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Summary

In the framework of case-control studies many different test statistics are available to measure the association of a

marker with a given disease. Nevertheless, choosing one particular statistic can lead to very different conclusions. In

the absence of a consensus for this choice, a tempting option is to evaluate the power of these different statistics prior

to make any decision. We review the available methods dedicated to power computation and assess their respective

reliability in treating a wide range of tests on a wide range of alternative models.

Considering Monte-Carlo, non-central chi-square and Delta-Method estimates, we evaluate empirical, asymp-

totic and numerical approaches. Additionally we introduce the use of the Delta-Method, extended to order 2,

intended to provide better results than the traditional order-1 Delta-Method. Supplementary data can be found at:

http://stat.genopole.cnrs.fr/software/dm2.
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Introduction

Case-control association studies are considered to be the

simplest framework to help elucidate the genetic basis

of complex diseases (Risch, 2000). Even if they have

some weaknesses with ragard to potential confounding

factors such as population stratification, they remain an

important tool in genetical epidemiology and are of-

ten preferred to family-based studies (Zhao, 2000) due

to the availability of data. Such an approach involves

unrelated individuals split into cases, who are diagnosed

with the disease of interest, and unaffected controls. This

merely relies on the assumption that disease-related ge-

netic determinants should accumulate among cases.

Tests of association are used as a first step in the anal-

ysis process. Various tests are proposed based on either
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genotypes (Table 1) such as the genotypic, Hardy-

Weinberg equilibrium or Cochran-Armitage tests, or

alleles such as the allelic test.

Since different single statistics can be used to test for

association, another strategy is to combine them via

meta-statistics with the hope of gaining power.

If they aim to establish an association between markers

and disease, each test has a slightly different null hypoth-

esis (H 0) and hence a different efficiency with respect to

the underlying hypothesis. One way to compare them is

to assess their power (π ), defined as the ability of a test to

reject the null hypothesis when the alternative hypoth-

esis (H 1) is true. Power studies require the distribution

of statistics under H 1.

This article reviews and discusses the most com-

monly used mathematical frameworks to approximate

the H 1 distribution (and hence to compute π ) in the

context of genetic association studies. Our study in-

cludes two popular approaches. The first is empiri-

cal and based on Monte-Carlo simulations under the

alternative hypothesis. The second is based on the
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Table 1 The genotypic contingency table

aa aA AA total

Diseased D0 D1 D2 n D

Control C0 C1 C2 n C

Total n0 n1 n2 n

asymptotic non-central chi-square distribution of the

statistics under H 1. We compare these two approaches

with the Delta-method with emphasis on its extension

to order 2. As expected, non-central chi-square approx-

imations appear to be very reliable (whenever available),

while the order-1 Delta-Method is not. To treat non-

explicit cases (combinations of statistics, for instance) for

which computationally expensive Monte-Carlo simula-

tions are usually considered, we show that the order-2

Delta-Method approximations are sufficiently efficient

to represent a valid and cheaper alternative.

Method

Testing for association

Let us denote by x a case-control sample that is a re-

alisation of the random variable X , and which can be

represented by a genotypic contingency table (Table 1).

To establish an association we consider a null hypothesis

(H 0) used to test a particular distribution of the ob-

servations. To do so we consider a statistic defined as a

function of these observations: S = f (X), and carefully

chosen such that S grows when H 0 is less likely. Using

the distribution of S under H 0, we can find a threshold

(t α) such as α = PH0
(S ≥ tα), where level α can be set

to 5% for example.

Computing power

Using the distribution of S under an alternative associ-

ation hypothesis H 1, we can compute the power π (α)

of the test such that: π (α) = PH1
(S ≥ tα). To calculate

π (α), the first step is to define a genetic model as well

as the null and alternative hypotheses.

Genetic Model

Consider a bi-allelic disease susceptibility locus (DSL)

with A being the susceptibility allele and a the other, p

the frequency of allele A, and r 0, r 1 and r2 the genotype

frequencies in the general population. Assuming that the

Hardy-Weinberg equilibrium (HWE) holds in the pop-

ulation, genotypic frequencies reduce to r 2 = p2, r 1 =
2p (1 − p ) and r 0 = (1 − p )2. Now we introduce the

prevalence of the disease (K p ), and penetrances ( f i ) as-

sociated with each genotype (i). Considering the relative

risks (RRi ) such that RRi = f i
f0

for i = 1 or 2, we define

the four main modes of inheritance (MOI) correspond-

ing to the modes of action of the DSL on the disease:

recessive (RR1 = 1), multiplicative (RR1 =
√

RR2),

additive (RR1 = RR2+1
2

) and dominant (RR1 = RR2).

