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Structure de I'ADN et bases moléculaires de I'hérédité

Polymeére double brins

e Monomeres : nucléotides/bases

Adénine, Cytosine, Guanine, Thymine
e Bases complémentaires : A-T, G-C
Double hélice: Watson et Crick (1953)

Pyrimidines  Purines

Complémentarité des deux brins
= on peut déduire un brin a partir de |'autre
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La réplication de I'ADN

e La complémentarité des
brins est a la base de la
réplication onkpoymerase (Polmy

DNA primase

e Des enzymes ont la

strand

propriété de répliquer un s P
. y 5 '
brin d’ADN s 5
Topoisomerase
- ¥
e Mutations: erreurs de e s
replication (variations) e

Les mutations sont transmises a la descendance par l'intermédiaire de
I'une des deux molécules filles
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Détection des mutations par séquencage

800 protdna.mase
Fio | ot | prog | s | peses © | roors ¢ [ sewen|[ cow[ e s
z H ’ . E e i
e Détermine I'enchainement des B ;
nucléotides
e Les premieres techniques 1975 e
(Frederick Sanger, Prix Nobel) e
o Les séquences sont stockées e A
dans des banques e e —

(GeneBank,EMBL)

o Projets de séquencage des
génomes entiers (années ~90) Variations identifiées par alignement
des séquences
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Séquences

Données populationnelles de séquence

o Génome humain (3.10° bases) 1000 Genomes

Mapping Human GeneticVariation

séquencé en 10 ans

e Aujourd'hui (2011) ~ 130.10°
nucléotides dans ~ 135.10° séquences
disponibles

o Défi technique pour le stockage et la
consultation des données

e Echantillonnage des génomes entiers

Génomique des populations: étude des variations génétiques des
populations a |'échelle des génomes entiers
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Séquences

Des initiatives publiques et privées

Rare Genetic Varians in Health and D

What is UK10K?
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e et Lyt N |
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Project Design

Netas ead
w0 prongect aporoach to cenity fare varanis and o

by sadying and compring the DNA of 4,000 peopl

racersics are wel documented. e prjectan

& hoped o find ony those changes n ONA that are
served

The project rocsived a £10.5 millonfuding award rom
Sequencing started 1 st 2010. For more mormaton, p

IFB Plateformes

LIFB fédere les services et les ressources
de 36 plateformes en bioinformatique.
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Séquences

Des initiatives publiques et privées
eCEDCD ~O

New year. New you.

Learn more about yourself this
new year.

© Learn wh:

nt of your DNA is from populations

\ 20% OFF
$149
23 pairs of
chromosomes.
eCDCID vO0 One unique you.

Getting started is simple.

Learn more about your ancestry today.

1\/_. » P » 3‘ = Your privacy and security.
Order Register Send 7-: R ctomaives s
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Locus - Alleles

e Locus: position sur un
chromosome

Allele for phenotype A

e La plupart des organismes sont

diploides (paire d’homologues) ==

o Certaines différences de Alees
séquence peuvent exister entre
les deux copies.

Chromosomes

Allele for phenotype B

e Les différentes formes de chaque
geéne sont appelées alleles
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Variations de séquence

Single Nucleotide Polymorphism:
changement d'un unique nucléotide

A l'origine des différences entre
individus d'une méme espece

e 2 séquences humaines se ressemblent
a plus de 99%

Fréquence > 1% (convention)

Les SNPs sont responsables de 90% des variations génétiques chez
I'hnomme
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Quelques ordres de grandeur

e En moyenne, on trouve un SNP tous les 600bp chez I'homme
(régions hot-spots et régions pauvres)

e 10 millions de SNPs dans 3.2 milliards de nucléotides chez 'lhomme

e L’abondance des SNPs dépend des especes (1 SNP tous les
50-100pb chez la mouche),
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Variations de séquence - Variations de fonctions

e Altération de la fonction d'une
protéine

¢ Modification de I'efficacité
d'une enzyme (quantitatif)

e Aucun effet

e Modification de la régulation /
épissage

~60,000 SNPs sont dans les exons
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Association

Etudes d’association

Most recent common ancestor

© Case
© Control

¢ |dentification des variations
jouant un role dans la
détermination de phénotypes

