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The ridge regression
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Ridge regression: bias and variance

We observe n realizations of the previous linear model, represented by
an X ∈ Rn,p matrix and a Y ∈ Rn vector.
Consider the estimator

θ̂ = argmin
θ

(
‖Y − Xθ‖2 + λ‖θ‖2

)
.

We can show there exists a closed form for this estimator :

θ̂ = (X>X + λI )−1X>Y .

[Exercise] Show that the bias E[θ̂ − θ̄] of θ̂ is −λ(X>X + λI )−1θ̄.
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Ridge regression: bias and variance

E[θ̂] = E[(X>X + λI )−1X>Y ]

= E[(X>X + λI )−1X>
(
X θ̄ + ε

)
]

= (X>X + λI )−1X>X θ̄ + (X>X + λI )−1X>E[ε]

= (X>X + λI )−1X>X θ̄

E[θ̂ − θ̄] = (X>X + λI )−1X>X θ̄ − θ̄

=
(

(X>X + λI )−1X>X − I
)
θ̄

= (X>X + λI )−1(X>X − X>X − λI )θ̄
= −λ(X>X + λI )−1θ̄.
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Ridge regression: bias and variance

We now look at the variance of θ̂ :

Var [θ̂] = Var [(X>X + λI )−1X>Y ]

= (X>X + λI )−1X>Var [Y ]X (X>X + λI )−1

= σ2(X>X + λI )−1X>X (X>X + λI )−1

(reminder : for a deterministic matrix A, Var [AX ] = AVar [X ]A>).
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Ridge regression : bias and variance

Bias (1/3)
The bias −λ(X>X + λI )−1θ̄ increases with λ and tends to −θ̄.
Remark: θ̂ → 0 when λ→∞, so the limit bias is the one incurred by
estimating θ̄ by 0.
If λ = 0 (unpenalized linear regression), the bias is zero.
The amplitude of the bias also depends on the norm of θ̄: if the θ̄
which generated the data has a small norm, the bias/approximation
error incurred by restricting ourselves to small norm estimators is
smaller.

L. Jacob High dimensional statistics January 30, 2017 6 / 61



Ridge regression : bias and variance

Bias (2/3)
A little more precisely, the squared norm of the bias is (λ 6= 0) :

‖ − λ(X>X + λI )−1θ̄‖2 = ‖(λ−1X>X + I )−1θ̄‖2

= ‖UΣU>θ̄‖2 = ‖ΣU>θ̄‖2,

where UΣU> is the spectral decomposition of (λ−1X>X + I )−1.
The eigenvalues of (λ−1X>X + I )−1 are [Exercise] :

Σ = Diag
(
λ−1e2

i + 1
)−1

= Diag
(

λ

e2
i + λ

)
,

where the ei are the singular values of X .
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Ridge regression: bias and variance

Bias (3/3)

‖ − λ(X>X + λI )−1θ̄‖2 =

∥∥∥∥Diag
(

λ

e2
i + λ

)
U>θ̄

∥∥∥∥2

,

Provides the shape of the convergence towards maximum bias as λ
increases.
If n/p is small, X>X typically has small eigenvalues e2

i , and the bias is
larger (even more if θ is aligned with eigenvectors corresponding to
small eigenvalues).
Statistical interpretation: the bias is larger if the vector to be
estimated lies in a direction of low empirical variance of the X .
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Ridge regression: bias and variance

Variance
Total variance

trVar [θ̂] = tr
(
σ2(X>X + λI )−1X>X (X>X + λI )−1

)
= σ2tr

(
(X>X + λI )−2X>X

)
= σ2

∑
i

e2
i

(e2
i + λ)2 .

tends to 0 as λ increases, and to the variance σ2tr(X>X )−1 of
unpenalized linear regression as λ→ 0 (if X>X is invertible).
Here again if n/p is small, X>X has small eigenvalues e2

i and the
variance for λ = 0 increases.
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Ridge regression: bias and variance

(from J. Taylor’s slides)

Illustrates the phenomenon we discussed abstractly on a particular
estimator.
In practice for a dataset, some λ tradeoffs yield smaller risks than
others.
λ can be chosen by hold out or cross validation (later in this class).
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Ridge regression: remark

