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Cadre considéré dans ce cours

On supposera disposer d’un échantillon
(x1,Y1), . . . , (xn ,Yn) tel que

Yi = xTi β∗ + ξi , i = 1, . . . ,n ,

où les ξi ∼ N(0, σ2) sont i.i.d., les Yi ∈ IR sont aléatoires
mais les xi ∈ IRp sont déterministes, et le paramètre
β∗ ∈ IRp est inconnu.

⇒ régression linéaire sur design fixe, avec erreurs gaussiennes
(sans intercept).
Exemple typique :

Yi : niveau d’expression du gène G chez l’individu i
xi = (xi1, . . . , xip)T : SNPs pour l’individu i (à valeurs dans
{0, 1, 2} généralement).
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Ecriture matricielle

Le modèle peut se réécrire sous forme matricielle

Y = Xβ∗ + ξ

où
Y = (Y1, . . . ,Yn)

T ∈ IRn et ξ = (ξ1, . . . , ξn )T ∈ IRn

X = (xT
1 , . . . , xT

n )T ∈ IRn×p .

Rq: Dans ce cours, on considère que p = p(n) (typiquement,
fonction croissante de n).
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Cadre "standard"
n � p, et rang(X) = p
alors l’estimateur des MCO

β̃ = arg min
β∈IRp

‖Y − Xβ‖22

est donné par
β̃ = (XTX)−1XTY.

On a
‖X(β̃− β∗)‖22

σ2 ∼ χ2
p

et donc [exercice: utilisez l’inégalité de Tchebychev1]

(ii)
‖X(β̃− β∗)‖22

n
= OIP

(p
n

)
où Xn = OIP(an ) : ∀ε, ∃M : IP(|Xn/an | >M ) 6 ε.

1Soit X , une v.a. d’espérance µ et de variance finie σ2, alors pour tout
α > 0, IP(|X − µ| > α) 6 σ2/a2.
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Cadre de la grande dimension

p > n (voire p � n)
alors rang(X) < p (et donc XTX n’est pas inversible)
l’estimateur des MCO n’est plus unique (même formule
avec pseudo-inverse de Moore-Penrose)
et il "overfit" les données
notamment

‖X(β̃− β∗)‖22
n

= OIP(1).

(Exemple avec n = p et X = In .)
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"Solutions"

Hypothèse de parcimonie : β∗ est "creux", i.e.

s0 := ]{j : β∗j 6= 0}� p (et surtout� n).

Alors, si l’on connaissait l’ensemble J0 := {j : β∗j 6= 0}, on

aurait une erreur de prédiction : OIP

(s0
n

)
→IP 0.

⇒ Sélection de variables
meilleure interprétabilité du modèle
meilleur pouvoir prédictif aussi

Autre hypothèse possible : peu de coefficients "grands"
(plutôt que peu de coefficients non nuls).
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Principe général de la régression pénalisée

Pour un λ > 0,

φP(λ) := min
β∈IRp

‖Y − Xβ‖22
2n

+ λP(β).

Si λ = 0 : MCO

Différents choix pour P(β) :

‖β‖0 = ]{j : βj 6= 0} : Théorie +++, Implémentation –

AIC : λ = σ2/n
BIC : λ = σ2 log(n)/(2n)

Pb "combinatoire" : on doit énumérer les 2p modèles
possibles
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Principe général de la régression pénalisée

Pour un λ > 0,

φP(λ) := min
β∈IRp

‖Y − Xβ‖22
2n

+ λP(β).

Si λ = 0 : MCO

Différents choix pour P(β) :

‖β‖0 = ]{j : βj 6= 0} : Théorie +++, Implémentation –

‖β‖1 =
∑

j |βj | (Lasso) : Théorie : ++, Implémentation ++

‖β‖22 =
∑

j β
2
j (Ridge) : Théorie : +, Implémentation ++

...
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Least Absolute Shrinkage and Selection Operator

Pour λ > 0,

β̂(λ) ∈ Argmin
β∈IRp

‖Y − Xβ‖22
2n

+ λ‖β‖1. (1)

Problème convexe, mais la solution n’est pas
nécessairement unique

Si λ = 0 : MCO

la solution est typiquement creuse : plus λ est grand, et
plus β̂(λ) est creux (en "gros").
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Propriétés de sélection du Lasso: intuition

Le problème d’optimisation

φ(λ) := min
β∈IRp

‖Y − Xβ‖22
2n

+ λ‖β‖1.

est équivalent, pour une certaine valeur de T = T (λ), à

φ̃(T ) := min
‖β‖16T

‖Y − Xβ‖22
2n

.

