mathcal{H})$ is large).

ERM consistency and SRM

Therefore

$$\mathbf{E}_{(x,y)_1^n} \left[R(\hat{f}) - R^* \right] \leq \left(\min_{g \in \mathcal{H}} R(g) - R^* \right) + 4\mathfrak{R}(\mathcal{H}),$$

Concretely, this analysis is at the core of two major elements of statistical learning (Vapnik and Chervonenkis, late 60's):

- It is used in learning theory to establish consistency of empirical risk minimization: only families with bounded complexity allow to learn by ERM (are consistent).
- **It also suggests a strategy to design estimators:** build small classes \mathcal{H} which we think contain good approximations.

A little more generally : structural risk minimization

$$\mathbf{E}_{(x,y)_1^n} \left[R(\hat{f}) - R^* \right] \leq \left(\min_{g \in \mathcal{H}} R(g) - R^* \right) + 4\mathfrak{R}(\mathcal{H}),$$

Practical procedure proposed by Vapnik and Chervonenkis: **structural risk minimization**:

- ① Define nested function sets of increasing complexity.
- ② Minimize the empirical risk over each family.
- ③ Choose the solution giving the best generalization performances.

A little more generally : structural risk minimization

Structural risk minimization:

- ① Define nested function sets of increasing complexity.
- ② Minimize the empirical risk over each family.
- ③ Choose the solution giving the best generalization performances.

We will study practical instances of this strategy later in this class.

A little more generally : structural risk minimization

Proof of the previous bound (inspired from Peter Bartlett's slides)

$$\mathbf{E}_{(x,y)_1^n} \sup_{f \in \mathcal{H}} \left| \mathbf{E}_{(x,y)}[L(y, f(x))] - \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i)) \right|$$

A little more generally : structural risk minimization

Proof of the previous bound (inspired from Peter Bartlett's slides)

$$\begin{aligned} & \mathbf{E}_{(x,y)_1^n} \sup_{f \in \mathcal{H}} \left| \mathbf{E}_{(x,y)}[L(y, f(x))] - \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i)) \right| \\ &= \mathbf{E}_{(x,y)_1^n} \sup_{f \in \mathcal{H}} \left| \mathbf{E}_{(x',y')_1^n} \left[\frac{1}{n} \sum_{i=1}^n L(y'_i, f(x'_i)) \right] - \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i)) \right| \end{aligned}$$

A little more generally : structural risk minimization

Proof of the previous bound (inspired from Peter Bartlett's slides)

$$\begin{aligned} & \mathbf{E}_{(x,y)_1^n} \sup_{f \in \mathcal{H}} \left| \mathbf{E}_{(x,y)}[L(y, f(x))] - \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i)) \right| \\ &= \mathbf{E}_{(x,y)_1^n} \sup_{f \in \mathcal{H}} \left| \mathbf{E}_{(x',y')_1^n} \left[\frac{1}{n} \sum_{i=1}^n L(y'_i, f(x'_i)) \right] - \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i)) \right| \\ &= \mathbf{E}_{(x,y)_1^n} \sup_{f \in \mathcal{H}} \left| \mathbf{E}_{(x',y')_1^n} \left[\frac{1}{n} \sum_{i=1}^n L(y'_i, f(x'_i)) - \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i)) \right] \right| \end{aligned}$$

A little more generally : structural risk minimization

Proof of the previous bound (inspired from Peter Bartlett's slides)

$$\begin{aligned} & \mathbf{E}_{(x,y)_1^n} \sup_{f \in \mathcal{H}} \left| \mathbf{E}_{(x,y)}[L(y, f(x))] - \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i)) \right| \\ &= \mathbf{E}_{(x,y)_1^n} \sup_{f \in \mathcal{H}} \left| \mathbf{E}_{(x',y')_1^n} \left[\frac{1}{n} \sum_{i=1}^n L(y'_i, f(x'_i)) \right] - \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i)) \right| \\ &= \mathbf{E}_{(x,y)_1^n} \sup_{f \in \mathcal{H}} \left| \mathbf{E}_{(x',y')_1^n} \left[\frac{1}{n} \sum_{i=1}^n L(y'_i, f(x'_i)) - \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i)) \right] \right| \\ &= \mathbf{E}_{(x,y)_1^n} \sup_{f \in \mathcal{H}} \left| \mathbf{E}_{(x',y')_1^n} \left[\frac{1}{n} \sum_{i=1}^n L(y'_i, f(x'_i)) - L(y_i, f(x_i)) \right] \right| \end{aligned}$$