3 Ancestral
mutation

mesurables j‘w
o , o [lallllls
e Sur des individus non apparentés ——
ape . . Copyright & 2006 Nature Publishing Group.
[} Ident|f|er des SN PS qu| Vanent Nature Reviews | Genetics

systématiquement entre
individus ayant différents états

Identifier la " sur-représentation” de
certains variants dans les cas par
rapport aux témoins.
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Association

Structure des données

H statut H snp;  snpy ... snp, H Age Sexe Glycémie
i=1 0 0 1 0 38 F 0.8
i=2 1 1 0 2 15 M 0.2
i=N 1 2 2 1 90 F 1.5

Pour chaque individu:
e Statut (discret: association / continu : QTL )
e Génotype mesuré sur p SNPs
e Données cliniques (non génomiques)

Objectif
Expliquer les variations d'une réponse en fonction de covariables
génomiques (et cliniques)
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Association

Stratégies univariées

Historiquement la plus utilisée
p tests (chi-square ou Student)
Dépendance? Tests multivariés?

Comment inclure d'autres
informations (poids, age,
clinique) ?

Multiplicité des tests

J.R. Statist, Soc, B (1995)
57, No. 1, pp. 289-300

Controlling the False Discovery Rate: a Practical and Powerful
Approach to Multiple Testing
By YOAV BENJAMINIt and YOSEF HOCHBERG
Tl Aviv University, srael

[Received January 1993. Revised March 1994]

IMARY
The common approach to the multiplicity problem calls for controlling the familywise
exror rate (FWERY). This approach, though, has faults, and we point out a few. A different
approach to problems of multiple significance testing is presented. I calls for controlling
the expected praportion of fas} rate. This error

0 the FWER buti otherwise. There-
fore, in problems where the control of the false discovery rate rather than tha of the
FWER is desired, there is potential for a gain in power. A simple sequential Bonferroni-
type procedure is proved to control the false discovery rate for independent test statistics,
and a simulation study shows that the gain in power is substantial. The use of the new
procedure and the appropriateness of the criterion are illustrated with examples.

Keywords: BONFERRONI-TYPE PROCEDURES; FAMILYWISE ERROR RATE; MULTIPLE-

COMPARISON PROCEDURES; p-VALUES

La thématique des tests multiples (stat math) a connu un regain
d'intérét suite a I'émergence des données a haut débit
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Séquences Association ression Structure Intégration

Modeles linéaires (généralisés) pour les études d'association

e On note Y; la réponse (qualitative ou quantitative) et x;, z; les
covariables génomiques et non génomiques

e On suppose que les effets sont additifs dans un premier temps:
p Q
g(E(Yilxi,2))) =Y Bixij+ Y biaig
Jj=1 g=1

e La problématique est d'identifier les composantes du vecteur 3 qui
correspondent a des SNPs ayant un effet sur la réponse

o La difficulté de I'exercice est liée au nombre important de variables p
par rapport aux individus N.
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Association

Problémes associés a la grande dimension

Cas ou la taille du parameétre a estimer p est plus grande que le
nombre d’observations n

Inversion de XX impossible

Corrélation artéfactuelles entre régresseurs

Problémes de stockage
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Association

L'hypotheése de parcimonie

e On fera I'hypothese que la majorité des SNPs n’ont pas d’effet, donc
on supposera une structure creuse pour le vecteur de parameétres.

e On cherche a estimer le vecteur 3 en prenant en compte certaines
contraintes

p
B, = Argmax {log L(Y,3,0)} avec Zﬂ{ﬂj ¢0}<C
B8 =1

F. Picard, 19/55



Association

LASSO et Régularisation L

e Mais ce probléme d’optimisation n'est pas convexe. On en utilise
une relaxation:

p
B; = Argmax {log £(Y, 3,0)} avec Z 1Bjl < C
B

j=1

e Ce probleme d'optimisation peut également s'écrire sous la forme:

p
By = Argﬁrnax log L(Y,3,0) — Ac Z 18]
j=1

L'objectif de ce cours est d'étudier les méthodes de régression pénalisées,
les techniques d’optimisation associées, et les propriétés statistiques des
estimateurs
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Association

Difficultés inhérentes aux études d'association

e Cas facile: SNP causal lien
direct génotype/phénotype

Effect size

OEER | revrits O\

e Maladies "complexes”: la (s
) u s e e
mesure du phénotype est B [N
. . i Veyrre] 0 [RaE] 0% (owmeqen °%
incertaine. Les liens e

Nature Reviews | Genetics

génotype/phénotype sont
partiellement connus.

