

Statistical Analysis of array CGH data

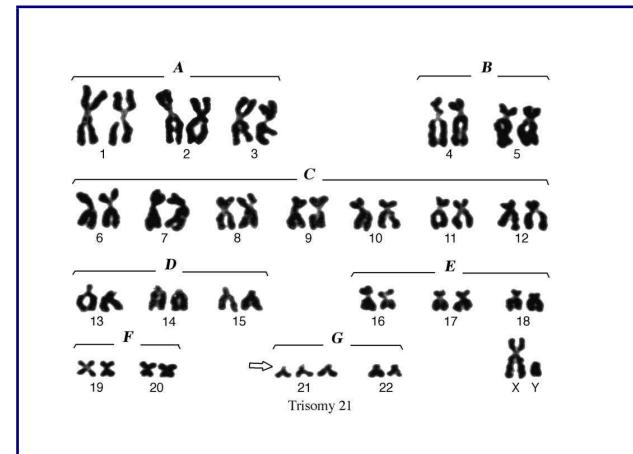
F. Picard

CNRS - Laboratoire Biométrie et Biologie Evolutive

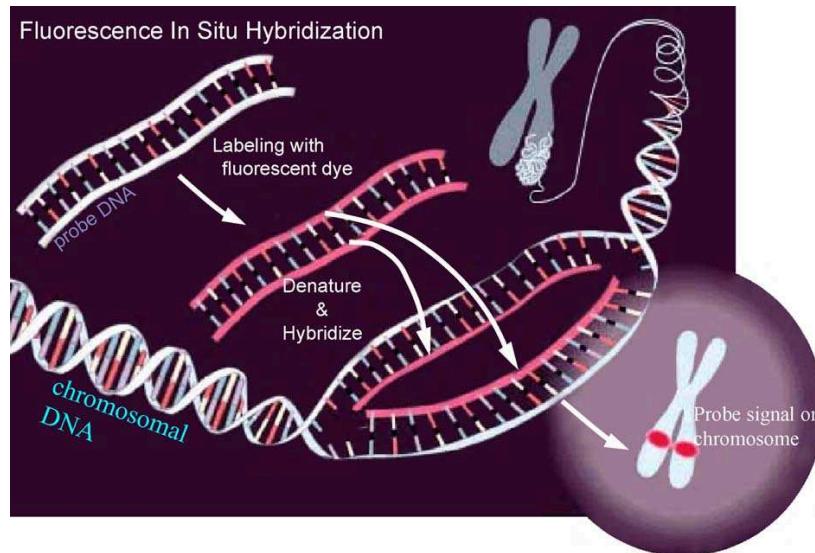
picard@biomserv.univ-lyon1.fr

FISH and molecular cytogenetics

- Aims at studying the structure function and evolution of chromosomes.
- 1956: determination of the number of chromosomes in humans.
- **Objectif:** link between chromosomal defects and human pathologies.
 - karyotype, spectral karyotyping
 - Fluorescence In Situ Hybridization (FISH),
multiplex FISH
 - Comparative Genomic Hybridization
(CGH), **array CGH**

