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Cadre considéré dans ce cours

o On supposera disposer d’un échantillon
((E]_, Yl)) BEER] (xn) Yn) tel que

Yizxin)*—i-ai, 1=1,..
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ot les & ~ N(0, 02) sont i.i.d., les Y; € IR sont aléatoires
mais les z; € IRP sont déterministes, et le paramétre

B* € IR? est inconnu.

= régression linéaire sur design fixe, avec erreurs gaussiennes

(sans intercept).
o Exemple typique :

o Y; : niveau d’expression du géne G chez 'individu ¢
o z; = (Ti1y. .., :cip)T : SNPs pour 'individu ¢ (& valeurs dans

{0, 1, 2} généralement).
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Ecriture matricielle

o Le modéle peut se réécrire sous forme matricielle

Y=Xp"+§
ol
o Y=(Y1,..,Y,)TcR et &= (&1,...,6,)7 € R”
o X=(zT,...,27)T € R™*P.

Rq: Dans ce cours, on considére que p = p(n) (typiquement,
fonction croissante de n).
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Cadre "standard"
on>p,etrang(X)=p
o alors ’estimateur des MCO

B — in ||[Y — XB|2
B =arg min | Bll2

est donné par

B=XTX)'XTY.
0 On a .
IX(B—B")3

2
~X
02 P
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et donc [ezercice: utilisez l'inégalité de Tchebychev']

o IX(B =B
n n
ol X, = 0Opla,):Ve,AM : IP(|X,/a,| > M) < €.

1Soit X, une v.a. d’espérance p et de variance finie 02, alors pour tout

>0, IP(IX —pl > «) < 0?/a
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Cadre de la grande dimension

(%]

p = n (voire p > n)
o alors rang(X) < p (et donc XTX n’est pas inversible)

o l’estimateur des MCO n’est plus unique (méme formule
avec pseudo-inverse de Moore-Penrose)

o et il "overfit" les données

o notamment ~
IX(B— B3

n

(Exemple avec n =p et X =1,,.)



"Solutions"

o Hypothése de parcimonie : * est "creux", i.e.

so:=1{7:B; #0} < p (et surtout < n).




Introduction Le Lasso Sélection de modeéle Estimation Prédiction Compléments

0000e 0000 0000000000 00000 [e]e] 00000
[e]e] 00000 000000 o] 000
n M n
Solutions

o Hypothése de parcimonie : B* est "creux", i.e.

so:=Hj:B; #0} < p (et surtout < n).

o Alors, si ’on connaissait ’ensemble Jp := {7 : B # 0}, on

. L qe - So
aurait une erreur de prédiction : Op (—) —p 0.
n
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Solutions

o Hypothése de parcimonie : B* est "creux", i.e.

so:=Hj:B; #0} < p (et surtout < n).

o Alors, si ’on connaissait ’ensemble Jp := {7 : B # 0}, on

. L qe - So
aurait une erreur de prédiction : Op (—) —p 0.
n

= Sélection de variables

o meilleure interprétabilité du modéle
o meilleur pouvoir prédictif aussi

o Autre hypothése possible : peu de coefficients "grands"
(plutét que peu de coefficients non nuls).
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Principe général de la régression pénalisée
Pour un A > 0,

Y —XB|3

foun, o +AP(B).

o 83iA=0: MCO

o Différents choix pour P(B) :

o ||Bllo =#{y : B;j # 0} : Théorie +++, Implémentation —

o AIC: A=0?%/n
o BIC : A =o0?log(n)/(2n)

o Pb "combinatoire" : on doit énumérer les 27 modéles

possibles

Compléments
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Principe général de la régression pénalisée

Pour un A > 0,

AP(B).
BER? 2n +AP(B)

0 83iA=0: MCO

o Différents choix pour P(B) :

©

©

©

IBllo = : B; # 0} : Théorie +++, Implémentation —
[Bll: =2, IB;| (Lasso) : Théorie : ++, Implémentation ++
IBlI3 = X, B? (Ridge) : Théorie : +, Implémentation ++
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Least Absolute Shrinkage and Selection Operator