° L'impact environnemental est La fréquence et la taille des effets
supposé important des variants sont deux composantes
majeures
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Association xpression Structure Intégration

Modeles de régression utilisés en génétique quantitative

o Le modele général en génétique quantitative permet de reglier un
phénotype observé a des composantes génétiques et
environnementales: P=G+ E+ G x E

e Si on suppose toutes les composantes indépendantes, alors on aura
une décomposition de la variance telle que: Vp = Vg + Ve + Ve

e On peut définir des héritabilités au sens large comme le ratio des
variances H2 = Vs /Vp

e On considére également |'héritabilité au sens strict qui concerne la
partie additive de la variance génétique h> = V4 /Vp
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Séquences Association Xp n Structure

Missing Heritability 7

Malgré les études d’association,
il manque une part non
négligeable de variabilité qui
reste inexpliquée

The case of the missing heritability

e Prise en compte d'autres
variations

sixplaces where the missing oot could be stashed away.

e Impact des variants rares
o Dépendances entre SNPs Les sources de variation
inter-individuelles doivent étre mieux
prises en compte par les modeles
statistiques
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Association

GWAS Bactériennes

A) Multiple alignment of gyrA QRDR region
s  mnc
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Expression

Central Dogma of molecular biology (~1970)

o Relier I'information génétique
(ADN) au fonctionnement de la
cellule (protéines) grace au code
génétique

]
Trois niveaux d'information
génétique: ADN, ARN, protéines
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Expression

Central Dogma of molecular biology

o L'information contenue dans la
séquence d'ADN est transcrite en eapcxtion

(DNA -> DNA)
ARN messager DNA Polymerase

e '’ARNm est un polymere simple brin, DEPDLDDA ONA
c'est un vecteur o
transcription
e L'ARN messager est traduit en HhiA Polymerase
protéines grace au code génétique LA RNA
e Les protéines sont les effecteurs de
) . L, . translation
I'information génétique _ [RNA -> Protein)
Ribosome
e polymeres constitués de 20 Acides 0-0-0-0-0-0-0 Frotein

Aminés différents

F. Picard, 27/55



Expression

Qu’est ce qu'un gene ? (1)

e Une seule séquence codante
transcrite BN smtcotn gy Sopcaten

t H < ' v
e Sites de fixation des régulateurs et
(Facteurs de Transcription) s

I Coding sequence region [ Untanslated region

e Vision tres simpliste :
1 gene = 1 protéine

An intronless gene structure

F. Picard, 28/55



Expression

Qu’est ce qu'un gene ? (2)

e Une seule séquence codante
transcrite S—
e Sites de fixation des régulateurs | juce- 555 ——
(Facteurs de Transcription) =
B i  — —
e Vision trés simpliste : e —
1 géne = 1 protéine
e Alternance de zones | SR TR

Nature Reviews | Genetics

codantes-non codantes:
Exons/Introns

F. Picard, 29/55



Expression

Qu’est ce qu'un gene ? (3)

e Uun segment d,ADN qul How the proposed definition of the gene can be applied to a sample case.
contribue au phénotype ow{ m e e
e 20,000 génes codants qui Prima,y{ R ——
, , transcripts 5 ¥
représentent 1.2% du génome
humain Splced{ :: : = 1 - : :‘ =i Em s
transcripts . BT s
e 5-10% de séquences codants des - -
. s proteins  @)------ . @ @
produits non protéiques Fg"rg;‘;gfs'{ P-4
NcRNA 5 I I
e Role fondamental des séquences
régulatrices G{ B o
# ] X
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Expression

Epissage alternatif

Nb génes découverts stable @ o
alternatively

Nb de formes différentes : 5,4 [ - _ spliced
formes différentes par géne e
(GENCODE)

> 50% des genes ont un site *’ t protein

d’initiation de la transcription isoforms
alternatif

translation

Source de diversité et d'erreurs

Modification de |'agencement des
exons (ex: différents tissus)

F. Picard, 31/55



Expression

Des puces a ADN au séquencage massif

Fabrication des puces  ADN. Hybridation Obtention des isultats

e Années 1990-2000: puces a ADN

(microarrays, chips) T
e Depuis 2000: quantification de =
|"abondance des mRNAs par i
séquencage massif ——
e NGS : next generation sequencing | -
Select RNA fraction of interest
Etude du fonctionnement de la cellule L ot
a I'échelle génomique |
Genome-Wide Studies et =me
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Expression

Des pipelines et encore des pipelines !