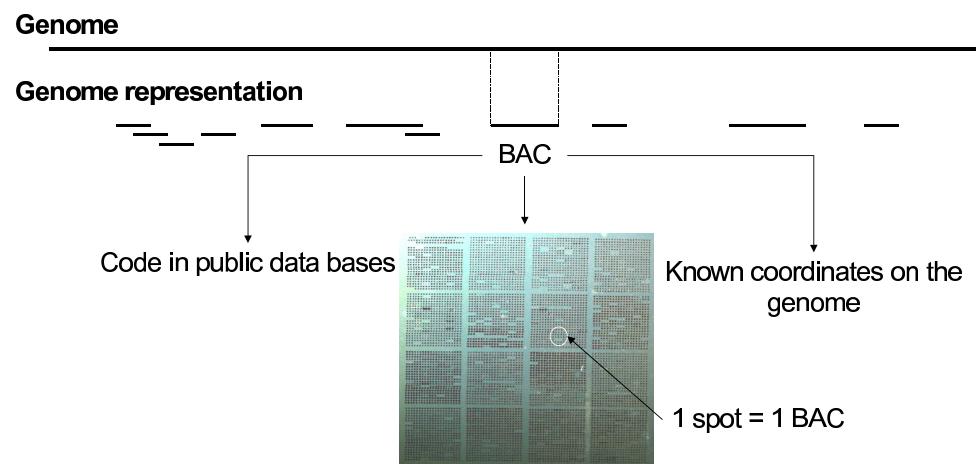


FISH and molecular cytogenetics

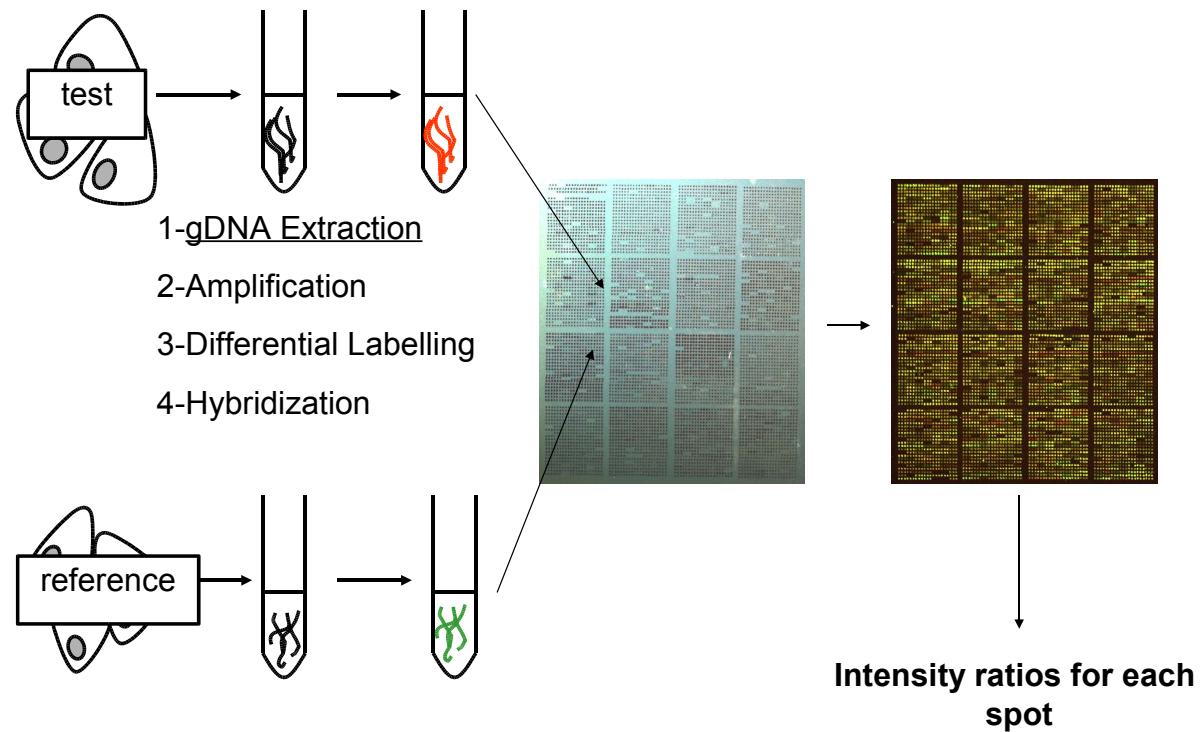


Smeets *et al.* (2004) [15]

