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Introduction

Some definitions about high throughput genomics

e Based on automated techniques

¢ View molecular processes
globally

o Gene expression and regulation,
copy number variations

e Changed the scale of thinking of
molecular biologists

e Complements the locus-specific
or candidate approach

e -omics view of biological
processes '/
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Introduction Joint segmentation Functional Regression Dimension reduction Poisson Reg.

High throughput genomics and technological developments

o Deeply connected to the
technological developments
e Two major technologies:

~1990 The microarray technology
(DNA hybridization and
fluorescence)

~2000 Next Generation Sequencing
technologies (parallelization of
short reads sequencing)

e Developments of storage
capacities and computing power
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Introduction

Costs Drops and high availability of genomic data

Cost per Genome

e Cost drop of genome-scale data
o Access data:
- with higher coverage
- for more individuals
¢ Quantification of biological
variability at the population
genomics scale

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
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Introduction

Automated data production and automated analysis

Statistics is only one piece of the Bioinformatics puzzle

The purpose of statistical research applied to genomics:

@ extract meaningful information by developping methods (if needed !)
@ share statistical concepts (multiple testing, overfitting)

Statistics is also an elvolving science

The challenge lies in the sharing of modern statistical concepts for
modern Genomics
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Introduction

Research Directions

e My personal direction has been to develop statistical models that
were accounting for particular data structures

e Functional models for data that are spatially organized (1D) along

the genome
e Random graph models for data that are in the form of networks

e What are the specific statistical questions that are raised by these
structures ?
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Introduction

Organization of the presentation

@ Segmentation models for multisample copy number variations
e computational issues
® Functional Regression models in the Gaussian case

e curve clustering
e functional mixed models
e dimension reduction

© Functional Regression models in the Poisson case
o dimension reduction and calibration
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Joint segmentation

Outline

@® Copy Number Variations and Joint Segmentation
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Joint segmentation

Copy Number variations and mapped genomic data

Amplification Deletion
e Gene copy number is highly
regulated (humans are diploid)
o Additional or deleted
chromosomes cause syndromes —> —>
o Thechallenge: detect [l B W~ I
sub-chromosomal aberrations | [ ..

e Change the resolution (from
MegaBases to KiloBases)
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Joint segmentation

Array-based Comparative Genomic Hybridization (CGH)

Cancer Cells healthy cells
@ @
e Compare two genomes by .@ .@
hybridization (healthy / cancer) = ==
e Use glass-fixed probes with H g'gcggaé H
mapped coordinates 00000
e et . —-|80828 -
° Mea.sure relatl\{e DNA quantities RN
at different loci on the genome
. . Excess Healthy
e genome-wide blind search for 3 eeo o
; F|lo0 0
few kbs aberrations Balanced Excess Cancer
ee

genomic coordinates

|
Genome wide investigation of copy number variations in populations
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Joint segmentation

How to read CGH profiles

e Data are mapped on their genomic coordinates
e The signal Y; is a log, ratio of fluorescence mapped onto the

genome

Chromosome §
Genomic Position

05 :

corey

oTheoretical reference

Log2Ratio

o
<

Amplified
Region

Deleted Region

The signal is expected to be piece-wise constant
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Joint segmentation

Tracking Genomic Aberrations in Cancer Genomes

Normal diploid genome

HCT116
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Joint segmentation

Segmentation models: definitions and notations

e We consider the regression model:
Yt = [,L(t) + Et

e Suppose there exists K + 1 change-points ty < ... < tx such that y

is constant between two changes and different from a change to
another.

o T) =|tk_1, tx]: interval of stationarity, i, the mean of the signal
between two changes:

Vte Ty, Ye=pk+E:, Er ~N(0,0?).
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Joint segmentation

Estimation framework

Chromosome §
nnnnnnnnnnnnnn

Ve ~ N, 0?)
e The parameters: S

T:{to,...,tK},
w={p1,...,ux} and o2
e K is fixed in a first step

e When K and T are known the
MS estimator of u is: Main challenge : estimation of T

Log2Ratio

! mmm b llll-lllll III :

1 i T=oarg m_ljn {RSSKk(T, )}

RSSk (T, ) = Z Z (Ye—rik)?

k=1t=t;_,+1
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Joint segmentation

A computational challenge to find the breaks

Partition n data points into K segments: complexity O(n¥).