We can also justify ridge regression from a numerical point of view:
the λI term decreases the condition number of the X>X matrix,
which can otherwise get very small eigenvalues.
A poorly conditionned X>X leads to results which are very sensitive
to small variations in the data.
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Ridge regression: remark

Historically, this mo-
tivated the introduction of ridge regression by Hoerl et Kennard (1970):

We were charging $90/day for our time, but had to charge
$450/hour for computer time [...], we found that we had
both encountered the same phenomenon, one that had
caused some embarrassment with clients. We found that
multiple linear regression coefficients computed using least
squares didn’t always make sense when put into the context
of the process generating the data. The coefficients tended
to be too large in absolute value, some would even have the
wrong sign, and they could be unstable with very small
changes in the data.

Tikhonov (1943) and Philips (1962) already introduced Hilbert norm
penalties to improve the conditionning of integral equation solutions.
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Fundamentals of constrained optimization (from JP
Vert)
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Fundamentals of constrained optimization

Setting
We consider an equality and inequality constrained optimization
problem over a variable x ∈ X :

minimize f (x)

subject to hi (x) = 0 , i = 1, . . . ,m ,

gj(x) ≤ 0 , j = 1, . . . , r ,

making no assumption of f , g and h.
Let us denote by f ∗ the optimal value of the decision function under
the constraints, i.e., f ∗ = f (x∗) if the minimum is reached at a global
minimum x∗.
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Lagrangian and dual function

Lagrangian
The Lagrangian of this problem is the function L : X × Rm × Rr → R
defined by:

L (x , λ, µ) = f (x) +
m∑
i=1

λihi (x) +
r∑

j=1

µjgj(x) .

Lagrangian dual function
The Lagrange dual function q : Rm × Rr → R is:

q(λ, µ) = inf
x∈X

L (x , λ, µ)

= inf
x∈X

f (x) +
m∑
i=1

λihi (x) +
r∑

j=1

µjgj(x)

 .
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Properties of the dual function

q is concave in (λ, µ), even if the original problem is not convex.
The dual function yields lower bounds on the optimal value f ∗ of the
original problem when µ is nonnegative:

q(λ, µ) ≤ f ∗ , ∀λ ∈ Rm, ∀µ ∈ Rr , µ ≥ 0 .
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Proofs

For each x , the function (λ, µ) 7→ L(x , λ, µ) is linear, and therefore
both convex and concave in (λ, µ). The pointwise minimum of
concave functions is concave, therefore q is concave.
Let x̄ be any feasible point, i.e., h(x̄) = 0 and g(x̄) ≤ 0. Then we
have, for any λ and µ ≥ 0:

m∑
i=1

λihi (x̄) +
r∑

i=1

µigi (x̄) ≤ 0 ,

=⇒ L(x̄ , λ, µ) = f (x̄) +
m∑
i=1

λihi (x̄) +
r∑

i=1

µigi (x̄) ≤ f (x̄) ,

=⇒ q(λ, µ) = inf
x
L(x , λ, µ) ≤ L(x̄ , λ, µ) ≤ f (x̄) , ∀x̄ . �
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Dual problem

Definition
For the (primal) problem:

minimize f (x)

subject to h(x) = 0 , g(x) ≤ 0 ,

the Lagrange dual problem is:

maximize q(λ, µ)

subject to µ ≥ 0 ,

where q is the (concave) Lagrange dual function and λ and µ are the
Lagrange multipliers associated to the constraints h(x) = 0 and g(x) ≤ 0.
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Weak duality

Let d∗ the optimal value of the Lagrange dual problem. Each q(λ, µ)
is a lower bound for f ∗ and by definition d∗ is the best lower bound
that is obtained. The following weak duality inequality therefore
always holds:

d∗ ≤ f ∗ .

The difference d∗ − f ∗ is called the optimal duality gap of the
original problem.
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Illustration (from Boyd and Vandenberghe)
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Strong duality

We say that strong duality holds if the optimal duality gap is zero,
i.e.:

d∗ = f ∗ .