Data Processing Data Integration Community Services
<
1]
Y . 2
o 3 QO
@] ("D‘ =
2 b 5 =
& = 2
3 e 3 S —
«Q e Y D
3| =l X
) &= o) > ~
= o 8 \
= ]
N P b
L — o
ChIP-seq RNA-seq RNA-seq
i discovery
Pre-processing _ Alignment Advanced QC

Integrate ‘ RNA-seq, ChiP-seq, and external data
[ associated || differential

mautmnang ||

novel
binding sources | I
l\qgregaleu CLIETE)
| and identi CEpaEn
| exons |

splice-crossing reads

novel splice
isoforms

Analyze -

Information extraction

OWVscalling o0t calling & Annotation Map reads

contiguous reads




Expression

Comparaison des méthodes et nécessité de standards

BRIEFINGS IN BIOINFORMATICS. oL . NO & 7622 1010935 511046
Advance Access publabed on 17 Sepiember 300

Briefings <
Bioinformatics

A comprehensive evaluation of et

Institution: UCBL SCO Lyon 1. Son Inas PersonslSutscrber

normalization methods for lllumina DS ——
high_throughput RNA sequencing A comparative study of RNA-seq analysis strategies (=

) -
3 i Trust
data analysis o —
Marie-Agnés Dillies”, Andrea Rau”, Julie Aubert”, Christelle Hennequet-Antier", Marine Jeanmougin’, Fengyuan o
Nicolas Servant”, Céline Keime", Guillemette Marot, David Castel, Jordi Estelle, Gregory Guemnec, Bernd Jagla, 2 fic pr par
Luc Jouneau, Denis Laloé, Caroline Le Gall, Brigitte Schaéffer, Stéphane Le Crom", Mickaél Guedj", Rlorence Jaffrézic’ ~ University of Cambridge.
and on behdlf of The French StatOmique Consortium Alexandra Lewin
B

Emest Turro is a Senior Research Associate at the Department of
7 Haematology, Universty of Cambridge and Visiting Worker at the MRC
Genome Biology istics Unit, He has developed statsti ysing
sequencing data and has co-authored a book chapter on the subject with
Alexandra Lewin. Over the past 5 years, e has taught bioinformatics on

REVIEW Open Access numerous courses in the UK and abroad.

Eimest Turo, Deps
Bostasies Unt Tl +44 (011223 83174; € mak 341 Gamac ok

A survey of best practices for RNA-seq data @ s o
analysis -

e e oo v . 0 SCIENTIFIC REPg}RTS

OPEN Comparative assessment of
methods for the fusion transcripts
detection from RNA-Seq data

25 Shailesh Kumar', Angie Duy Vo, Fjun Qin' & Hui it

e RNA-Seq e possbl the bl dentifcstonof fuion transcrpt, L “Chimari RNAY. Even
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Expression

Un changement d'échelle (conceptuelle)

e Avant le haut débit I'étude de
I'expression des genes se faisait
geéne par gene

o Les techno Haut Débit ont
complétement changé le point
de vue des biologistes

e en une seule expérience, on
dispose du niveau d'expression
de (potentiellement) tous les
transcrits d'une cellule !

F. Picard, 35/55



Expression

Structure des données

statut || exon; exons exon Age Sexe Glycémie
I I o || Ag y

i=1 0 10000 50 0 38 F 0.8
i = 1 10000 30 1 15 M 0.2
i=N 1 20000 25 3 90 F 1.5

Pour chaque individu:
e Statut (discret/continu)

e expression des génes mesurées (comptages ou continu)
e Données cliniques (non génomiques)

Objectif

Expliquer les variations d'une réponse en fonction des niveaux
d'expression des geénes (aspects fonctionnels).
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Expression

Exemples de problématiques d’'analyse

Planification expérimentale

Analyse différentielle d’'expression

Classification non supervisée d'individus (découverte de
sous-groupes)

e Classification supervisée d'individus (prédiction de phénotype)

|
Taches statistiques standard mais le nombre élevé de variables étudiées
nécessite de revisiter les techniques classiques
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Expression

Nouvelles classifications et traitements personnalisés

I Pan B cell

Glioblastoma
WHO IV

Germinal Centre
' Beell

DIYAL:
stic oligodencr

B Teen
B Activated B cell

| Proliferation

| Lymph node

medulloblastoma

WHO IV

Classification sur critéres S
histologiques Classification sur criteres
moléculaires
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Expression

Vers de nouvelles prédictions ?