Ex: dans le cas où n = p et X = In . On cherche alors à
résoudre

φ̃(T ) := min
‖β‖16T

1
2n

n∑
i=1

(Yi − βi )
2.
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Cône `1

Emprunté aux slides de J. Mairal
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Cône `2

Emprunté aux slides de J. Mairal
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Propriétés du Lasso : que peut-on espérer ?

On peut espérer qu’avec grande probabilité, sous certaines
hypothèses et pour des choix appropriés de λ,

Estimation : β̂ ≈ β∗

Sélection : Ĵ (λ) ≈ J0, où Ĵ (λ) = {j : β̂j (λ) 6= 0}.

Prédiction : n−1‖X(β̂− β∗)‖22 ≈ s0/n

On précisera plus tard la signification de ≈ dans chacun des cas
précédents.

Rq1: "Difficulté" pour l’analyse des propriétés des estimateurs
Lasso (par rapport aux MCO): pas de forme explicite (on
va utiliser des conditions d’optimalité qui caractérisent les
solutions du problème (1)).

Rq2: Propriétés non asymptotiques.
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Une première condition d’optimalité

Pour simplifier les notations, on suppose que λ est fixé et on
pose β̂ = β̂(λ), une solution de (1).

Lemme 2.1

Dénotons le gradient de (2n)−1‖Y − Xβ‖22 par
G(β) = −XT (Y − Xβ)/n. Alors une CNS pour que β̂ soit
solution du problème (1) est

Gk (β̂) = −λ sign(β̂k ) si β̂k 6= 0
|Gj (β̂)| 6 λ si β̂j = 0

Cette caractérisation nous sera utile pour établir les propriétés
de sélection du Lasso.
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Lasso et soft-thresholding

Elle nous permet également de déduire le résultat suivant.

Si XTX/n = Ip (⇒ p 6 n), alors Lasso =
soft-thresholding :

β̂j (λ) = sign(β̃j )(|β̃j |− λ)+.

⇒ Rq : Le Lasso sélectionne.. mais shrinke aussi : les estimateurs
sont généralement biaisés (cf. regularization path).
Diverses extensions pour débiaiser les estimateurs Lasso

Adaptive Lasso (Zou): ‖β‖1 ⇒
∑

j |βj |/|β̂
init
j | : on pénalise

plus βj si |β̂init
j | est petit.

Lasso-OLS Hybrid (= Relaxed Lasso de Meinshausen, avec
φ = 0)
On reviendra sur ces approches plus tard.
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Regularization path
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Une seconde condition d’optimalité

Lemme 2.2

Une autre CNS pour que β̂ soit solution de (1) est que pour
tout β ∈ IRp

‖Y − Xβ̂‖22
2n

+ λ‖β̂‖1 6
‖Y − Xβ‖22

2n
+ λ‖β‖1

En particulier, on a la CN suivante :

‖Y − Xβ̂‖22
2n

+ λ‖β̂‖1 6
‖Y − Xβ∗‖22

2n
+ λ‖β∗‖1

Cette caractérisation nous sera utile pour étudier les propriétés
d’estimation et d’erreur de prédiction du Lasso.
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"Sparsistency" du Lasso

Une procédure de sélection de variables est dite consistante
en sélection de variables, ou "sparsistent", ssi le support du
vecteur estimé est identique au support du vecteur
théorique, Ĵ = J0, avec grande probabilité.

Intuitivement, 2 types d’hypothèses sont nécessaires pour
la sparsistency.

conditions d’identifiabilité
beta-min conditions
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Hypothèses liées à l’identifiabilité

On supposera qu’il existe un paramètre de non-représentabilité
γ ∈ (0, 1] et une constante Cmin > 0 tels que

max
j∈J c

0

‖XT
j XJ0(X

T
J0

XJ0)
−1‖1 6 (1− γ) (2)

Λmin

(XT
J0

XJ0

n

)
> Cmin (3)

Remarque : On ne peut pas savoir si ces conditions sont
vérifiées a priori puisque J0 est inconnu.
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Interprétations de ces hypothèses

Hypothèse de valeur propre minimale (3) : identifiabilité
du problème restreint à J0.