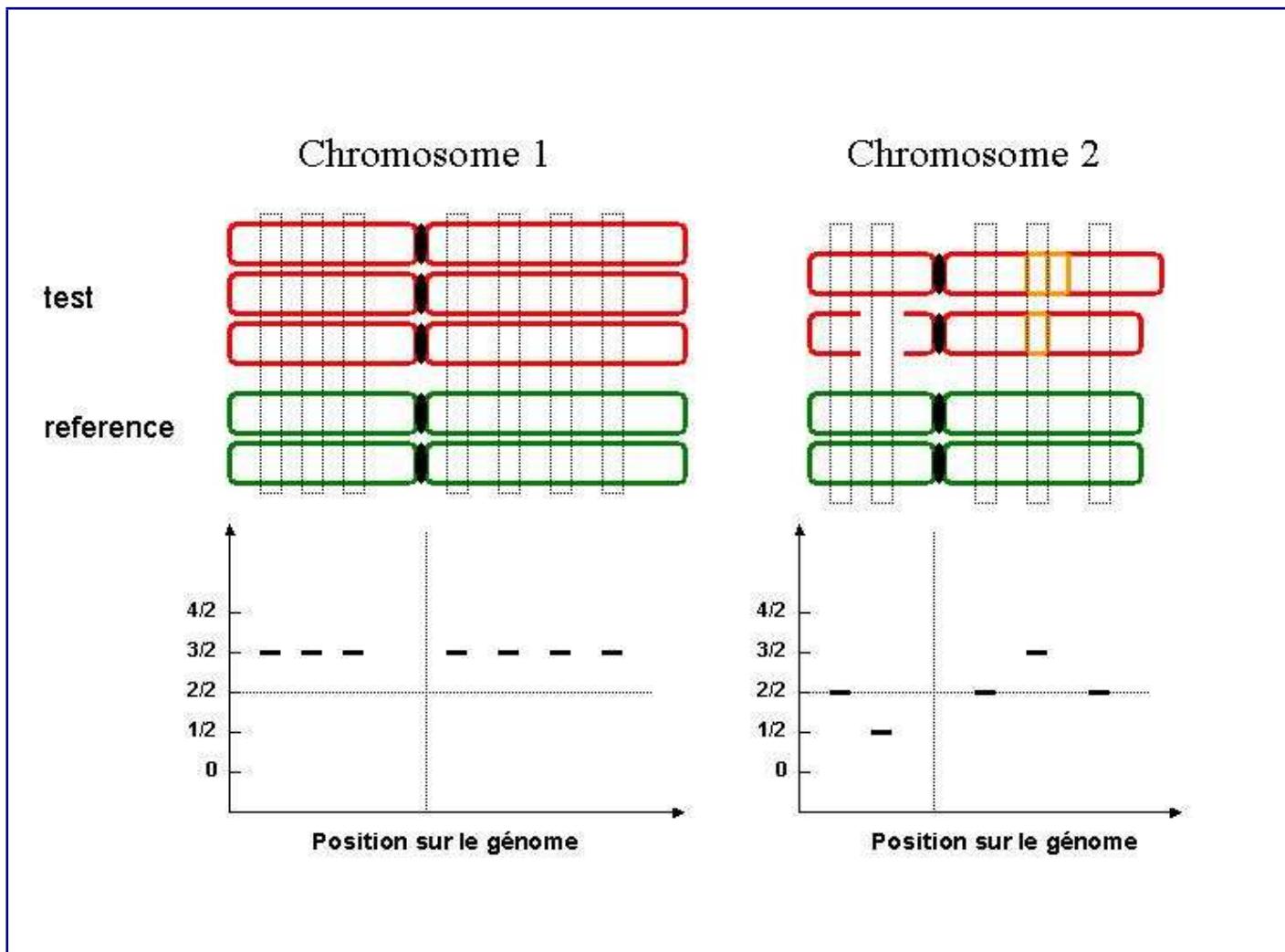
CGH microarrays



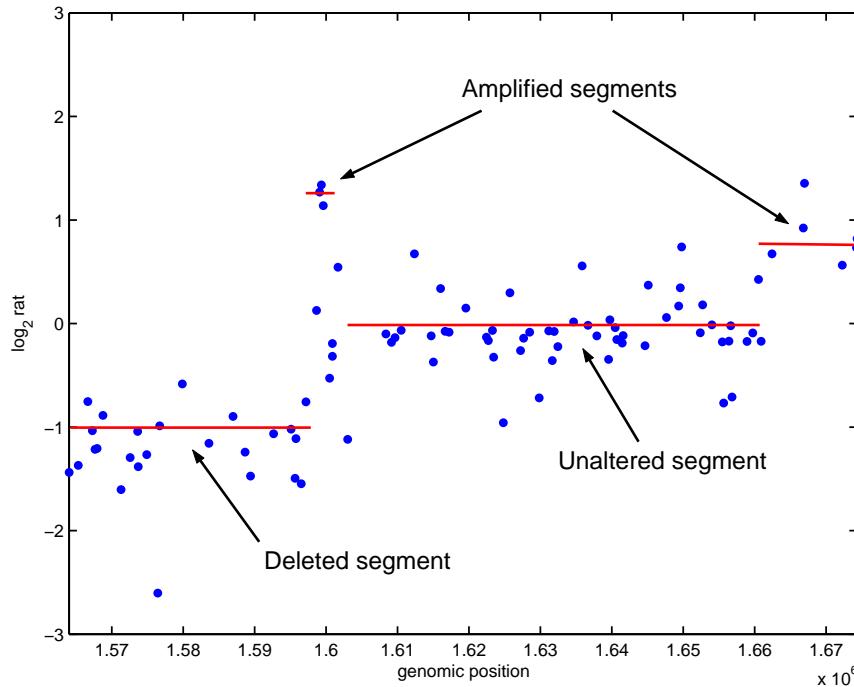
experimental protocole



A simplified view of CGH microarray data



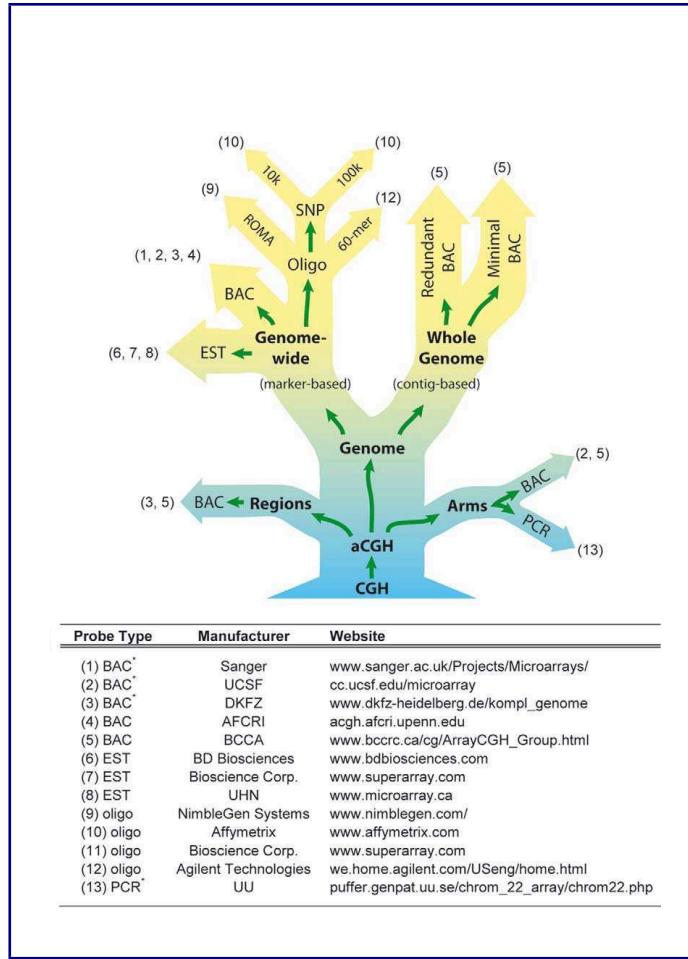
Interpreting a CGH profile



One dot on the graph represents

$$\log_2 \left\{ \frac{\# \text{ copies of BAC}(t) \text{ in the test genome}}{\# \text{ copies of BAC}(t) \text{ in the reference genome}} \right\}$$