Pour A > 0,

A Y — XPB||2
B(A) € Argmin Y = X8Iz

A
min = P B

o Probléme convexe, mais la solution n’est pas
nécessairement unique

0 83iA=0: MCO

Compléments
00000

(1)

o la solution est typiquement creuse : plus A est grand, et

plus B(A) est creux (en "gros").
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Propriétés de sélection du Lasso: intuition

Le probléme d’optimisation

A .
min =P A

est équivalent, pour une certaine valeur de T'= T'(A), &

N(T) ‘— mmin w
© O IBIh<T 2n

[

Ex: dans le cas ou n = p et X =1,,. On cherche alors

résoudre
n

~ o . i PRy
&(T) = min 2n;(Yz B:)2.



Cone {4

I8l < T

Emprunté aux slides de J. Mairal



Cone {5

b1

B2

I8ll2< T

Emprunté aux slides de J. Mairal



Introduction Le Lasso Sélection de modeéle Estimation Prédiction Compléments

00000 0000 0000000000 00000 (e]e] 00000
(e} 90000 000000 o [e]e]e}

Propriétés du Lasso : que peut-on espérer 7
On peut espérer qu’avec grande probabilité, sous certaines
hypothéses et pour des choix appropriés de A,
o Estimation : [§ ~pB*
o Sélection : J(A) ~ Jo, ot J(A) = {5 : B;(\) # O}
o Preédiction : n 1| X(B — B*)|2 ~ so/n
On précisera plus tard la signification de ~ dans chacun des cas

précédents.

Rql: "Difficulté" pour ’analyse des propriétés des estimateurs
Lasso (par rapport aux MCO): pas de forme explicite (on
va utiliser des conditions d’optimalité qui caractérisent les
solutions du probléme (1)).

Rq2: Propriétés non asymptotiques.
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Une premiére condition d’optimalité

Pour simplifier les notations, on suppose que A est fixé et on
pose B = 3(A), une solution de (1).

Lemme 2.1

Dénotons le gradient de (2n)71||Y — XB|2 par X
G(B)=—-XT(Y — XB)/n. Alors une CNS pour que (3 soit
solution du probléme (1) est

Gr(B) = —Asign(Br) st Br#0
IGi(B) < A st B;=0

Cette caractérisation nous sera utile pour établir les propriétés
de sélection du Lasso.
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Lasso et soft-thresholding

Elle nous permet également de déduire le résultat suivant.

o Si XTX/n =1, (= p < n), alors Lasso =
soft-thresholding :

N

B () = sign(B;)(IB;] — A)x+.

= Rq : Le Lasso sélectionne.. mais shrinke aussi : les estimateurs
sont généralement biaisés (cf. regularization path).
Diverses extensions pour débiaiser les estimateurs Lasso

o Adaptive Lasso (Zou): [|B]ls = Y_;IB,|/IB™*| : on pénalise
plus B; si |[§;nit\ est petit.

o Lasso-OLS Hybrid (= Relaxed Lasso de Meinshausen, avec
$ =0)

o On reviendra sur ces approches plus tard.



Regularization path

Linear Lasso
=

Coefficients
0.

L1 Norm
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Une seconde condition d’optimalité

Lemme 2.2

Une autre CNS pour que ﬁ soit solution de (1) est que pour
tout B € IR?

1Y — XBJ3
2n

Y —XB|3

ABl: <
FAIBl <

+ B
En particulier, on a la CN suivante :

1Y —XB3
2n

Y —XpB"|I3

AR <
+lBx =

+AlIB™ 1

Cette caractérisation nous sera utile pour étudier les propriétés
d’estimation et d’erreur de prédiction du Lasso.
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"Sparsistency" du Lasso

o Une procédure de sélection de variables est dite consistante
en sélection de variables, ou "sparsistent", ssi le support du
vecteur estimé est identique au support du vecteur
théorique, J= Jo, avec grande probabilité.

o Intuitivement, 2 types d’hypothéses sont nécessaires pour
la sparsistency.
o conditions d’identifiabilité
o beta-min conditions
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Hypothéses liées a I'identifiabilité

On supposera qu'il existe un paramétre de non-représentabilité
v € (0,1] et une constante Cpin > 0 tels que

?éaff 12X X 5 (X7 X 5) M < (1 =) (2)
XTX;
Amin(%) = C'min (3)

Remarque : On ne peut pas savoir si ces conditions sont
vérifiées a priori puisque Jp est inconnu.