If strong duality holds, then the best lower bound that can be
obtained from the Lagrange dual function is tight.
Strong duality does not hold for general nonlinear problems.
It usually holds for convex problems.
Conditions that ensure strong duality for convex problems are called
constraint qualification.
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Slater’s constraint qualification

Strong duality holds for a convex problem:

minimize f (x)

subject to gj(x) ≤ 0 , j = 1, . . . , r ,
Ax = b ,

if it is strictly feasible, i.e., there exists at least one feasible point that
satisfies:

gj(x) < 0 , j = 1, . . . , r , Ax = b .
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Dual optimal pairs

Suppose that strong duality holds, x∗ is primal optimal, (λ∗, µ∗) is dual
optimal. Then we have:

f (x∗) = q (λ∗, µ∗)

= inf
x∈Rn

f (x) +
m∑
i=1

λ∗i hi (x) +
r∑

j=1

µ∗j gj(x)


≤ f (x∗) +

m∑
i=1

λ∗i hi (x
∗) +

r∑
j=1

µ∗j gj(x
∗)

≤ f (x∗)

Hence both inequalities are in fact equalities.
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Complementary slackness

The second equality shows that:

µjgj(x
∗) = 0 , j = 1, . . . , r .

This property is called complementary slackness:
the ith optimal Lagrange multiplier is zero unless the ith constraint
is active at the optimum.
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Penalized vs constrained empirical risk minimization
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Equivalence with a penalized estimator

In some cases, the constrained problem

min
Ω(f )≤µ

n∑
i=1

L(yi , f (xi )), (1)

is equivalent in some sense to the penalized problem

min
f

n∑
i=1

L(yi , f (xi )) + λΩ(f ). (2)

Any solution of (1) is a solution of (2) for some λ depending of µ, and
vice-versa.

The latter problem is sometimes easier to solve in practice.
We will see later that estimators obtained by maximizing the
posterior likelihood of some probabilistic models have this form.
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Remark: equivalence with a penalized estimator

Example: L and Ω convex, f ∈ Rp. We assume there exists f such that
Ω(f ) < µ. We note L(f )

∆
=
∑n

i=1 L(yi , f (xi )) and

fµ ∈ argmin
Ω(f )≤µ

L(f ),

fλ ∈ argmin
f

L(f ) + λΩ(f ).
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Remark: equivalence with a penalized estimator

We first show that fλ is a solution of the constrained problem for some µ
[Exercise]:

fλ verifies the constraint of the constrained problem for µ = Ω(fλ).
If there exists f ′ such that L(f ′) < L(fλ) and Ω(f ′) ≤ µ = Ω(fλ), then
L(f ′) + λΩ(f ′) < L(fλ) + λΩ(fλ) which contradicts the optimality of
fλ for the penalized problem.

L. Jacob High dimensional statistics January 30, 2017 28 / 61



Remark: equivalence with a penalized estimator

We first show that fλ is a solution of the constrained problem for some µ
[Exercise]:

fλ verifies the constraint of the constrained problem for µ = Ω(fλ).
If there exists f ′ such that L(f ′) < L(fλ) and Ω(f ′) ≤ µ = Ω(fλ), then
L(f ′) + λΩ(f ′) < L(fλ) + λΩ(fλ) which contradicts the optimality of
fλ for the penalized problem.

L. Jacob High dimensional statistics January 30, 2017 28 / 61



Remark: equivalence with a penalized estimator

This first part does not use convexity.
We can therefore say in general that the regularization path of the
penalized problem is included in the one of the constrained problem.
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Remark: equivalence with a penalized estimator

We now show that fµ is a solution of the penalized problem for some λ:

Let L(f , λ)
∆
= L(f ) + λ(Ω(f )− µ) be the Lagrangian of the

constrained problem (1).

The dual of (1) is q(λ)
∆
= minf L(f , λ).

We note that here,

min
f
L(f , λ) = L(fλ, λ). (3)

The dual always provides a lower bound to the primal solution:
∀λ ≥ 0, minΩ(f )≤µ L(f ) ≥ q(λ) = minf L(f , λ).
Here by strong duality (obtained through Slater’s conditions: convex
problem and strictly feasible primal), we have

min
Ω(f )≤µ

L(f )
s.d.
= max

λ≥0
min
f
L(f , λ)

(3)
= max

λ≥0
(L(fλ) + λ(Ω(fλ)− µ))
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Remark: equivalence with a penalized estimator

min
Ω(f )≤µ

L(f ) = max
λ≥0

(L(fλ) + λ(Ω(fλ)− µ))

In addition, by Slater’s conditions again, there exists λ∗ such that

L(fλ∗) + λ∗(Ω(fλ∗)− µ) = min
Ω(f )≤µ

L(f ) = L(fµ).