Condition de non-représentabilité (2) :
pour tout j ∈ J c

0 , ‖XT
j XJ0(XT

J0XJ0)
−1‖1: norme `1 du

paramètre de la régression linéaire de Xj sur XJ0 , estimé
par MCO.
un design idéal est tel que Xj est orthogonal aux colonnes
de la matrice XJ0 , auquel cas on aurait γ = 1.
En grande dimension, on ne peut pas avoir cette
orthogonalité stricte, mais on peut espérer être dans une
situation de "quasi-orthogonalité".
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Liens avec d’autres hypothèses "classiques"

Dans ce cours, on se contentera de présenter des résultats
obtenus sous la condition de non-représentabilité.
On peut aussi travailler sous les hypothèses suivantes

hypothèse d’incohérence mutuelle : le paramètre
d’incohérence de la matrice de design est "petit":

ι(1)(X) = max
j 6=k

∣∣∣XT
j Xk

n

∣∣∣ 6 ν.
RIP (restricted isometry property) : la constante
d’isométrie restreinte est "petite"

ι(2)s (X) = inf
{
ε : ∀S : |S | 6 s ,

∥∥∥∣∣∣XT
S XS

n
− Is×s

∥∥∥∣∣∣
2
6 ε
}
.



Introduction Le Lasso Sélection de modèle Estimation Prédiction Compléments

Résultat principal

Soit ΠX⊥J0
:= In×n − XJ0(X

T
J0

XJ0)
−1XT

J0
.

Théorème 3.1
Sous les hypothèses (2) et (3) précédentes, l’estimateur
Lasso vérifie, pour λ > (2/γ)‖XT

J c
0
ΠX⊥J0

ξ/n‖∞,
1 Unicité : Le Lasso (1) a une solution unique β̂.
2 Absence de "faux positif" : Ĵ ⊆ J0.
3 Borne sur la norme `∞ : ‖β̂J0 − β∗J0

‖∞ 6 B(λ,X) avec

B(λ,X) =
∥∥∥(XT

J0
XJ0

n

)−1
XT

J0

(ξ
n

)∥∥∥∞+λ
∥∥∥∣∣∣(XT

J0
XJ0

n

)−1∥∥∥∣∣∣∞
4 Absence de "faux négatif" : le Lasso est sparsistent si

mink∈J0 |β
∗
k | > B(λ,X).
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Corollaire 3.1

On suppose que les ξi ∼ N(0, σ2), et que la matrice de design
X est déterministe, vérifie les conditions (2) et (3), et a ses
colonnes normalisées, telles que
n−1/2 maxj=1,...,p ‖Xj ‖2 6 C, pour une constante C > 0.
Pour le choix

λ =
2Cσ
γ

√
2 log(p − s0) + δ2

n
,

pour une constante δ > 0, on a le résultat suivant, avec
probabilité supérieure à 1− 2e−δ

2/2 − 2e−ε
2/2: pour tout

ε > 0, la solution optimale β̂ est unique, de support Ĵ ⊆ J0
et telle que

‖β̂− β∗‖∞ 6
σ√
Cmin

√
2 log s0 + ε2

n
+
λ
√
s0

Cmin
.
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Preuve
On doit premièrement montrer que ce choix de λ vérifie, avec
grande probabilité, la condition sur le λ du Théorème 3.1. Soit,
pour tout j ∈ J c

0 , Vj = XT
j ΠX⊥J0

ξ/n . Ces variables aléatoires
sont gaussiennes, centrées, et de variance bornée par

σ2‖ΠX⊥J0
Xj /n‖22 6 σ2‖Xj /n‖22 6 σ2C 2/n .

On en déduit que2

IP(max
j∈J c

0

|Vj | > t) 6 2(p − s0)e−nt2/(2C 2σ2)

et donc que

IP
(∥∥∥XT

J c
0
ΠX⊥J0

ξ

n

∥∥∥∞ > Cσ

√
2 log(p − s0) + δ2

n

)
6 2e−δ

2/2

2par l’Union Bound et l’inégalité de concentration pour variable
gaussienne : X ∼ N(µ, σ2) : IP(|X − µ| > t) 6 2 exp(−t2/(2σ2))
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Preuve (suite)

Soit Ṽk = eTk
(XT

J0
XJ0
n

)−1 XT
J0

ξ

n , pour tout k ∈ J0. On montre

facilement que les Ṽk sont gaussiennes, centrées de variance
bornée par

σ2

n

∥∥∥∣∣∣(XT
J0

XJ0

n

)−1∥∥∥∣∣∣
2
6

σ2

Cminn
.