Considering these parameters, we can easily de-

rive f 0 = K p/(r 0 + RR1.r 1 + RR2.r 2) and f i =
RRi . f0 for i = 1 or 2. With the further assumption of

an infinite population, the genotype distributions (D0,

D1, D2) in cases and (C0, C1, C2) in controls are multi-

nomial with parameters:

(D0, D1, D2) ∼ M
(

n D;
f0r 0

Kp

,
f1r 1

Kp

,
f2r 2

Kp

)
,

(C0, C1, C2) ∼

M
(

nC;
(1 − f0)r 0

1 − Kp

,
(1 − f1)r 1

1 − Kp

,
(1 − f2)r 2

1 − Kp

)
.

In such a context, H 0: {RR2 = 1} and H 1:

{RR2 �= 1}. Once the alternative hypothesis is ex-

plicit, power can be calculated using one of the fol-

lowing frameworks to approximate the distribution of

S under H 1.

Monte-Carlo estimation

As long as it is possible to generate a case-control sample

X =
{

D0 D1 D2

C0 C1 C2
. under H 1, it is very easy to estimate

the power. We first draw N samples denoting x(i ) the

i th sample. From this sample we get N statistics s (1), . . .,

s (N) from which we get the estimation of the power:

π̂ (α) =
�
{
s (i ) ≥ tα

}
N

.

This well-known method is often very easy to perform

and is consequently widely used, particularly in the field

of statistical genetics when alternative distributions are

hard to calculate analytically (Longmate, 2001). But such

an approach may generally require a lot of time to reach a

given level of precision. As π̂ is distributed according to

a binomial distribution, using the central limit theorem

2 Annals of Human Genetics (2006) C© 2006 The Authors
Journal compilation C© 2006 University College London



Computing power in case-control association studies through the use of quadratic approximations: application to meta-statistics

we find that π̂ ∼ N (π, π (1 − π )/N), which gives the

following 95% confidence interval:[
π̂ − 1.96

√
π̂ (1 − π̂ )√

N
; π̂ + 1.96

√
π̂ (1 − π̂ )√

N

]
.

Consequently the precision of the power estimate in-

creases with speed 1/
√

N. One could remark that the

same method can be used to estimate the threshold of

tests involving statistics for which the distribution under

H 0 is not easily available (e.g. meta-statistics).

Asymptotic non-centrality parameter

Mitra (1958) demonstrated that, under H 1, the asymp-

totic distribution of a chi-square frequency test applied

to a 2 × c contingency table follows a non-central chi-

square distribution χ ′2(k, λ), where k is the degree of

freedom and λ the non-centrality parameter, such that

λ = N1N2 ×
c∑

j=1

(p1 j − p2 j )
2

N1 p1 j + N2 p2 j

,

with p i j the frequency of case ij and N1, N2 the total

counts of the first and second row. Mitra derived the

asymptotic power for the test:

π (α) →∞ 1 − χ ′2
1− tα

(k, λ).

Given the expression of the non-centrality parameter,

this approach can be adapted to any statistic following

a chi-square distribution under H 0 (see below for the

particular case of the trend test) and is appropriate when

sample sizes are large enough. It has recently been pre-

sented as an appealing and fast way to approximate power

in association studies (Sham et al. 2000; Gordon et al.

2002; Kang et al. 2004).

Delta-Method

The Delta-Method is used to approximate the distribu-

tion of S with X . The multinomial distribution of X

(derived from the genetic model) is asymptotically dis-

tributed according to a Gaussian distribution N (M, �).

Using an order-1 Taylor development of S = f (X)

around M we hence approximate S by:

S � f (M) + t (X − M) × ∇ f (M),

where t is the transpose operator and ∇ f is the gradient

of f . This 1-order development allows us to approxi-

mate the distribution of S by a Gaussian distribution

N (m , σ 2), with m = f (M) and σ 2 =t∇ f (M) × � ×
∇ f (M). Then we have:

π (α) →∞ 1 − 	

(
tα − m

σ

)
where 	 is the cumulative distribution function (CDF)

of a Gaussian variable with zero mean and a variance of

one. Of course, the closer the distribution under H 1 is

to a Gaussian distribution, the better will be this 1-order

approximation.

For cases where the Gaussian distribution of the statis-

tic under H 1 is not realistic, we propose to use a order-

2 Taylor expansion around M . We hence get a more

precise approximation based on the distribution of a

quadratic form in normal variables (QFNV):

S � f (M) + t (X − M) × ∇ f (M)

+
1

2
t (X − M) × ∇ 2 f (M) × (X − M),

where ∇ 2 f is the Hessian of f .