A little more generally : structural risk minimization

Proof of the previous bound (inspired from Peter Bartlett's slides)

$$\begin{aligned} & \mathbf{E}_{(x,y)_1^n} \sup_{f \in \mathcal{H}} \left| \mathbf{E}_{(x,y)}[L(y, f(x))] - \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i)) \right| \\ &= \mathbf{E}_{(x,y)_1^n} \sup_{f \in \mathcal{H}} \left| \mathbf{E}_{(x',y')_1^n} \left[\frac{1}{n} \sum_{i=1}^n L(y'_i, f(x'_i)) \right] - \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i)) \right| \\ &= \mathbf{E}_{(x,y)_1^n} \sup_{f \in \mathcal{H}} \left| \mathbf{E}_{(x',y')_1^n} \left[\frac{1}{n} \sum_{i=1}^n L(y'_i, f(x'_i)) - \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i)) \right] \right| \\ &= \mathbf{E}_{(x,y)_1^n} \sup_{f \in \mathcal{H}} \left| \mathbf{E}_{(x',y')_1^n} \left[\frac{1}{n} \sum_{i=1}^n L(y'_i, f(x'_i)) - L(y_i, f(x_i)) \right] \right| \\ &\leq \mathbf{E}_{(x,y)_1^n} \mathbf{E}_{(x',y')_1^n} \left[\sup_{f \in \mathcal{H}} \left| \frac{1}{n} \sum_{i=1}^n L(y'_i, f(x'_i)) - L(y_i, f(x_i)) \right| \right] \end{aligned}$$

A little more generally : structural risk minimization

We now introduce ϵ_i , $i = 1, \dots, n \in \{-1, 1\}$. Notice that

$$\begin{aligned} & \mathbf{E} \sup_{f \in \mathcal{H}} \left| \frac{1}{n} \sum_{i=1}^n L(y'_i, f(x'_i)) - L(y_i, f(x_i)) \right| \\ &= \mathbf{E} \sup_{f \in \mathcal{H}} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i (L(y'_i, f(x'_i)) - L(y_i, f(x_i))) \right|, \end{aligned}$$

since the data is i.i.d, switching the two terms does not affect the distribution of the sup.

The equality holds for any choice of ϵ_i , so we can take the expectation over a uniform i.i.d choice.

A little more generally : structural risk minimization

Finally,

$$\begin{aligned} & \mathbf{E} \sup_{f \in \mathcal{H}} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i (L(y'_i, f(x'_i)) - L(y_i, f(x_i))) \right| \\ & \leq \mathbf{E} \sup_{f \in \mathcal{H}} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i L(y'_i, f(x'_i)) \right| + \mathbf{E} \sup_{f \in \mathcal{H}} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i L(y_i, f(x_i)) \right| \\ & = 2 \mathbf{E} \sup_{f \in \mathcal{H}} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i L(y_i, f(x_i)) \right| = 2 \mathfrak{R}(\mathcal{H}). \end{aligned}$$

This proof technique is called **symmetrization**.

More intuition about the complexity of a set of functions: VC dimension

- In practice, we sometimes use VC dimension of a set of functions to bound the Rademacher complexity.
- We restrict ourselves to the sets \mathcal{H} of binary valued functions (useful for classification).
- We say a set $Z = (Z_1, \dots, Z_n)$ is **shattered** by \mathcal{H} if $\text{Card } \{f(Z_1), \dots, f(Z_n) | f \in \mathcal{H}\} = 2^n$.
- Interpretation: we can find an $f \in \mathcal{H}$ assigning 0 to any subset of Z and 1 to its complement.
- The VC dimension $\nu(\mathcal{H})$ of \mathcal{H} is the largest integer n such that there exists a set (Z_1, \dots, Z_n) shattered by \mathcal{H} .

More intuition about the complexity of a set of functions: VC dimension

- We extend the VC dimension to real valued functions by thresholding functions at 0.
- Linear functions in p dimensions: $\mathcal{H}_L = \{f_\theta(x) = \text{sign}(\theta^\top x), \theta \in \mathbb{R}^p\}$.
- Includes linear functions and polynomials in our introduction.
- We can show that $\nu(\mathcal{H}_L) = p$.

More intuition about the complexity of a set of functions: VC dimension

- Proof of $\nu(\mathcal{H}_L) \geq p$: we build a set of p points in p dimensions shattered by \mathcal{H}_L .
- Proof of $\nu(\mathcal{H}_L) < p + 1$: no set of $p + 1$ points in p dimensions can be shattered by a linear function.