En procédant comme précédemment, il vient donc

IP
(

max
k=1,...,s0

|Ṽk | >
σ√
Cmin

{√2 log s0 + ε2

n

})
6 2e−ε

2/2.

Comme enfin∥∥∥∣∣∣(XT
J0

XJ0

n

)−1∥∥∥∣∣∣∞ 6
√
s0
∥∥∥∣∣∣(XT

J0
XJ0

n

)−1∥∥∥∣∣∣
2
6
√
s0

Cmin
,

le résultat du Lemme est donc vérifié avec probabilité
supérieure à 1− 2e−δ

2/2 − 2e−ε
2/2.
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Corollaire 3.2
On suppose que la matrice de design X vérifie les
hypothèses du Théorème 3.1, que p = O(exp(nδ3)),
s0 = O(nδ1), et que β2

min > n−(1−δ2) avec

0 < δ1 + δ3 < δ2 < 1.

Si λn = n−(1−δ4)/2 pour un δ4 ∈ (δ3, δ2 − δ1), alors le Lasso
est sparsistent avec probabilité supérieure à 1− exp(−c1nδ4),
pour une certaine constante c1.

p peut croître exponentiellement avec n
s0/p ≈ nδ1 exp(−nδ3) décroît exponentiellement avec n .
Si p (et s0) fixe, λ = n−(1−δ)/2 et βmin > c2n−(1−δ)/2

(pour δ > 0) assurent la sparsistency avec probabilité
> 1− 2 exp(−c1nδ), pour une constante c1 > 0.
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Corollaire 3.2
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Une condition suffisante d’échec pour le Lasso

Théorème 3.2
On suppose que la condition sur la valeur propre minimale
(3) est vérifiée et que le vecteur de bruit ξ a une
distribution symétrique autour de 0.

1 Si la condition de non-représentabilité (2) n’est pas
vérifiée, en particulier si

max
j∈J c

0

|XT
j XJ0(X

T
J0

XJ0)sign(β
∗
J0
)| = 1+ ν > 1, (4)

alors pour tout λn > 0 et n

IP[sign(β̂) = sign(β∗)] 6 1/2.
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Lemme 2.1 "étendu"

Lemme 3.1
1 Un vecteur β̂ ∈ IRp est optimal ssi ∃ẑ ∈ ∂‖β̂‖1 tel que

XTX
n

(β̂− β∗) −
XTξ

n
+ λẑ = 0 (5)

2 Pour tout j ∈ Ĵ c, si |ẑj | < 1 alors toute solution
optimale β̄ du Lasso est telle que β̄j = 0.

Preuve : D’après la règle de Fermat (cf. cours de N.P.),
β̂ ∈ Argminβ(2n)−1‖Y − Xβ‖22 + λ‖β‖1 est équivalent à :
∃ẑ ∈ ∂‖β̂‖1 tel que 1

nXT (Xβ̂− Y) + λẑ = 0. La partie (1) du
Lemme découle ensuite de l’égalité Y = Xβ∗ + ξ. On en déduit
également le résultat du Lemme 2.1 puisque Gj (β̂) = −λẑj .
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∃ẑ ∈ ∂‖β̂‖1 tel que 1
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Preuve (suite)

Pour le point (2), raisonnons par l’absurde.

Soit β́ une autre solution du problème Lasso (1) et j ∈ Ĵ c

tel que |ẑj | < 1 et β́j 6= 0.
Puisque le problème Lasso est convexe, l’ensemble de ses
solutions est convexe et donc, pour tout ρ ∈ [0, 1],

β̂ρ = (1− ρ)β̂+ ρβ́

est également solution du Lasso.

Pour tout ρ ∈ (0, 1], on a par ailleurs β̂ρ,j 6= 0 (par
construction), et donc, d’après le résultat du Lemme 2.1,
|Gj (β̂ρ)| = λ.

En définissant la fonction f (ρ) = |Gj (β̂ρ)|, on a donc
f (0) < λ et f (ρ) = λ, pour tout ρ ∈ (0, 1].