In the case of the first order development, the com-

putation of power only requires evaluating the CDF

of a normal distribution. With the second order de-

velopment, however, the distribution of S is approxi-

mated by a combination of chi-squares and the CDF

is not straighforward to derive. Technical details can

be found in Appendix 1 and derivations of the dis-

tribution for the statistics considered are available at:

http://stat.genopole.cnrs.fr/software/dm2.

Application

Statistics considered

Here we consider four statistics.

(i) The genotypic test compares genotypic frequencies

between affected and unaffected subjects by using

the Pearson’s chi-square statistic:

SG =
2∑

i=0

(
Di −

n D × ni

n

)2

n D×ni

n

+

(
Ci −

nC × ni

n

)2

nC×ni

n

H̃0
χ 2(2),
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From the formula given in (2.2.3) and the param-

eters of the genetic model (2.2.1), we can derive

the non-centrality parameter for this statistic:

λG = n DnC ×
2∑

i=0

(
f i r i

Kp
− (1 − f i )r i

1 − Kp

)2

n D
fi r i

Kp
+ nC

(1− f i )r i

1−Kp

and SGH̃1
χ 2(2, λG)

(ii) Another test based on genotypes is the Cochran-

Armitage test for trends (Armitage, 1995). It measures

a linear trend in proportions weighted by a dose

effect score xi associated to each column with

xi corresponding to the number of susceptibility

allele:

ST =
n. [n.(D1 + 2D2) − n D.(n1 + 2n2)]

2

n DnC. [n.(n1 + 4n2) − (n1 + 2n2)2] H̃0
χ 2(1).

For this particular case (trend test with three

categories) Gordon et al. (2005) derived the

expression of the non-centrality parameter, based

on previous work of Chapman & Nam (1968).

With our notation, it comes down to:

λT = n DnC

×

⎡⎢⎢⎣∑
xi

⎛⎝ (1 − f i )r i

1 − Kp
− f i r i

Kp

⎞⎠⎤⎥⎥⎦
2

∑
x2
i

⎛⎝n D

f i r i

Kp
+ nC

(1 − f i )r i

Kp

⎞⎠ −

⎡⎣∑
xi

⎛⎝n D
fi r i
Kp

+ nC
(1− f i )r i

Kp

⎞⎠⎤⎦2

n

andST H̃1
χ 2(1, λT)

Note that chi-square approximations are appro-

priate when sample sizes are in accordance with

Cochran’s condition (each expected cell count >

5 -, Cochran, 1952).

(iii) Another strategy is to combine simple statistics via

meta-statistics with the hope of gaining power.

Nevertheless, the actual null hypothesis tested is not

explicit and distributions of such statistics (under

H 0 or H 1) are not easy to assess out of Monte-Carlo

simulations. Our aim considering S� = SG + ST

and S
 = SG × ST is to assess the efficiency of

competing approaches to handle their power com-

putation.

Simulations

Simulations are performed using the susceptibility allele

frequency (p) as a factor of variation. All simulations are

considered for a prevalence K p = 0.05, n D = nC =
500 and the four MOIs (RR2 = 1.5). Each Monte-

Carlo estimate of power is carried out on the basis of

N = 10, 000 simulations, and is considered as a refer-

ence to compare with the other approaches. Using this

approach to compute a power π̂ , we get a 95% confi-

dence interval of radius 0.0196
√

π̂ (1 − π̂ ) centered on

π̂ . For example, this radius gives 0.588% for π̂ = 10%

(or 90%), 0.784% for π̂ = 20% (or 80%) and is always

smaller than 0.98% (case π̂ = 50%).

Results

Results concerning SG and ST are compiled in Fig-

ure 1. For the set of parameters considered, the additive

and multiplicative models give very close results so we

have displayed them only for the additive, recessive and

dominant models.

The non-central chi-square approach (NC) is fully

adapted to chi-square distributed statistics and hence

gives accurate estimates of power. As non-central chi-

square distributions are particular cases of QFNV, the

order-2 Delta-Method (DM2) unsurprisingly also gives

good results. By comparison, the order-1 Delta-Method

(DM1) underestimates the power in the two cases. This

underscores the fact that the Gaussian approximation

under H 1 made by this approach is not realistic. How-

ever it provides better estimates for the trend test than

for the genotypic test. This variation is due to the fact

that the distribution of ST under H 0 and H 1 is closer

to a Gaussian distribution - that requires this approach -

than SG. For instance, the expected value for the Wilk-

Shapiro statistic test for normality is 0.69 for one degree-

of-freedom chi-square distributed samples and 0.81 for

two degrees-of-freedom chi-square distributed ones.