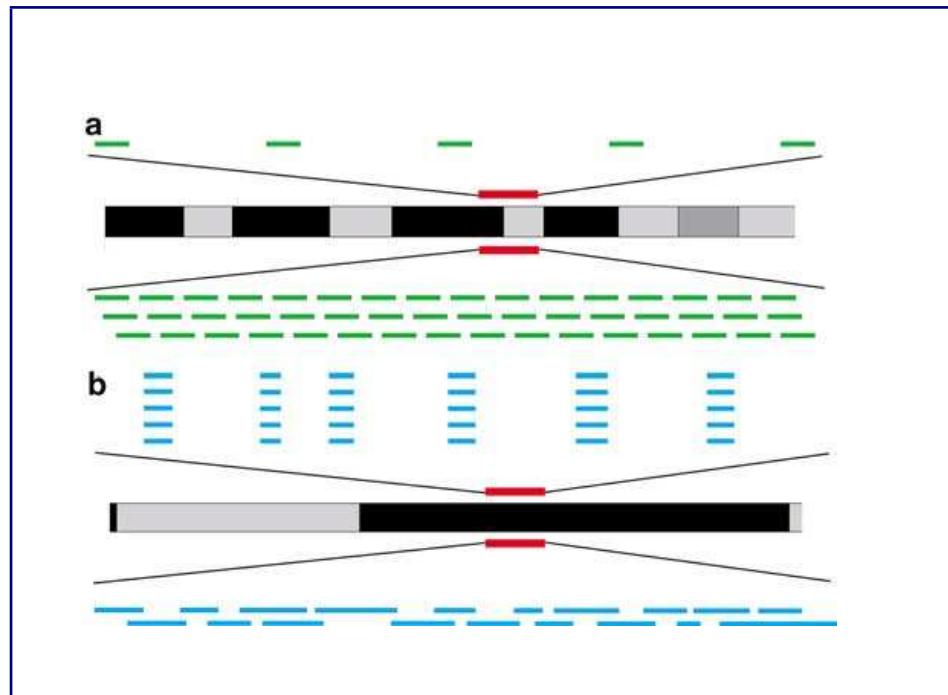
Diversity of array CGH



Davies *et al.* (2005)[2]