REPORTS
e En 1999 un article fait sensation Molecular Classification of
en proposant une prédiction du Cancer: Class Discovery and
Class Prediction by Gene
statut moléculaire d’'individus Expression Monitoring

T. R. Golub,"2*f D. K. Slonim," P. Tamayo," C. Huard,"

attel nts d e d eux types d e M. Gaasenbeek," J. P. Mesirov," H. Coller, M. L. Loh?
J. R. Downing,® M. A, Caligiuri,* C. D. Bloomfield,’
leucémie a partir de signatures

E. S. Lander™*

Although cancer classification has improved over the past 30 years, there has
been no general approach for identifying new cancer classes (class discovery)

, .
enomigues o for assigning tumors to known classes (class prediction). Here, a generic
g q approach to cancer classification based on gene expression monitoring by DNA
° ALL AML <emias as a test case.

. S,

» distinction between

e Le nombre d'individus est 38 L j' i
pour 6817 genes étudiés !

2ne expression moni-
ind predicting cancer
biological knowledge.

e Développement de la
thématique de I'apprentissage
statistique aux données
génomiques
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Prise en compte de la dépendance entre SNPs

e La modélisation prend-elle suffisamment en compte les
connaissances disponibles ?

e Le modele qui suppose I'indépendance entre variables génomiques
est-il pertinent ?

o Les processus biologiques a I'origine des variations génétiques sont
fortement structurés le long du génome (réplication /
recombinaison)

F. Picard, 41/55



Meiose et reproduction sexuée

e L'information génétique
transmise par les gametes

(haploides) D e /70\
e L'état diploide est restauré au égg ) — Eg gg \//gg\;
. . \,/ LAt &
moment de la fécondation par la

fusion des gameétes .
b

e Parents homozygotes produiront [ [ /@@\
un seul type de gametes, ( g gﬁ/ \mg\ 33 ﬁg/ B g
e Parents hétérozygotes I — / \
produiront deux types de
gametes

F. Picard, 42/55



Meiose et recombinaison

Closed chromatin

l Predms, other genes?

e Les deux chromosomes W
homologues sont cGte a cote

} o mttonty sr0n @

(alignement des loci)

e Chaque chromatide est
dupliquée (4 chromatides
forment une tétrade)

e Attachement entre chromatides
(plutdt loin du centromere)

Secor

DSBR (mostly COs,

o Crossing over permet d’échanger o N\ N
des morceaux de chromatides

T T 1]

© or Neo Neo

Nature Reviews | Genetics
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Recombinaison et liaison

o Le crossing over modifie les Meiosis /|,
combinaisons d'alleles présentes gl T—
. MEIOSIS | replicate.
sur chaque chromatide i)y
e On obtient des gamétes ! dnmoonsoaren
recombinants ou non Wz

Homologues undergo
crossing over.

X+
Homologous pairs divide.

Daughter cells have single
MEIOSIS 11 ‘k// \i\‘ chromosomes.

Sister chromatids separate.

7 \ I l / ) \ \ | Gametes havesingle chromosomes

and are genetically different than parents

recombinants

e La transmission des loci ne se
fait pas indépendamment les
uns des autres

|
Certains SNPs peuvent étre transmis conjointement avec d'autres
marqueurs, et on dit dans ce cas qu'ils sont liés.
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Séquences : o ] N Structure Intégration

Déséquilibre de liaison (LD)

e Le LD existe lorsque la
probabilité d'observer un couple ' :
d’alleles sur un chromosome
n'est pas égale au produit des T

Haplotype2 TTGATTGCGCAACAGTAATA

TTCGGGGTC.... AGTCGACCO. ...
. TTCGAGGTC.... AGTCA ACCG....
. TTCGGGGTC.... AGTCAACCG....
LTTCGGGGTC.... AGTCIACCO....