By complementary slackness, it is necessary that λ∗(Ω(fλ∗)− µ) = 0,
which implies that L(fµ) = L(f ∗λ ) and:

either λ∗ = 0 and L(fµ) + 0Ω(fµ) = L(f ∗λ ) + 0Ω(f ∗λ ),
or Ω(fλ∗) = µ and
L(fµ) + λ∗Ω(fµ) = L(f ∗λ ) + λ∗ Ω(fµ)︸ ︷︷ ︸

≤µ=Ω(fλ∗ )

≤ L(f ∗λ ) + λ∗Ω(fλ∗).

In both cases, fµ is a solution of the problem penalized by λ∗.
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Support vector machines

L. Jacob High dimensional statistics January 30, 2017 32 / 61



Linear SVM

We now present Support Vector Machines, a classical statistical
learning algorithm.
Fits into the penalized/constrained empirical risk minimization
framework.
We choose the historical large margin presentation.
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Linear classifier
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Linear classifier
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Linear classifier
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Which one is better?
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The margin of a linear classifier
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The margin of a linear classifier
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The margin of a linear classifier
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Largest margin classifier (hard-margin SVM)
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Support vectors
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More formally

The training set is a finite set of n data/class pairs:

D = {(x1, y1), . . . , (xn, yn)} ,
where xi ∈ Rp and yi ∈ {−1, 1}.
We assume (for the moment) that the data is linearly separable, i.e.,
that there exists (w , b) ∈ Rp × R such that:{

w .xi + b > 0 if yi = 1 ,
w .xi + b < 0 if yi = −1 .

L. Jacob High dimensional statistics January 30, 2017 39 / 61



How to find the largest separating hyperplane?

For a given linear classifier f (x) = w .x + b consider the "tube" defined by
the values −1 and +1 of the decision function:

x2
x1

w.x+b > +1

w.x+b < −1
w

w.x+b=+1

w.x+b=−1

w.x+b=0
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The margin is 2/‖w ‖

Indeed, the points x1 and x2 satisfy:{
w .x1 + b = 0 ,
w .x2 + b = 1 .

By subtracting we get w .(x2 − x1) = 1, and therefore:

γ = 2‖ x2 − x1 ‖ =
2
‖w ‖

.
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All training points should be on the correct side of the
dotted line

For positive examples (yi = 1) this means:

w .xi + b ≥ 1 .

For negative examples (yi = −1) this means:

w .xi + b ≤ −1 .

Both cases are summarized by:

∀i = 1, . . . , n , yi (w .xi + b) ≥ 1 .
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Finding the optimal hyperplane

Find (w , b) which minimize:

‖w ‖2

under the constraints:

∀i = 1, . . . , n , yi (w .xi + b)− 1 ≥ 0 .

This is a classical quadratic program on Rp+1.
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Lagrangian

In order to minimize:
1
2
‖w ‖22

under the constraints:

∀i = 1, . . . , n , yi (w .xi + b)− 1 ≥ 0 ,

we introduce one dual variable αi for each constraint, i.e., for each
training point. The Lagrangian is:

L (w , b, α) =
1
2
||w ||2 −

n∑
i=1

αi (yi (w .xi + b)− 1) .
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Lagrangian

L (w , b, α) is convex quadratic in w . It is minimized for:

∇wL = w −
n∑

i=1

αiyixi = 0 =⇒ w =
n∑

i=1

αiyixi .

L (w , b, α) is affine in b. Its minimum is −∞ except if:

∇bL =
n∑

i=1

αiyi = 0 .
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Dual function

We therefore obtain the Lagrange dual function:

q (α) = inf
w∈Rp ,b∈R

L (w , b, α)

=

{∑n
i=1 αi − 1

2
∑n

i=1
∑n

j=1 yiyjαiαjxi .xj if
∑n

i=1 αiyi = 0 ,
−∞ otherwise.

The dual problem is:

maximize q (α)

subject to α ≥ 0 .
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Dual problem

Find α∗ ∈ Rn which maximizes

L(α) =
n∑

i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjxi .xj ,

under the (simple) constraints αi ≥ 0 (for i = 1, . . . , n), and

n∑
i=1

αiyi = 0.