Dynamic Programming reduces the complexity to O(Kn?)

Application of the shortest path algorithm
RSSk(7,j) cost of the path connecting i to j in k segments:

J

VO<i<j<n, RSSi(ij) = D (ve— %)
t=i+1
VI<k<K—1 RSSa(1,j) = min {RSSk(1,h) +RSSi(h+1.))}
SNyJ

Provides the optimal position of breakpoints T
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Introduction Joint segmentation Functional Dimension reduction

MultiSample Segmentation

e Copy number variations are now
studied at the population level

LogzRatio

N

e The challenge is to account for Snapshot e T
. . One chromosome
genomic order and for the size one individual

of the dataset.

e The resolution as increased and
signals are n ~ 500,000 long

e Joint segmentation allowing
patient-specific breaks while
sharing common noise and
biases.

| individuals

n~ 500,000 point ;

A statistical tour of genomic data 17/44



Joint segmentation

Joint segmentation model for multiple samples*

e Y;(t): the signal for individual i = 1,.../ with segments {Z}}

Vt € IL, Y,(t) = ,U«i(t) +€i(t), 6,'(1‘) ~ N(0,0’z).

pi(t) is also piece-wise constant with k; segments (>, ki = K)

o ;= [, .., pi) is the mean signal for patient /.

e T; specific (unknown) incidence matrix of the breaks
Yi=Tip; +E;
e |f common biases are shared:

Yi=Tiu; + XiB +E;

*Picard et al. (2011a, 2011b), Biostatistics, CSDA
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Joint segmentation

Segmentation of multiple arrays

e The RSS is additive wrt the individuals and to the number of
segments.

-~

ki

RSSk(T, 1) = > Y RSS(T;, ;)

i=1 k=1

e Global Dyn. Prog. O(Kn?I?) complexity.
e But there is a constraint : ) . k; = K, (K fixed) thus:

k1+ +kl I7 i

min RSSk (T, = min min RSS]
T k(T, p) {Z k )}
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Joint segmentation

Optimal joint segmentation*

e We propose a two-step Dynamic Programming for joint
segmentation

e Optimal segmentation for each individucal and best segments
allocation

e Provide cghseg R package

n (observations/profile) 20,000 100, 000
I (number of profiles) | 256 512 1024 | 256 512 1024
Average CPU time (min) | 6 15 54 | 31 70 253
Memory usage (Gb) 04 08 18 |17 37 79

*Rigaill et al. (2014) Comp. Int. Meth. for Bioinfo. and Biostat.
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Functional Regression

Outline

© Functional Models for multisample analysis
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Introduction Joint entation Functional Regression Dimension reduction

Molecular classification of diseases

«d molecular profile

histology profile

o Link molecular features to
patient outcome

o Task: clustering (subgroups Y ESES SRR
discovery)

e Integrate the genomic
organization of the data

~— molecular profile
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Functional Regression

Accounting for inter-individual variability

variability of
signal levels I

o Variability of sampled individuals

- -
il

variability of
breaks position
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Functional Regression

Accounting for inter-individual variability

high variability of breaks position

o Variability of sampled individuals

o Signal levels and breaks position

are (highly) variable T
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Functional Regression

Accounting for inter-individual variability

o Variability of sampled individuals Average profile
o Signal levels and breaks position N /
are (highly) variable

e Focus on the shape of a shared ™ / -%

Inter-individual
profile + variations variations

Functional-based clustering models
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Functional Regression