Interprétations de ces hypothéses

o Hypotheése de valeur propre minimale (3) : identifiabilité
du probléme restreint a Jy.
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Interprétations de ces hypothéses

o Hypothése de valeur propre minimale (3) : identifiabilité
du probléme restreint a Jp.

o Condition de non-représentabilité (2) :

o pour tout 7 € J§, \|XjTXJO(X£XJO)*1||1: norme {; du
parametre de la régression linéaire de X; sur X, estimé
par MCO.

o un design idéal est tel que X; est orthogonal aux colonnes
de la matrice X, auquel cas on aurait y = 1.

o En grande dimension, on ne peut pas avoir cette
orthogonalité stricte, mais on peut espérer étre dans une
situation de "quasi-orthogonalité".
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Liens avec d’autres hypotheéses "classiques"

o Dans ce cours, on se contentera de présenter des résultats
obtenus sous la condition de non-représentabilité.
o On peut aussi travailler sous les hypothéses suivantes

o hypothése d’'incohérence mutuelle : le paramétre
d’incohérence de la matrice de design est "petit":

XTX
(Y (X) = max ]716‘ < v.

J#k n

o RIP (restricted isometry property) : la constante
d’isométrie restreinte est "petite"

*sts

XTX
(2 (X) = inf{e VS 18] < SHSTS

< e}.
2
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Résultat principal
Soit Ty s = Tnxn — X5 (X7 X ) 1XT

Théoréme 3.1

Sous les hypothéses (2) et (8) précédentes, l’estimateur
Lasso vérifie, pour A > (2/v)|| X7 ﬂXL &E/1 |00y

@ Unicité : Le Lasso (1) a une solutzon unigque [AS
@ Absence de "faux positif" : 7 C J.

@ Borne sur la norme { : Hﬁjo B llc < B(A,X) avec

20 = | (F22) xg (2)]_+all ()7

@ Absence de "faux négatif" : le Lasso est sparsistent si
minkGJo |B]>Z| > BO\) X)
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Corollaire 3.1

On suppose que les &; ~ N(0,02), et que la matrice de design
X est déterministe, vérifie les conditions (2) et (3), et a ses
colonnes normalisées, telles que

n—1/2 max;_1,p || X;|2 < C, pour une constante C > 0.
Pour le chowx

A

)

_2Co 2log(p — so) + 52
= m

pour une constante & > 0, on a le résultat suivant, avec
probabilité supérieure a 1 — 2e0%/2 _ge—:7/2; pour tout

€ >0, la solution optimale ﬁ est unique, de support 7 C Jo
et telle que

o 2log sg + 2+?\\/%

2 o < .
HB B HOO m n C'min
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Preuve
On doit premiérement montrer que ce choix de A vérifie, avec

grande probabilité, la condition sur le A du Théoréme 3.1. Soit,
pour tout 7 € Jg5, V; = XjTl'[X§ &/n. Ces variables aléatoires
0

sont gaussiennes, centrées, et de variance bornée par
o*|[TTxs X;/nl3 < 0*[1X;/nll3 < 0*C*/n.

On en déduit que?