More intuition about the complexity of a set of functions: VC dimension

- Proof of $\nu(\mathcal{H}_L) \geq p$: we build a set of p points in p dimensions shattered by \mathcal{H}_L .
Let \mathcal{E}_p be the canonical basis of \mathbb{R}^p . For any set $y \in \{0, 1\}^p$ and any $i = 1, \dots, n$, $f_\theta(e_i) = y_i$ by choosing $\theta_i = y_i$.
- Proof of $\nu(\mathcal{H}_L) < p + 1$: no set of $p + 1$ points in p dimensions can be shattered by a linear function.

More intuition about the complexity of a set of functions: VC dimension

- Let $x_1, \dots, x_{p+1} \in \mathbb{R}^p$. One of the points can necessarily be written as a linear combination of the p others.

More intuition about the complexity of a set of functions: VC dimension

- Let $x_1, \dots, x_{p+1} \in \mathbb{R}^p$. One of the points can necessarily be written as a linear combination of the p others.
- Without loss of generality, let us write $x_{p+1} = \sum_{i=1}^p \alpha_i x_i$ and $f_\theta(x_{p+1}) = \sum_{i=1}^p \alpha_i \theta^\top x_i$.

More intuition about the complexity of a set of functions: VC dimension

- Let $x_1, \dots, x_{p+1} \in \mathbb{R}^p$. One of the points can necessarily be written as a linear combination of the p others.
- Without loss of generality, let us write $x_{p+1} = \sum_{i=1}^p \alpha_i x_i$ and $f_\theta(x_{p+1}) = \sum_{i=1}^p \alpha_i \theta^\top x_i$.
- Let $y = (sign(\alpha_1), \dots, sign(\alpha_p), -1)$, and assume there exists $\theta \in \mathbb{R}^p$ such that $sign(\theta^\top x_i) = y_i, i = 1, \dots, p$.

More intuition about the complexity of a set of functions: VC dimension

- Let $x_1, \dots, x_{p+1} \in \mathbb{R}^p$. One of the points can necessarily be written as a linear combination of the p others.
- Without loss of generality, let us write $x_{p+1} = \sum_{i=1}^p \alpha_i x_i$ and $f_\theta(x_{p+1}) = \sum_{i=1}^p \alpha_i \theta^\top x_i$.
- Let $y = (sign(\alpha_1), \dots, sign(\alpha_p), -1)$, and assume there exists $\theta \in \mathbb{R}^p$ such that $sign(\theta^\top x_i) = y_i, i = 1, \dots, p$.
- Then necessarily $sign(\theta^\top x_{p+1}) = sign(\sum_{i=1}^p \alpha_i \theta^\top x_i) = 1$ since $sign(\theta^\top x_i) = sign(\alpha_i), i = 1, \dots, p$.

More intuition about the complexity of a set of functions: VC dimension

- Let $x_1, \dots, x_{p+1} \in \mathbb{R}^p$. One of the points can necessarily be written as a linear combination of the p others.
- Without loss of generality, let us write $x_{p+1} = \sum_{i=1}^p \alpha_i x_i$ and $f_\theta(x_{p+1}) = \sum_{i=1}^p \alpha_i \theta^\top x_i$.
- Let $y = (sign(\alpha_1), \dots, sign(\alpha_p), -1)$, and assume there exists $\theta \in \mathbb{R}^p$ such that $sign(\theta^\top x_i) = y_i, i = 1, \dots, p$.
- Then necessarily $sign(\theta^\top x_{p+1}) = sign(\sum_{i=1}^p \alpha_i \theta^\top x_i) = 1$ since $sign(\theta^\top x_i) = sign(\alpha_i), i = 1, \dots, p$.
- y can therefore not be obtained by any function of \mathcal{H}_L , and no set of $p + 1$ vectors in \mathbb{R}^p is shattered by \mathcal{H}_L .

Summary

- We saw how the risk could generally be decomposed as a term of bias/approximation and a term of variance/estimation.
- This decomposition highlights the tradeoff that needs to be dealt with in inference. This tradeoff is related to the complexity of the set of functions under consideration:
 - Sets too simple lead to a large approximation error.
 - Sets too large lead to a large estimation error.
- We defined this notion of complexity more precisely (Rademacher, VC), and saw it also depended on the number of samples.
- These ideas are crucial in modern applications, where we sometimes have few samples in high dimension.