Functional clustering model

e Cluster individuals on L unknown clusters based on functional
observations

e Suppose there exists hidden label variables
Cie ~ M(1,m1,...,7L)
e The mixture model becomes (given {(;y = 1}):
Yi(t) = pe(t) + Ei(2)

e Ly are approximated by wavelets

- Modelling curves with irregularities
- Computationaly efficiency
- Dimension Reduction
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Functional Regression

Definition of wavelets and wavelet coefficients

e Wavelets provide an orthonormal basis of L20 1 with a scaling
function ¢ and a mother wavelet 1 such that:

{djr(t), k=0,...,20 — Loy (t),j > jo, k=0,...,2 — 1}

e Any function Y € L[20’1] is then expressed in the form:

200 —1 21
Yi(t) = Z ok Piok(t) + Z Z d7 ik (t)
k=0 i>jo k=0

1
scaling and wavelet coefficients.

where ¢, = (Y], djpk) and d; = (Y], ¥jk) are the theorical
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Functional Regression

The DWT and empirical wavelet coefficients

Denote by W an orthogonal matrix of filters (wavelet specific),

The Discrete Wavelet Transform is given by

c.
W Y;(t)= |
[MXM][MSQ% [di]

(ci,d;) are empirical scaling and wavelet coefficients

Linear model in the coefficients domain (given {(iy = 1}):
WY(t) = Wp,(t)+ WE(t)
C; (87 2
= +¢€;, i ~N(0 ,ocl
] =[5 re - noming
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Functional Regression

Functional Clustering Mixed Models*

e Introduce inter-individual functional variability (given {(iy = 1}):
Yi(t) = pe(t) + Ui(t) + Ei(t), Ui(t) L Ei(t)

e U; is a Gaussian stochastic process with kernel Ky(e,t), that models
individual-specific changes

e In the coefficients domain, and given {(;y = 1}:
C; . (87 + Vi + e
d| |8 6;] "
Vi G, 0

o) = (o3 e))

*Giacofci et al. (2013) Biometrics
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Functional Regression

Application to array CGH data

e We applied this model on breast recovered molecular subtype
tumors data

o We retrieve biologically

o
O p
meaningful clusters g | \ U e

e First estimations of the
inter-individual variability

e We provide a R package for
curve-clustering

e PhD of M. Giacofci (co-Adv. S.
Lambert-Lacroix)

other
0

A statistical tour of genomic data 28/44



Dimension reduction

Outline

@ Dimension reduction for functional models
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Dimension reduction

Dimension Reduction

e One strength of wavelets is their
compression property &

o Few wavelet coefficients are =1
necessary to summarize the -
signal (spatial adaptivity) :

e The model is sparse in the
coefficients domain B
7k

scale

9987 65 43210
Ll

0 02 04 06 08 1
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Dimension reduction

Dimension Reduction

e One strength of wavelets is their
compression property &

o Few wavelet coefficients are =1
necessary to summarize the -
signal (spatial adaptivity) :

e The model is sparse in the
coefficients domain B
7k

|
How to perform simultaneous
clustering and thresholding (with
random effects)?

scale

9987 65 43210
Ll
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Dimension reduction

Dimension Reduction and for curve clustering

e Linear model in the coefficients domain (identity design matrix)
d= ,8( + e

e Restate the problem as a variable selection problem

e Equivalence between the lasso and soft thresholding (orthogonal
design):

Be(N) € arg r%in {Z Gie lldi = Byll* + Mlﬁelll}

e Estimated coefficients are of the form:

Bj(n) = sign(d ) (|l —A)
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Dimension reduction

Dimension Reduction for functional mixed models

Focus on the functional mixed model

Yi(t) = p(t) + Ui(t) + Ei(t), Ui(t) ~ N (0,K(e,t))

In the coefficients domain:

d=08+06;,+¢;, 6; ~N(0,Gp)

First theoretical results on the reconstruction properties of i *
What about the characterization of U;(t)?