Ceci est en contradiction avec la continuité de la fonction f .
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Primal-Dual Witness construction

On va chercher à construire une paire (β̂, ẑ) ∈ IRp × IRp de la
manière suivante :

1 Soit β̂J c
0
= 0.

2 Soit (β̂J0 , ẑJ0), avec β̂J0 ∈ IRs0 une solution du problème
Lasso oraculaire:

β̂J0 ∈ Arg min
βJ0∈IRs0

{‖Y − XJ0βJ0‖
2
2

2n
+ λ‖βJ0‖1

}
et ẑJ0 ∈ ∂‖β̂J0‖1 tel que GJ0(β̂J0) + λẑJ0 = 0.

3 On résout, en ẑJ c
0
∈ IRp−s0 , l’équation (5), et on vérifie la

condition de faisabilité stricte, |ẑj | < 1, pour tout j ∈ J c
0
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PDW et sparsistency du Lasso

6= méthode de résolution numérique pour le Lasso !!

Lemme 3.2
Si la construction PDW aboutit, alors sous l’hypothèse de
valeur propre minimale (3), le vecteur (β̂J0 ,0) est l’unique
solution du Lasso.

Preuve : Sous la condition de faisabilité stricte, le Lemme 3.1
assure que toute solution du Lasso β̄ est telle que β̄j = 0 pour
tout j ∈ J c

0 . Toute solution est donc de la forme (β̄J0 ,0), et on
peut donc obtenir β̄J0 en résolvant le Lasso oraculaire.
D’autre part, sous l’hypothèse (3), le Lasso oraculaire est
strictement convexe, et admet donc une solution unique.
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Preuve du Théorème 3.1
Pour établir les points (1) et (2), au vu du Lemme 3.2, il
suffit de montrer que la faisabilité stricte est vérifiée dans
le PDW.
En réécrivant (5) par bloc, on a β̂J0 , ẑJ0 et ẑJ c

0
qui vérifient:

1
n

[
XT

J0
XJ0 XT

J0
XJ c

0

XT
J c
0
XJ0 XT

J c
0
XJ c

0

][
β̂J0 − β∗J0

0

]
−
1
n

[
XT

J0
ξ

XT
J c
0
ξ

]
+λ

[
ẑJ0

ẑJ c
0

]
= 0.

On a donc

β̂J0 − β∗J0
=
(XT

J0
XJ0

n

)−1[XT
J0
ξ

n
− λẑJ0

]
(6)

et

ẑJ c
0
= XT

J c
0
XJ0(X

T
J0

XJ0)
−1ẑJ0 + XT

J c
0
ΠX⊥J0

( ξ

nλ

)
=: µ+V
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Preuve du Théorème 3.1 (suite)

Sous la condition de non-représentabilité, on a
‖µ‖∞ 6 (1− γ).

La condition sur λ assure pour sa part que ‖V ‖∞ 6 γ/2.

La faisabilité stricte suit facilement en utilisant

‖ẑJ c
0
‖∞ 6 ‖µ‖∞ + ‖V ‖∞ 6 (1− γ/2) < 1.

Pour le point (3), il vient de (6) que

‖β̂J0 − β∗J0
‖∞ 6

∥∥∥(XT
J0

XJ0

n

)−1XT
J0
ξ

n

∥∥∥∞ + λ
∥∥∥∣∣∣(XT

J0
XJ0

n

)−1∥∥∥∣∣∣∞.
La preuve du point (4) est directe.
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Restricted Eigenvalue condition

Définition 4.1
Soit, pour tout α > 0, le "cône" Cα(J0) de IRp défini par

Cα(J0) = {∆ ∈ IRp : ‖∆J c
0
‖1 6 α‖∆J0‖1}

Définition 4.2
La matrice de design X vérifie la Restricted Eigenvalue
condition sur J0, avec les paramètres (κ, α), avec κ > 0, si

1
n
‖X∆‖22 > κ‖∆‖22 pour tout∆ ∈ Cα(J0).
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Intuition pour la RE

Considérons la version contrainte avec T = ‖β∗‖1.
Soit Ln(β) = ‖Y − Xβ‖22/(2n).
Si n →∞, on peut espérer Ln(β̂) ≈ Ln(β

∗).
Sous quelles conditions cela implique-t-il que β̂ ≈ β∗ ?