P(max| Vj| > ¢) < 2(p — so) e~/ (2%
jeds

et donc que

21 — g
([, 1] > ooy I <o

2par 1'Union Bound et l'inégalité de concentration pour variable
gaussienne : X ~ N(u, 0?) :IP(|X — | > t) < 2exp(—t3/(20?))
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Preuve (suite)

~ XT X5\ 1x7
; _ T 2™ Jo
Soit Vi, = ¢ ( > )

m a, pour tout k € Jy. On montre

facilement que les V} sont gaussiennes, centrées de variance

bornée par
2

T

) < o
< .

n n 2 Chpinn

En procédant comme précédemment, il vient donc

~ / 2
IP( max |Vl > o { 2log sp + € }) < s
k=1,...,50 Chin n

Comme enfin

X5 X\~ XTX -
JEa22) 7 < vall(Ra2) 7, < &2

)
2 Cmin

le résultat du Lemme est donc vérifié avec probabilité
supérieure a 1 — 2e—8%/2 _9p—€?/2.
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Corollaire 3.2

On suppose que la matrice de design X vérifie les
hypothéses du Théoréme 3.1, que p = O(exp(n3)),
so = O(n®1), et que Br2nin > n—(1782) gyec

0<061+03<0y<1.

Si A, =n~(1734)/2 pour un 5, € (53,05 — 81), alors le Lasso
est sparsistent avec probabilité supérieure ¢ 1 —exp(—cin®4),
pour une certaine constante c;.
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Corollaire 3.2

On suppose que la matrice de design X vérifie les
hypothéses du Théoréme 3.1, que p = O(exp(n3)),
so = O(n®1), et que Br2nin > n—(1782) gyec

0<061+03<0y<1.

Si A, =n~(1734)/2 pour un 5, € (53,05 — 81), alors le Lasso
est sparsistent avec probabilité supérieure ¢ 1 —exp(—cin),
pour une certaine constante c;.

o p peut croltre exponentiellement avec n
o s9/p ~ n® exp(—n®3) décroit exponentiellement avec n.
o Sip (et sp) fixe, A = n=(1-8)/2 et Bin > con—(178)/2
(pour 6 > 0) assurent la sparsistency avec probabilité
> 1—2exp(—cynd), pour une constante ¢; > 0.
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Une condition suffisante d’échec pour le Lasso

Théoréme 3.2

On suppose que la condition sur la valeur propre minimale
(3) est vérifiée et que le vecteur de bruit & a une
distribution symétrique autour de 0.

@ St la condition de non-représentabilité (2) n’est pas
vérifiée, en particulier si

max | X" X 5, (X X )sign(Bl) =1+ v >1,  (4)

alors pour tout A, >0 et n

[s1gn([?’>) =sign(B*)] < 1/2.
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Lemme 2.1 "étendu"

Lemme 3.1
@ Un vecteur p € R? est optimal ssi 32 € ||| tel que
XX » - XTg
(B—B")———+A2=0 (5)

n n

@ Pour tout j € JC s1 12| < 1 alors toute solution
optimale B du Lasso est telle que [5] =0.
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Lemme 2.1 "étendu"

Lemme 3.1
@ Un vecteur p € R? est optimal ssi 32 € ||| tel que
XTX & . XTg

(B—B")—

n n

+A2=0 (5)

@ Pour tout j € Jc s1 12| < 1 alors toute solution
optimale B du Lasso est telle que [5] =0.

Preuve : D’aprés la régle de Fermat (cf. cours de N.P.),

B e Argmlnﬁ (2n) 7Y — XB||2 + A||B]|1 est équivalent a :

Jz e amsul tel que 7{LXT(XB Y) + Az = 0. La partie (1) du
Lemme découle ensuite de ’égalité Y = X* + &. On en déduit
également le résultat du Lemme 2.1 puisque Gj(ﬁ) = —AZ;.
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Preuve (suite)

Qo

Qo

Qo

Pour le point (2), raisonnons par ’absurde.

Soit  une autre solution du probléme Lasso (1) et j € J¢
tel que || < 1 et 3; #0.

Puisque le probléme Lasso est convexe, ’ensemble de ses
solutions est convexe et donc, pour tout p € [0, 1],

Bo=(1—p)B+pB

est également solution du Lasso.