*Giacofci et al. in prep
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Dimension reduction

Structure of the random effects variance

Average signal over 126 individuals (chr 9p)

U; is characterized by K(e,t)
The inter-individual variance 1
shows spatial heterogeneity

e Sparsity assumption for Gy

Variance of the residuals

e Assumption that Gy is diagonal:

Gy = diag (2_j"'yjzk)
Jjk
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Dimension reduction

Joint selection of fixed and variance coefficients

Mixed Linear model in high dimension:

(B3).30)) € argrgin { ~log £(ei 8.7,0%) + AslBl + 1 s}

Calibration issues (Ag, Ay, regularity of U;)

First oracle properties for ,@ and ¥

What are the reconstruction properties of the predicted random
effects ?

Ui(t) = E (Ui()] Yi(t))
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Outline

@ Functional Modelling of NGS data
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Next Generation Sequencing Data

DNA1 DNA2
X ?X
o Massive parallel sequencing of
DNA molecules cut
. . lify
e Can be used to quantify DNA in AmPIY
a Samp|e i—_:_ sequence 11:7
e Expression, copy numbers, = =
DNA-prot. interactions i i 3
o 3
e Focus on mapped data £ § B
DNAL DNA>
5X 3X
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Outline of the OriSeq project

Chromatin

o DNA replication: duplication of 1
molecule into 2 daughter
molecules

e The exact duplication of
mammalian genomes is strongly
controlled

e Spatial control (loci choice)

e Temporal control (firing timing)

= What are the (epi)genetic
determinants of these controls ?
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Mapping human replication origins: a technical challenge

Short Nascent Strand (SNS)

‘ O\

e “bubbles” are small and instable
(last only minutes by cycle)

e no clear consensus sequence

(Iike in S Cerevisiae) Extraction & Purification
o their specification is associated A\ ! -W"”'"lf
with both DNA sequence and W/ {7 el
Ch romatl n Stru Ctu re Selection of 1.5-2kb SS fragments

lambda exonuclease Digestion

= Origin-Omics: SNS Sequencing
- gPCR analysis (local)
- DNA tiling arrays
- Sequencing (Ori-Seq)
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Sliding windows to detect Replication origins*

e Model reads occurrences and smoothed OriSeq profile

accumulation by Compound
msigniﬁcance

Poisson model
+ '\ 'threshold

e Detect significant enrichment by

sliding windows Pii..
o Calibrate the threshold on regions / =
using a FWER control : scanning window (2kb) _E

sequenced reads

P <mtax {Sn(t)} > x> <«

*Picard et al. (2014) PloS Genet.
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Introduction Joint segmentation Functional Regression Dimension reduction Poisson Reg.

Sliding windows to detect Replication origins*

e Model reads occurrences and Segment into Regions

. Homogeneous Coverage
accumulation by Compound
Poisson model / \
e Detect significant enrichment by
sliding windows

e Calibrate the threshold on regions IH

using a FWER control :
Thresholds Adapted to
local coverage

P <mtax {Sn(t)} > x> <«

*Picard et al. (2014) PloS Genet.
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Back to functional models

e Model sequencing data by functional Poisson regression
Yt’Xt ~ P (f(Xt)) 5

e Consider a functional dictionary with p elements {¢1, ..., pp}:
P
log £(x) =Y _ Bjepj(x)
j=1

e Selection can be performed by the lasso such that:

p
B € arg min —Iogﬁ(ﬂ)+2)\j|ﬁj]
BeRre =1
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Promising results on OriSeq*

e (\j); calibrated theoretically (concentration)
e PhD student S. lvanoff (co-adv. V. Rivoirard)

o

Scan-based
Ori

Number of reads
6

estimated intensity

T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25

Genomic Location (Mb)

*lvanoff et al. in prep
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Conclusions

Outline

@ Conclusions & Perspectives
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Conclusions

Functional models for genomics

e Flexible framework for modeling, computational efficiency, dimension
reduction

e Perspectives for the mixed functional model (array CGH data ?
other applications 7)

e Perspectives for the analysis of NGS data (variable coefficients
models)

e Perspectives for the analysis of 3D data
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