D’après Wainwright (unpublished)
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Intuition pour la RE (suite)
En multivarié, la courbure est liée au Hessien de Ln :
(XTX)/n : si cette matrice est définie positive, i.e.,

1
n
‖X∆‖22 > κ‖∆‖22 > 0 pour tout∆ ∈ IRp \ {0},

alors Ln aurait une courbure élevée dans toutes les
directions.
Impossible en grande dimension (p > n) : il y a forcément
au moins p − n directions selon lesquelles Ln est "plate".
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Résultat principal

Théorème 4.1
On suppose que X vérifie la condition RE sur J0 avec les
paramètres (κ, 3). Alors toute solution du Lasso avec
λ > 2‖XTξ/n‖∞ est telle que ‖β̂− β∗‖2 6 3λ

√
s0/κ.

Corollaire 4.1
Supposons que les conditions du Théorème 4.1 et les
hypothèses de normalité des résidus ξi ∼ N(0, σ2) et de
standardisation des variables, n−1/2 maxj=1,...,p ‖Xj ‖2 6 C
(pour une constante C 6 0) sont vérifiées. Alors, pour le
choix

λ = 2Cσ

√
2 log p + δ2

n
le résultat du Théorème 4.1 est vérifié avec probabilité
supérieure à 1− 2e−δ

2/2.
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Preuve du corollaire

Sous les conditions du corollaire, la quantité ‖XTξ/n‖∞
correspond au maximum de la valeur absolue de p variables
gaussiennes, centrées et de variance bornée par C 2σ2/n .
En procédant comme précédemment, on obtient alors que pour
tout δ > 0,

IP
(
‖XTξ/n‖∞ > Cσ

√
2 log p + δ2

n

)
6 2e−δ

2/2.

Le résultat du Théorème 4.1 permet donc de conclure qu’avec
une probabilité supérieure à 1− 2e−δ

2/2, on a

‖β̂− β∗‖2 6
6Cσ
κ

√
2s0 log p + s0δ2

n
.
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Preuve du Théorème 4.1
1 Si λ > 2‖XTξ/n‖∞, alors ∆̂ = (β̂− β∗) ∈ C3(J0)

Puisque β̂ est optimal, on a les propriétés suivantes

‖Y − Xβ̂‖22
2n

+ λ‖β̂‖1 6
‖Y − Xβ∗‖22

2n
+ λ‖β∗‖1

‖Y − Xβ̂‖22
2n

+ λ‖β̂‖1 6
‖ξ‖22
2n

+ λ‖β∗‖1

‖X∆̂‖22
n

+ 2λ(‖β∗J0
+ ∆̂J0‖1 + ‖∆̂J c

0
‖1) 6 2

ξTX∆̂
n

+ 2λ‖β∗J0
‖1

‖X∆̂‖22
n

+ 2λ‖∆̂J c
0
‖1 6 2‖∆̂‖1

∥∥∥ξTX
n

∥∥∥∞+2λ‖∆̂J0‖1

0 6
‖X∆̂‖22

n
6 λ{3‖∆̂J0‖1 − ‖∆̂J c

0
‖1}.

2 On conclut la preuve du Théorème 4.1 en appliquant la RE
pour obtenir κ‖∆̂‖22 6 3λ‖∆̂J0‖1 6 3λ

√
s0‖∆̂‖2.
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n
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n
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0
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n
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Résultat principal

Théorème 5.1
Soit β̂ une solution optimale du problème Lasso (1) avec le
choix λ > 2‖XTξ/n‖∞.

1 On a toujours la vitesse lente suivante:

‖X(β̂− β∗)‖22
n

6 12‖β∗‖1λ.

2 Si le support de β∗, J0, est tel que |J0| = s0 et que la
matrice de design X vérifie la condition RE avec
paramètres (κ, 3) sur J0, on a alors la vitesse rapide
suivante

‖X(β̂− β∗)‖22
n

6
9
κ
s0λ2.
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Corollaire
En procédant comme précédemment, on montre que si les
ξj ∼ N(0, σ2), et sous l’hypothèse de variables normalisées,
n−1/2 maxj ‖Xj ‖ 6 C , alors le choix λ = 2Cσ

√
(2 log p + δ2)/n

est "valide" avec probabilité supérieure à 1− exp(−δ2/2), et
alors :

1 la partie (1) du Théorème implique que

‖X(β̂− β∗)‖22
n

6 24‖β∗‖1Cσ
√

2 log p + δ2

n
.

sous la seule contrainte ‖β∗‖1 6 T , cette borne ne peut pas
être améliorée.