Pour tout p € (0,1], on a par ailleurs ﬁp,j # 0 (par
construction), et donc, d’aprés le résultat du Lemme 2.1,
1G;(Bp)l =A.

En définissant la fonction f(p) = IG]-([AS o)l, on a donc
f(0) < Aet f(p) =A, pour tout p € (0,1].

Ceci est en contradiction avec la continuité de la fonction f.
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Primal-Dual Witness construction

On va chercher & construire une paire (3,z) € IRP x IR? de la
maniére suivante :

@ Soit (B Jor21,), avec B J, € IR* une solution du probléme
Lasso oraculaire:
A {IIY—XJOISJOH%

€ Arg min
BJO gBJO GIRSO 2n

+ B gl }

et 2 € a||[§JO\\1 tel que GJO(IASJO)—i-?\iJO =0.

@ On résout, en 2 ;¢ € IRP~%, I'’équation (5), et on vérifie la
condition de faisabilité stricte, |2;| < 1, pour tout j € J§
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PDW et sparsistency du Lasso

o = méthode de résolution numérique pour le Lasso !!

Lemme 3.2

St la construction PDW aboutit, alors sous l’hypotheése de

valeur propre munimale (8), le vecteur ( [AS Jo»0) est l'unique
solution du Lasso.
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PDW et sparsistency du Lasso

o = méthode de résolution numérique pour le Lasso !!

Lemme 3.2

St la construction PDW aboutit, alors sous l’hypotheése de
valeur propre munimale (8), le vecteur ( [3 Jo»0) est l'unique
solution du Lasso.

Preuve : Sous la condition de faisabilité stricte, le Lemme 3.1
assure que toute solution du Lasso B est telle que Bj = 0 pour
tout j € J§. Toute solution est donc de la forme (B J»0), et on
peut donc obtenir J, en résolvant le Lasso oraculaire.

D’autre part, sous I’hypothése (3), le Lasso oraculaire est
strictement convexe, et admet donc une solution unique.
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Preuve du Théoréme 3.1

o Pour établir les points (1) et (2), au vu du Lemme 3.2, il
suffit de montrer que la faisabilité stricte est vérifiée dans
le PDW.

o En réécrivant (5) par bloc, on a 8 ;,,2, et 2s¢ qui vérifient:

1 X%TL;XJ0 X T X e [gjo_[3>;0 1 X;.;a
n XJ(?XJO XJgXJg 0 n &

A

+A{fj° ] —0.
Z g

o On a donc

) . XEXg\1XTE
BJO—ﬁJ[):( ° 0) [ °

n
et

. 1, &
5 = XX 00 (XFX0p) 20 + X Ty ()
=u+V
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Preuve du Théoréme 3.1  (suite)

o Sous la condition de non-représentabilité, on a

[floo < (1 —7).
o La condition sur A assure pour sa part que || V||« < v/2.
o La faisabilité stricte suit facilement en utilisant

12s¢llo0 < MIilloo + [ Viloo < (1 —7v/2) <
o Pour le point (3), il vient de (6) que
XT X5\ -1XTE XT X\ 1

18— 85l < [ (=572) oL A ) L

o La preuve du point (4) est directe.
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Restricted Eigenvalue condition

Définition 4.1
Soit, pour tout « > 0, le "cone"” Cy(Jy) de IRP défini par

Cal(Jo) ={A € RP: ||Asell1 < oxl|A ]2}

Définition 4.2

La matrice de design X vérifie la Restricted Eigenvalue

condition sur Jy, avec les parameétres (k, o), avec , St

1
EHXAH% > k||A||2  pourtout A € Cy(Jp).
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Intuition pour la RE

o Considérons la version contrainte avec T' = ||B*|;.
o Soit £, (B) =Y —XB|3/(2n).

o Si n — oo, on peut espérer L,(B) ~ L,(B").

o Sous quelles conditions cela implique-t-il que ﬁ ~B*7?