probabilités e :

Tag SNPs S
e Tag St 2 £
b )

e Le taux de recombinaison étant
hétérogene le long du génome, il
existe des blocs de génome qui EEEEEE——————
sont en désequilibre L'essentiel de I'information
concernant le motif de variation

génétique au sein d'un bloc peut se

résumer par un sous ensemble de loci

o || existe des blocs entiers qui
sont transmis de générations en
générations
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Le Fused Lasso

o Cette stratégie consiste a structurer la pénalisation, en prenant en
compte une information a priori

e Dans le cas des SNPs, on peut prendre en compte I'ordre le long du
génome

o Le cadre général est toujours la régression pénalisée:

B= Argﬁmax (log L(Y; B) — pen(B))

e La pénalité contient deux termes :

p p
pen(8) = A1 Y _ 1Bl + X2 Y 18j-1 — Bl
j=1 j=2

F. Picard, 46/55



Fused Lasso et prédiction

e Y; € {cancer, no-cancer} avec la
probabilité conditionnelle 7(x;)

e Xx; le génotype du patient i

e (B1,...B5) sont les log
odd-ratios d'étre malade

(xi) LN
log (17r7r(x,)> = ﬁo+§ Bj xij

Des loci adjacents sont supposés partager des effets similaires sur la
probabilité d'étre malade

F. Picard, 47/55
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Intégration

Une vision intégrée des phénomenes moléculaires

e Les phénomeénes moléculaires
sont envisagés dans leur
ensemble

e La vision multivariée est
désormais I'approche privilégiée

e La tiche est désormais
d'intégrer différents types de
données

]
Apres avoir étudié séparemment plusieurs phénomenes moléculaires, on
cherche désormais a les combiner
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Intégration

Les réseaux et la biologie des systémes

e Suite a I'émergence des réseaux
sociaux et |'essor d'internet

o Les données sont constituées
d’'agents dont les interactions
permettent le fonctionnement
d'un systeme

e Les technologies a haut débit
ont permis de collecter des
ensembles de données sur le
génome, transcriptome,
régulome, métabolome ...

L'avenement de la science de la
complexitude !
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Intégration

Les réseaux de régulation

X = (X1,..X"), n réplicats des
expressions de p genes

On peut commencer par inférer
le réseau de co-expression

Modele gaussien graphique
X~ N(0,X)
On s'intéresse aux corrélations - .
partielles:

|
Un terme de pénalité permet
d’'obtenir des réseaux parcimonieux

Xi LX{X_qip} e T3t =0
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Séquences Association Expression Structure Intégration

Les réseaux comme information pour sélectionner des
genes discriminants

e On connait désormais certains
des liens entre I'expression de
différents genes

e On peut utiliser un graphe
G = (V, E) qui décrit les
connections entre génes

e G peut étre utilisé comme
information a priori pour la
sélection

pen(B) =M1 > 1B+ X2 > 18— Bl

Jjev (j,k)eE
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Séquences ression Structure Intégration

Sparse CCA pour l'intégration de données

e Considérons X; € R™P1 |a matrice des expressions de p; geénes, et
X, € R™P2 |a matrice des nombre de copies des génes

o L'objectif est de rechercher des combinaisons linéaires de X; et X,
qui sont corrélées entre elles:

max {wlTXITXQW2} , avec | Xiwy |2 = [ Xows|? = 1
Wi1,W2

e Dans ce cas on peut introduire des contraintes supplémentaires:
P1
pen(w) = AV D Il
j=1
P2 p2
pen(wy) = AP > lwayl + Y D Iwaj—woi
Jj=1 Jj=1
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Séquences 5 o Xp N Structure on Conclusions

Un besoin croissant en méthodologie

e Le domaine de la génomique a connu une explosion de la masse de
données générées en 15 ans

o Les phénoménes moléculaires sont désormais envisagés genome-wide
a I'échelle des populations

e La modélisation de la variabilité inter-individuelle devient centrale

e Les données génomiques ont permis de décrire plus en détail la
complexité des phénomeénes moléculaires (médecine personalisée ?)

e Point de vue statistique: méthodes pénalisées pour I'analyse des
données génomiques

e Enjeu de la grande dimension qui dépasse la génomique (image,
réseaux, physique, ...)
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