2 sous les hypothèses de sparsité et RE, alors on obtient la
borne

‖X(β̂− β∗)‖22
n

6
(36C 2σ2

κ

)2s0 log p + s0δ2

n
.
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Preuve du point (2) du Théorème 5.1

En procédant comme dans la preuve du Théorème 4.1, il vient

‖X∆̂‖22
n

6 3λ‖∆̂J0‖1 6 3λ
√
s0‖∆̂J0‖2.

D’autre part, comme on a toujours ∆̂ ∈ C3(J0), on peut
appliquer une nouvelle fois la condition RE−(κ, 3) :

‖∆̂‖22 6
‖X∆̂‖22
nκ

,

ce qui, combiné à l’inégalité précédente, conduit à

‖X∆̂‖2√
n

6
3λ
√
s0√
κ
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Preuve du point (1) du Théorème 5.1

1 Montrons que ‖∆̂‖1 6 4‖β∗‖1.

En procédant comme précédemment on obtient aisément

0 6
‖X∆̂‖22
2n

6
ξTX∆̂
n

+ λ{‖β∗‖1 − ‖β̂‖1}. (7)

D’après l’inégalité d’Hölder, le choix de λ, puis l’inégalité
triangulaire, il vient∣∣∣ξTX∆̂

n

∣∣∣ 6 ∥∥∥XTξ

n

∥∥∥∞‖∆̂‖1 6
λ

2
(‖β∗‖1 + ‖β̂‖1). (8)

En combinant ces deux inégalités, il vient ‖β̂‖1 6 3‖β∗‖1,
et donc, via l’inégalité triangulaire,

‖∆̂‖1 6 ‖β̂‖1 + ‖β∗‖1 6 4‖β∗‖1.
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Preuve du point (1) du Théorème 5.1 (suite)

2 En combinant les résultats obtenus dans les dérivations des
équations (7) et (8), il vient également

‖X∆̂‖22
2n

6
λ

2
‖∆̂‖1 + λ{‖β∗‖1 − ‖β∗ + ∆̂‖1}

6
3λ
2
‖∆̂‖1

6 6λ‖β∗‖1

où la 2ème ligne vient de l’inégalité triangulaire

‖β∗ + ∆̂‖1 > ‖β∗‖1 − ‖∆̂‖1,

et la 3ème ligne de la borne ‖∆̂‖1 6 4‖β∗‖1.
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Sur les conditions RE, MI, etc.

Table : Récapitulatif des liens "Résultats-conditions"

Propriétés conditions sur X beta-min
Prédiction Vitesse Lente "Rien" Non
Prédiction Vitesse Rapide RE (pas nécess.) Non
J0 ⊆ Ĵ RE Oui
J0 = Ĵ Non-Repres. Oui

On peut montrer que RE n’est pas nécessaire pour vitesse
rapide en prédiction (mais il faut quand même certaines
hypothèses sur la matrice de design, contrairement à
d’autres approches telles que `0)
Pour sparsistency (et estimation), il faut des conditions,
liées à l’identifiabilité.
Cas de design aléatoire
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Qq conditions proposées, et leurs inter-relations....

D’après van de Geer et Bühlmann, EJS, 2009.



Introduction Le Lasso Sélection de modèle Estimation Prédiction Compléments

Modèles Linéaires généralisés

Pour ces modèles, la vraisemblance s’exprime généralement
sous la forme

∑
i L(Yi ,XT

i β)

Régression logistique : L(y , η) = yη− log(1+ eη)

Le Lasso se généralise alors :

φ(λ) := min
β∈IRp

−

n∑
i=1

L(Yi ,xT
i β) + λ‖β‖1.

ou

φ(λ) := max
β∈IRp

n∑
i=1

L(Yi ,xT
i β) − λ‖β‖1.
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En pratique

On travaille généralement sur variables "standardisées"

Différentes approches ont été proposées, à partir du Lasso,
pour l’améliorer

Adaptive Lasso
Thresholded Lasso
Relaxed Lasso
BoLasso
...
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