D’aprés Wainwright (unpublished)
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Intuition pour la RE (suite)

o En multivarié, la courbure est liée au Hessien de £:

(XTX)/n : si cette matrice est définie positive, i.e.,

1
EHXAH% > K||AH% >0 pourtoutA € IRP \ {0},

alors £, aurait une courbure élevée dans toutes les
directions.

o Impossible en grande dimension (p > n) : il y a forcément
au moins p — n directions selon lesquelles £, est "plate".
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Résultat principal

Théoréme 4.1

On suppose que X vérifie la condition RE sur Jy avec les
paramétres (k,3). Alors toute solution du Lasso avec
A>2|XTg/n|w est telle que ||B — B*||2 < 3A/So/K.

Corollaire 4.1

Supposons que les conditions du Théoréme 4.1 et les
hypothéses de normalité des résidus &; ~ N(0, 02) et de
standardisation des variables, n—1/2 max;_1,_p||Xjll2 < C
(pour une constante C < 0) sont vérifiées. Alors, pour le

choiz
2
A — 2001 /%

le résultat du Théoréme 4.1 est vérifié avec probabilité
supérieure a 1 — 2e5%/2,
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Preuve du corollaire

Sous les conditions du corollaire, la quantité | X7 &/n|x
correspond au maximum de la valeur absolue de p variables
gaussiennes, centrées et de variance bornée par C%02/n.

En procédant comme précédemment, on obtient alors que pour
tout & > 0,

21 52
P(IXTE/nlo > Coy| =EELT) < 207872,

Le résultat du Théoréme 4.1 permet donc de conclure qu’avec
une probabilité supérieure a 1 — 2¢—5%/ 2 ona

n . 600\/250 log p + 5062
— < .



Preuve du Théoréme 4.1
@ SiA> 2||XTE,/n||oo, alors A= (B —B*) € C3(Jp)
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Preuve du Théoréme 4.1

@

Puisque [f?, est optimal, on a les propriétés suivantes

Y — XB|2 A Y — XB*2 i

=XBIE 4 Ay, < X XBTE | npp,
2n 2n

Y — X2 R £

IV XPBUE | v < 122 e

2n
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Preuve du Théoréme 4.1

Puisque E', est optimal, on a les propriétés suivantes

Y — XB|2 A Y — XB*2 i
= XPIE | ngy < X XBTE ey,

2n X
||Y23Lq3||§+)\|@,||1 HEHZ + MBI
||X:”2 +2A(|B5, + Asll + A1) ‘ETXA + 273l
[ AII2+2}\HAJ0||1 <20l ‘aT H +2A[|A g |1
0< IXAl13 < M3 AL |l — ||3J5||1}-

n
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Preuve du Théoréme 4.1

Puisque [§ est optimal, on a les propriétés suivantes

Y — XB|2 A Y — XB*2 i
= XPIE | ngy < X XBTE ey,

2n X
||Y23Lq3||§+)\|@,||1 HEHZ + MBI
||X:”2 +2A(|B5, + Asll + A1) ‘ETXA + 273l
[ AII2+2}\HAJ0||1 <20l ‘aT H +2A[|A g |1
0< HXSH% < M3 AL |l — ||3J5||1}-

@ On conclut la preuve du Théoréme 4.1 en appliquant la RE
pour obtenir k[|A[Z < 3A|Azll1 < 3A/S0||All2.
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Résultat principal

Théoréme 5.1
Soit [AS une solution optimale du probléme Lasso (1) avec le
choiz A > 2| XTE/n| .

@ On a toujours la vitesse lente suivante:

X "_ * (12
H(BnB)Hz < 12|B* [l

@ Si le support de B*, Jo, est tel que |Jo| = sg et que la
matrice de design X vérifie la condition RE avec
paramétres (k,3) sur Jy, on a alors la vitesse rapide
suivante R -

1X(B— B3 < 950)\2_
n K
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Corollaire

En procédant comme précédemment, on montre que si les

& ~N(0, 02), et sous I’hypothése de variables normalisées,
n~Y/2max; || X;| < C, alors le choix A =2C0+/(2logp + 52)/n
est "valide" avec probabilité supérieure a 1 — exp(—62/2), et
alors :