In the literature it has been suggested that factors

such as the ratio of cases to controls, minor allele fre-

quency and total sample size affect the accuracy of

the analytic power calculations (Ji et al. 2005). We in-

vestigated such effects considering the genotypic and

trend tests for the four MOIs and values of (0.04, 0.2,

1), (0.2,0.3,0.4,0.5) and (40,200,1000) for the ratio,

the minor allele frequency and the total sample size,
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Figure 1 Power estimation (at the 5% significance level) for the trend and genotypic tests according to the allele frequency

(p).

respectively. Normalized absolute differences have been

computed for the NC and DM2 calculations (data not

shown). However, we did not observe any clear effect of

these factors on the accuracy of the analytic calculations.

Figure 2 presents the results for the two meta-statistics

(S� and S
). In these cases, the non-central chi-square

approach is not applicable. Even if S� is the sum of two

chi-square distributed statistics, SG and ST are not inde-

pendent and hence S� is not merely distributed accord-

ing to a three degrees-of-freedom chi-square distribu-

tion under H 0. DM1 still badly estimates power. DM2

is really efficient to treat S� . As previously underlined, a

linear combination of (dependent or not) chi-square dis-

tributed statistics is a QFNV which explains that DM2

works well on S� . Nevertheless DM2 does not man-

age to assess the power of S
. We can imagine that

such a product of chi-square distributed statistics would

have required the use of the Delta-Method to a higher
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Figure 2 Power estimation (at the 5% significance level) for the meta-statistics according to the allele frequency (p).

order, for which the determination of the CDF would

have been numerically very expensive and unrealistic in

practice.

In terms of comparison between the four strate-

gies considered, ST,SG,S� and S
 (Figure 3), meta-

statistics power estimates mainly lie between trend and

genotypic ones and hence do not clearly represent a

better alternative to single-statistics. However, they do

more than merely averaging power estimates of single

statistics, and hence can appear as a clever alternative to

combine efficiency according to the model.

Discussion

Studying power is an important tool in statistics to com-

pare the efficiency of different tests or to help design a

study. With the accumulation of new analysis meth-

ods that have recently arisen from the accumulation of
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Figure 3 Power comparison: this figure compares the power of the four statistics SG,ST,S� and S


according to the allele frequency (p). It is done for the additive, recessive and dominant models. Power is

computed by Monte-Carlo at the 5% significance level.

large-scale data, statistical genetics does not escape this

rule. In this article we focus on the computation of

power in the context of simple-marker analyzes via the

genotypic and trend statistics, as well as simple combi-

nations of them.

Easy to implement, Monte-Carlo simulations are of-

ten the preferred approach to compute power estima-

tions. Nevertheless they are computationally expensive

since the precision of the estimates is directly depen-

dent on the number of simulations performed. In par-

ticular the length of the confidence interval decreases

with 1/
√

N, and hence evolves quite slowly with N .

Computing power through the non-centrality param-

eter is logically well adapted for statistics distributed
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according to a chi-square distribution under H 0. The

order-1 Delta-Method is based on a Gaussian distribu-

tion of the statistic. As a result it is not efficient in the

situation considered here. In the literature approaches

based on the order-1 Delta-Method have been success-

fully developed (Slager & Schaid, 2001; Jackson et al.

2002) to compute accurate power approximations for

allelic and trend tests (Slager & Schaid, 2001; Jack-

son et al. 2002). The required Gaussian distributions of

the statistics were obtained by the authors considering

Z ∼ N (0, 1) such that (Z)2 = S instead of S directly

(as we have done here). This approach provides very

good power approximations. However, its application is

restrained to z-scores or by extension to 1 degree-of-

freedom chi-square distributed statistics. It is hence less

general than the non-central chi-square approach. To

go further, we introduce the use of the order-2 Delta-

Method. This approach provides good estimates and can

be used to treat simple statistics and linear combinations

of them, which is an advantage over other approaches.

Besides a less straightforward CDF evaluation, it repre-

sents much less computionally expensive alternative to

Monte-Carlo simulations, more general than the non-

central chi-square framework and more accurate than

the order-1 Delta-Method.