This is a quadratic program on RN , with "box constraints". α∗ can be
found efficiently using dedicated optimization softwares.
This dual shows how SVM are an instance of kernel methods.
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Recovering the optimal hyperplane

Once α∗ is found, we recover (w∗, b∗) corresponding to the optimal
hyperplane. w∗ is given by:

w∗ =
n∑

i=1

αiyixi ,

and the decision function is therefore:

f ∗(x) = w∗.x + b∗

=
n∑

i=1

αiyixi .x + b∗ .
(4)
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Interpretation: support vectors

α>0

α=0
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What if data are not linearly separable?
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What if data are not linearly separable?
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Relaxing the separation constraints

The problem is not feasible anymore. We need to relax the separation
constraints:

∀i = 1, . . . , n , yi (w .xi + b) ≥ 1− ξi .

The ξi are called slack variables.
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Trade-off

Allowing a larger slack makes a larger margin possible.
One way to control the trade-off is to integrate the slack variables as a
cost in the objective function:

minw ,b,ξ ‖w‖2 + C
∑n

i=1 ξi
∀i = 1, . . . , n , yi (w .xi + b) ≥ 1− ξi
∀i = 1, . . . , n , ξi ≥ 0

C ∈ R+ controls the trade-off.
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Dual formulation of soft-margin SVM (exercice)

Maximize

L(α) =
n∑

i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjxi .xj ,

under the constraints:{
0 ≤ αi≤ C, for i = 1, . . . , n∑n

i=1 αiyi = 0.
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Interpretation: bounded and unbounded support vectors

C

α=0

0<α<C

α=
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Penalized empirical risk minimization

Relaxed problem
minw ,ξ ‖w‖2 + C

∑n
i=1 ξi

∀i = 1, . . . , n , yi (w .xi + b) ≥ 1− ξi
∀i = 1, . . . , n , ξi ≥ 0

is equivalent to

min
w
‖w‖2 + C

n∑
i=1

max (0, 1− yi (w .xi + b))

Note: this is a useful trick to turn piecewise linear objective into linear
objective with linear constraints.
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Soft-margin SVM and hinge loss

min
w ,b

{
n∑

i=1

`hinge (w .xi + b, yi ) + λ‖w ‖22

}
,

for λ = 1/C and the hinge loss function:

`hinge(u, y) = max (1− yu, 0) =

{
0 if yu ≥ 1,
1− yu otherwise.

yf(x)

l(f(x),y)

1
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Remarks

We started from a different perspective (maximize margin) and
showed retrospectively that the problem we solved could be thought of
as penalized empirical risk minimization.
Yields another interpretation for `2 regularization of linear functions.
In practice controlling this trade-off makes sense even if the classes are
linearly separable (as discussed during the first class).
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Logistic regression (1/2)

A similar analysis can be made for logistic regression:
Can be derived from a Bernouilli model:
E [yi |xi ] = pi = 1

1+e−w>xi
, where the logistic function ensures that

pi ∈ [0, 1].

Leads to a linear separation: ln
(

pi
1−pi

)
= w>xi .

Minimizing the negative log likelihood yields
minw

∑n
i=1 ln(1 + e−w

>xi ).
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Logistic regression (2/2)

Empirical risk for a loss function with very similar shape (and
behavior) as the hinge loss.
Intuition/justification is important but can be deceiving. In the end, it
is crucial to compare objectives.
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Algorithms

We mentioned hard and soft margin SVM could be written as a QP with
box constraints. In practice however, faster dedicated algorithms were
proposed, e.g.,

SimpleSVM
Active set method: solve sub-problem with a restricted set of points,
iteratively add the ones which most violate the constraints.
Efficient when only a few αi are non-zero (small C ).

Stochastic gradient descent
Take gradient steps with respect to randomly drawn single points.
Efficient when the number of samples is large ("Large scale learning").
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Penalties: non-exhaustive list of variations

`1 norm (Vivian Viallon’s class),
Graph Laplacian,
Trace norm,
Fused norm,
Group lasso,
Other `p norms,
Overlapping groups,
Groups defined over a graph,
Combinations
...

× combinations with various loss functions.
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