@ la partie (1) du Théoréme implique que

X (B — B3 . [21og p + 52

o sous la seule contrainte ||3*||; < T, cette borne ne peut pas
étre améliorée.
@ sous les hypothéses de sparsité et RE, alors on obtient la
borne

IX (B —BII5 _ (360202) 250log p + 50°

X
n K n
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Preuve du point (2) du Théoréme 5.1

En procédant comme dans la preuve du Théoréme 4.1, il vient
XA|2 " .
XA < ana s < AvSl Bl

D’autre part, comme on a toujours A€ Cs(Jp), on peut
appliquer une nouvelle fois la condition RE—(k, 3) :

~ o |IXA|3
A3 < F-2,

ce qui, combiné a l'inégalité précédente, conduit a

|XAl2 _ 305
NN



Preuve du point (1) du Théoréme 5.1

@ Montrons que ||3||1 < 4Bz
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Preuve du point (1) du Théoréme 5.1

@

En procédant comme précédemment on obtient aisément

XA|Z  £TXA . %
XAl _ S MBI IBl) (D)

2n

D’apres l'inégalité d’Holder, le choix de A, puis l'inégalité
triangulaire, il vient

XA T8 a2 1Bl (9

En combinant ces deux inégalités, il vient ||B]|; < 3[B* |1,
et donc, via l'inégalité triangulaire,

1AL < 1Bl + 1187l < 4187l
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Preuve du point (1) du Théoréme 5.1  (suite)
@ En combinant les résultats obtenus dans les dérivations des
équations (7) et (8), il vient également

IXAIZ A~ ) .~
< =|A A — A
o> < SlAl M7 — 18" + All2)

3N~
< —|lA
Al
< 6A[B7|2
ol la 2éme ligne vient de l'inégalité triangulaire
1B + All > (1Bl — 1Al

et la 3éme ligne de la borne HAHl 4/1B%1-
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Sur les conditions RE, MI, etc.

Table : Récapitulatif des liens "Résultats-conditions"

Propriétés \ conditions sur X \ beta-min
Prédiction Vitesse Lente "Rien" Non
Prédiction Vitesse Rapide | RE (pas nécess.) Non
JoCJ RE Oui
Jo = J Non-Repres. Oui

o Pour sparsistency (et estimation), il faut des conditions,
liées a 'identifiabilité.

o Cas de design aléatoire
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Qq conditions proposées, et leurs inter-relations....

oracle inequalities for prediction and estimation

7 3
RIP :> weak (S, 2s)- RIP :> adaptive (S, 2s)- :> (S.25)-restricted /”\ 2
restricted regression eigenvalue \_I
N S-compatibility

4 ) 3 A
|S.\S| <5  coherence :>ﬁdaPUVE (S, 5)- :> (S.s)-resuic[ed/
s restricted regression eigenvalue
6 6 \5 9
Ny
Y 6 6

weak (S, 2s)- <: (S.2s)-irrepresentable @ (S,s)-uniform —> |S.\S| =0
irrepresentable irrepresentable 64»&25

Fic 1. A double arrow (=) tndicates a straight implication, whereas the more fancy arrow-
heads mean that the relation is under side-conditions. The numbers indicate the section where
the result is (re)proved.

D’aprés van de Geer et Biithlmann, EJS, 2009.
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Modeéles Linéaires généralisés

o Pour ces modéles, la vraisemblance s’exprime généralement
sous la forme ) , £(Y;, X7 B)
o Régression logistique : L(y,n) = yn —log(1 + ")

o Le Lasso se généralise alors :

$(\) = min —;L(Yi,x?m +AlIB1-

ou
n

— Ty
BN i= e 5 £(¥xTB) = NIBh
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En pratique

o On travaille généralement sur variables "standardisées"

o Différentes approches ont été proposées, a partir du Lasso,
pour l'améliorer
o Adaptive Lasso
Thresholded Lasso
Relaxed Lasso
BoLasso

©

© 0 ©
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