Summary

- We saw how the risk could generally be decomposed as a term of bias/approximation and a term of variance/estimation.
- This decomposition highlights the tradeoff that needs to be dealt with in inference. This tradeoff is related to the complexity of the set of functions under consideration:
 - Sets too simple lead to a large approximation error.
 - Sets too large lead to a large estimation error.
- We defined this notion of complexity more precisely (Rademacher, VC), and saw it also depended on the number of samples.
- These ideas are crucial in modern applications, where we sometimes have few samples in high dimension.

Summary

- We saw how the risk could generally be decomposed as a term of bias/approximation and a term of variance/estimation.
- This decomposition highlights the tradeoff that needs to be dealt with in inference. This tradeoff is related to the complexity of the set of functions under consideration:
 - Sets too simple lead to a large approximation error.
 - Sets too large lead to a large estimation error.
- We defined this notion of complexity more precisely (Rademacher, VC), and saw it also depended on the number of samples.
- These ideas are crucial in modern applications, where we sometimes have few samples in high dimension.

Summary

- We saw how the risk could generally be decomposed as a term of bias/approximation and a term of variance/estimation.
- This decomposition highlights the tradeoff that needs to be dealt with in inference. This tradeoff is related to the complexity of the set of functions under consideration:
 - Sets too simple lead to a large approximation error.
 - Sets too large lead to a large estimation error.
- We defined this notion of complexity more precisely (Rademacher, VC), and saw it also depended on the number of samples.
- These ideas are crucial in modern applications, where we sometimes have few samples in high dimension.

Part III

Supervised learning

- With these ideas in mind, we now turn to concrete examples of statistical learning methods.
- We focus on *penalized empirical risk minimization* techniques, which explicitly implements the bias-variance tradeoff.
- Other techniques exist (and perform sometimes very well).

Supervised learning outline

- ① ℓ_2 penalties.
- ② Ridge regression.
- ③ Fundamentals of constrained optimization.
- ④ Support vector machines.
- ⑤ Cross validation.

First four points are related to penalized empirical risk minimization.

Penalized empirical risk minimization

Reminder: structural risk minimization

- ① Define nested function sets of increasing complexity.
- ② Minimize the empirical risk over each family.
- ③ Choose the solution giving the best generalization performances.

Define a complexity measure Ω for functions, and consider the classes

$$\mathcal{H}_1 \subseteq \mathcal{H}_2 \subseteq \dots,$$

where $\mathcal{H}_j = \{f, \Omega(f) \leq \mu_j\}$ and $\mu_1 < \mu_2 < \dots$

Reminder: structural risk minimization

Define a complexity measure Ω for functions, and consider the classes

$$\mathcal{H}_1 \subseteq \mathcal{H}_2 \subseteq \dots,$$

where $\mathcal{H}_j = \{f, \Omega(f) \leq \mu_j\}$ and $\mu_1 < \mu_2 < \dots$

Then (step 2) we can successively solve:

$$\min_{f \in \mathcal{H}_j} \sum_{i=1}^n L(y_i, f(x_i)),$$

i.e., minimize the empirical risk while restricting ourselves to sets of function of increasing complexity.

Note: this results in constrained optimization problems. Solving these problems for different loss functions and function spaces is an active research area.

Remark: equivalence with a penalized estimator

- We mostly discuss penalized methods:

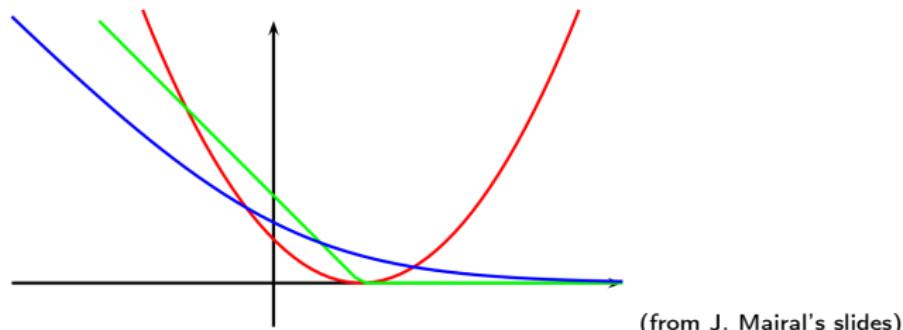
$$\min_f \sum_{i=1}^n L(y_i, f(x_i)) + \lambda \Omega(f)$$

- The first term favors a good fit to the data, the second one favors regularity of f .
- We will show later that the constrained and penalized forms are often equivalent in some sense (need to introduce some technical tools before that).
- The approach will stay the same: we define an Ω which is relevant for our problem and we compare the generalization performances of the functions obtained for decreasing values of λ .