This work has been restricted to the study of the trend

and genotypic tests under alternatives that differ in the

susceptibility allele frequency and the MOI only. How-

ever, our conclusions can easily be extended to other

simple-marker tests (Hardy-Weinberg and allelic tests,

for instance) based on more complicated meta-statistics,

and applied to more elaborate alternative models taking,

for instance, the coefficient of consanguinity, linkage

disequilibrium and genotyping errors into account.

Even if they fail to provide greater power estimates

than single statistics, meta-statistics do not suffer from

substantial power loss when compared with the best sin-

gle statistic for each of the situations considered in this

work. We thus suggest that meta-statistics may provide

a useful means for combining such tests.

If they fail to provide better results than single-

statistics, meta-statistics do not present a sensible loss

of power compared to the best simple statistic in each

situation considered, and hence appear to be a clever

possible way to combine such tests.
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Appendix A: Quadratic Form in Normal
Variables

In this appendix we propose to recall the definition of

this distribution and explain how it is possible to com-

pute its cumulative distribution function (CDF).

Definition 1 If X ∼ N (μ, �) is a dimension d ≥ 1

(column) vector of normal variables we call

Q = A+ BX + X′CX

a quadratic form in normal variables (QFNV) of dimen-

sion d with parameters A ∈ R , B ∈ R (1,d ) and C ∈ R (d ,d )

and with μ ∈ R (d ,1) and � ∈ R (d ,d ) are mean and covari-

ance matrix of the normal variables.

In particular, a linear combination of (central or not,

independent or not) chi-square is a QFNV.

For non-degenerate parameters, it is possible to ex-

press a QFNV as a linear combination of indepen-

dent non-central chi-square distribution (Lu and King,

2002). Namely:

Proposition 2 For any QFNV Q with non-singular covari-

ance matrix � and matrix C, 1 ≤ n ≤ d , λ j ∈ R , d j ∈
N ∗ and ν j > 0 (for all 1 ≤ j ≤ n) such as

Q = K +
n∑

j=1

λ j χ j

where K ∈ R and χ j ∼ χ 2(d j , ν j ) are independent chi-

square variables with d j degrees of freedom and ν j non cen-

trality parameters.

Proof. We first factorize Q in

Q =
(

A− BC−1 B ′

4

)
︸ ︷︷ ︸

K

+
(

X +
C−1 B ′

2

)′
C

(
X +

C−1 B ′

2

)
︸ ︷︷ ︸

Y ′CY

where Y ∼ N (μ̃, �) with μ̃ = μ + C−1 B ′/2. We

consider then the linear transformation Z = �−1/2 Y

so Z ∼ N (�−1/2μ̃, I ) and

Q = K + Z′ �−1/2C
(
�1/2

)′︸ ︷︷ ︸
C̃

Z

We then consider the orthogonal matrix P of the

eigenvector of C̃ and denote by D = P ′C̃P the diag-

onal matrix of the corresponding eigenvalues. With W

= P−1 Y we get

Q = K + W′ DW

with W ∼ N (P−1�−1/2μ̃, I ). For 1 ≤ j ≤n, we de-

note by λ j the (distinct) eigenvalue and by d j their

orders of multiplicity (one should note that they are

also those of C� or �C). Finally, we consider ν j =∑d j

q=1 γ 2
j,q where γ j,q are the elements of P−1�−1/2μ̃

corresponding to the same eigenvalue λ j and the result

is established.

From now, we hence focus of the numerical CDF

evaluation of

Q =
n∑

j=1

λ j χ
2(d j , ν j )

a linear combination of independent and non central

chi-square distributions.

A numerical inversion of the characteristic function

is then possible, resulting through truncation and trape-

zoidal integration (Davies, 1973; Davies, 1980) in the

following formula

P(Q < c ) =
1

2
−

M∑
m=0

(
sin{θc [(m + 0.5)�]}

π (m + 0.5)γ [(m + 0.5)�]

)
where � is the (small) step interval, M the (large) num-

ber of step intervals, and U = (M + 0.5)δ the truncation

value. The functions θ c and γ are given by

θc (u) =
n∑

j=1

[
d j

2
tan−1(2uλ j ) + ν j uλ j (1 + 4u2λ2

j )
−1

]
− c u

and

γ (u) =
n∏

j=1

(1 + 4u2λ2
j )

d j /4 exp

(
2u2

n∑
j=1

ν j λ
2
j

1 + 4u2λ2
j

)
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The numerical evaluation of the CDF using this for-

mula leads to an error of truncation εT depending on

the truncation bound U , and to an error of integration

ε I depending on the step interval �. There exist many

concurrent ways to choose both these values and Lu &

King (2002) provide a complete review of them.
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