Usual loss functions

Regression : $y \in \mathbb{R}$

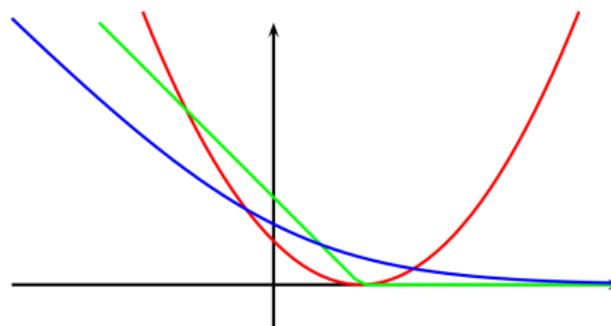
- $\ell_2 : L(y_i, f(x_i)) = (y_i - f(x_i))^2$ (which we used in introduction),
- $\ell_1 : L(y_i, f(x_i)) = |y_i - f(x_i)|$ (robust version, less sensitive to large errors, e.g. median vs mean).



Usual loss functions

Classification : $y \in \{0, 1\}$

- 0/1 : $L(y_i, f(x_i)) = \mathbf{1}_{y_i f(x_i) \geq 0}$,
- logistic : $L(y_i, f(x_i)) = \log(1 + e^{-y_i f(x_i)})$,
- hinge : $L(y_i, f(x_i)) = \max(0, 1 - y_i f(x_i))$.



(from J. Mairal's slides)

Other problems: ranking, multi-class, survival...

Convexity

- 0/1 loss counts the number of missclassification, the other ones are convex approximations.
- Convex losses combined with convex penalties lead to convex objectives for which global optima can be found.
- Methods based on convex objectives are also simpler to analyze.
- However, this guarantees by no mean that the convex version of a method performs better than its non-convex counterpart in practice.

Penalties

- We now present an example of penalty, and analyze its effect on the estimated function.
- We restrict ourselves to linear functions $f(x) = \theta^\top x$, $\theta \in \mathbb{R}^p$.

Ridge penalty

- A very common penalty is the ridge :

$$\Omega(\theta) = \|\theta\|_2^2.$$

- Used in **ridge regression** combined with the ℓ_2 loss and **support vector machines** (SVM) combined with the hinge loss.
- Leads to functions with the following type of regularity: two points x, x' which are close in Euclidean norm have close evaluations by the function since by the Cauchy-Schwarz inequality,

$$|\theta^\top x - \theta^\top x'| \leq \|\theta\|_2 \|x - x'\|_2.$$

Ridge penalty

- This property can limit the overfit and improve generalization: it makes functions behave similarly over similar, potentially unobserved data.
- Of course if there is no good predictor with this kind of regularity, the risk can be high because of the approximation term.
- We now study more precisely the influence of the ridge penalty in terms of bias-variance tradeoff for the linear model:

$$y = \bar{\theta}^\top x + \varepsilon,$$

where ε is a random variable with mean zero and variance σ^2 .

The ridge regression

Ridge regression: bias and variance

- We observe n realizations of the previous linear model, represented by an $X \in \mathbb{R}^{n,p}$ matrix and a $Y \in \mathbb{R}^n$ vector.
- Consider the estimator

$$\hat{\theta} = \arg \min_{\theta} (\|Y - X\theta\|^2 + \lambda\|\theta\|^2).$$

- We can show there exists a closed form for this estimator :

$$\hat{\theta} = (X^\top X + \lambda I)^{-1} X^\top Y.$$

- **[Exercise]** Show that the bias $\mathbf{E}[\hat{\theta} - \bar{\theta}]$ of $\hat{\theta}$ is $-\lambda(X^\top X + \lambda I)^{-1}\bar{\theta}$.

Ridge regression: bias and variance

$$\begin{aligned}\mathbf{E}[\hat{\theta}] &= \mathbf{E}[(X^\top X + \lambda I)^{-1} X^\top Y] \\ &= \mathbf{E}[(X^\top X + \lambda I)^{-1} X^\top (X\bar{\theta} + \varepsilon)] \\ &= (X^\top X + \lambda I)^{-1} X^\top X\bar{\theta} + (X^\top X + \lambda I)^{-1} X^\top \mathbf{E}[\varepsilon] \\ &= (X^\top X + \lambda I)^{-1} X^\top X\bar{\theta}\end{aligned}$$

$$\begin{aligned}\mathbf{E}[\hat{\theta} - \bar{\theta}] &= (X^\top X + \lambda I)^{-1} X^\top X\bar{\theta} - \bar{\theta} \\ &= \left((X^\top X + \lambda I)^{-1} X^\top X - I \right) \bar{\theta} \\ &= (X^\top X + \lambda I)^{-1} (X^\top X - X^\top X - \lambda I) \bar{\theta} \\ &= -\lambda (X^\top X + \lambda I)^{-1} \bar{\theta}.\end{aligned}$$

Ridge regression: bias and variance

We now look at the variance of $\hat{\theta}$:

$$\begin{aligned} \text{Var}[\hat{\theta}] &= \text{Var}[(X^\top X + \lambda I)^{-1} X^\top Y] \\ &= (X^\top X + \lambda I)^{-1} X^\top \text{Var}[Y] X (X^\top X + \lambda I)^{-1} \\ &= \sigma^2 (X^\top X + \lambda I)^{-1} X^\top X (X^\top X + \lambda I)^{-1} \end{aligned}$$

(reminder : for a deterministic matrix A , $\text{Var}[AX] = A\text{Var}[X]A^\top$).

Bias (1/3)

- The bias $-\lambda(X^\top X + \lambda I)^{-1}\bar{\theta}$ increases with λ and tends to $-\bar{\theta}$.
- Remark: $\hat{\theta} \rightarrow 0$ when $\lambda \rightarrow \infty$, so the limit bias is the one incurred by estimating $\bar{\theta}$ by 0.
- If $\lambda = 0$ (unpenalized linear regression), the bias is zero.
- The amplitude of the bias also depends on the norm of $\bar{\theta}$: if the $\bar{\theta}$ which generated the data has a small norm, the bias/approximation error incurred by restricting ourselves to small norm estimators is smaller.

Ridge regression : bias and variance

Bias (2/3)

- A little more precisely, the squared norm of the bias is ($\lambda \neq 0$) :

$$\begin{aligned}\| -\lambda(X^\top X + \lambda I)^{-1}\bar{\theta} \|^2 &= \|(\lambda^{-1}X^\top X + I)^{-1}\bar{\theta} \|^2 \\ &= \|U\Sigma U^\top \bar{\theta} \|^2 = \|\Sigma U^\top \bar{\theta} \|^2,\end{aligned}$$

where $U\Sigma U^\top$ is the spectral decomposition of $(\lambda^{-1}X^\top X + I)^{-1}$.

- The eigenvalues of $(\lambda^{-1}X^\top X + I)^{-1}$ are **[Exercise]** :

Ridge regression : bias and variance

Bias (2/3)

- A little more precisely, the squared norm of the bias is ($\lambda \neq 0$) :

$$\begin{aligned}\| -\lambda(X^\top X + \lambda I)^{-1}\bar{\theta} \|^2 &= \|(\lambda^{-1}X^\top X + I)^{-1}\bar{\theta} \|^2 \\ &= \|U\Sigma U^\top \bar{\theta} \|^2 = \|\Sigma U^\top \bar{\theta} \|^2,\end{aligned}$$

where $U\Sigma U^\top$ is the spectral decomposition of $(\lambda^{-1}X^\top X + I)^{-1}$.

- The eigenvalues of $(\lambda^{-1}X^\top X + I)^{-1}$ are **[Exercise]** :

$$\Sigma = \text{Diag} \left(\lambda^{-1} e_i^2 + 1 \right)^{-1} = \text{Diag} \left(\frac{\lambda}{e_i^2 + \lambda} \right),$$

where the e_i are the singular values of X .

Bias (3/3)

$$\| -\lambda(X^\top X + \lambda I)^{-1}\bar{\theta} \|^2 = \left\| \text{Diag} \left(\frac{\lambda}{e_i^2 + \lambda} \right) U^\top \bar{\theta} \right\|^2,$$

- Provides the shape of the convergence towards maximum bias as λ increases.
- If n/p is small, $X^\top X$ typically has small eigenvalues e_i^2 , and the bias is larger (even more if θ is aligned with eigenvectors corresponding to small eigenvalues).
- Statistical interpretation: the bias is larger if the vector to be estimated lies in a direction of low empirical variance of the X .