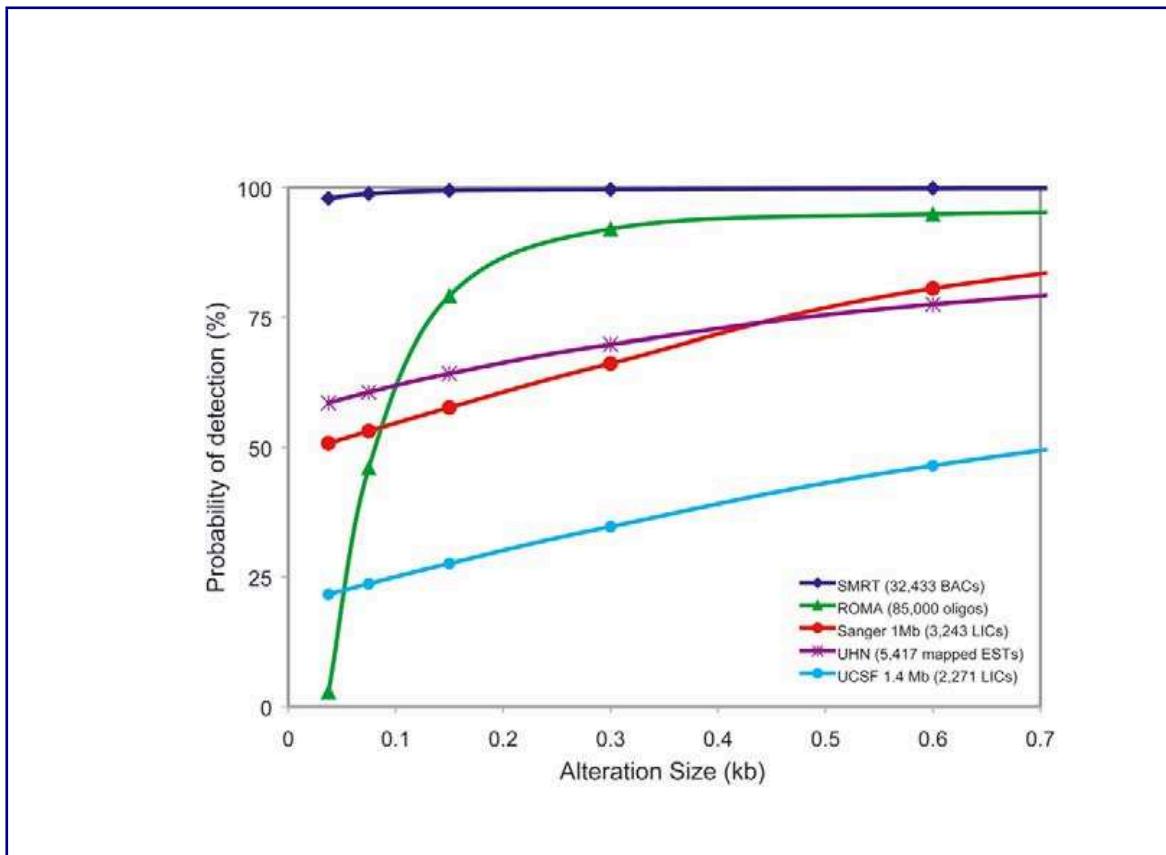
Tiling Microarrays

- a) marker based arrays
- b) tiling arrays : 32433 overlapping clones, whole genome coverage



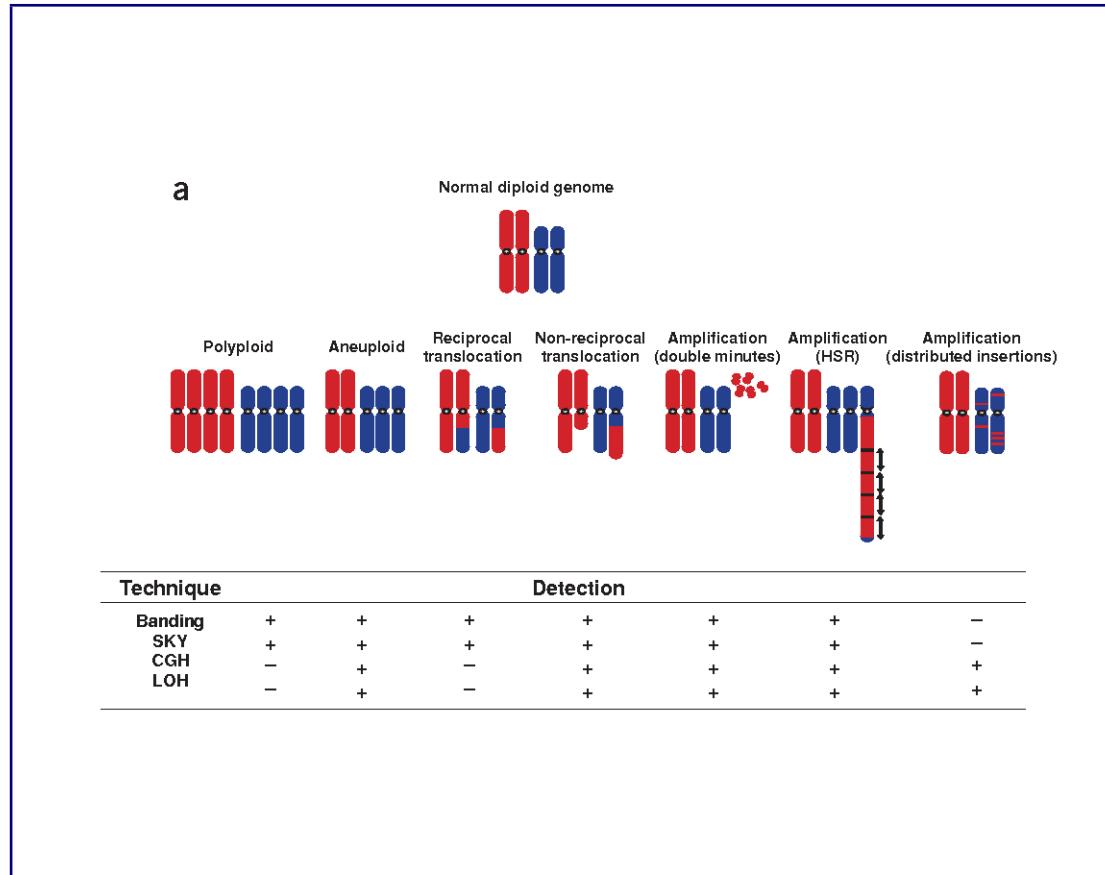
Lockwood *et al.* (2006) [9]

Performance



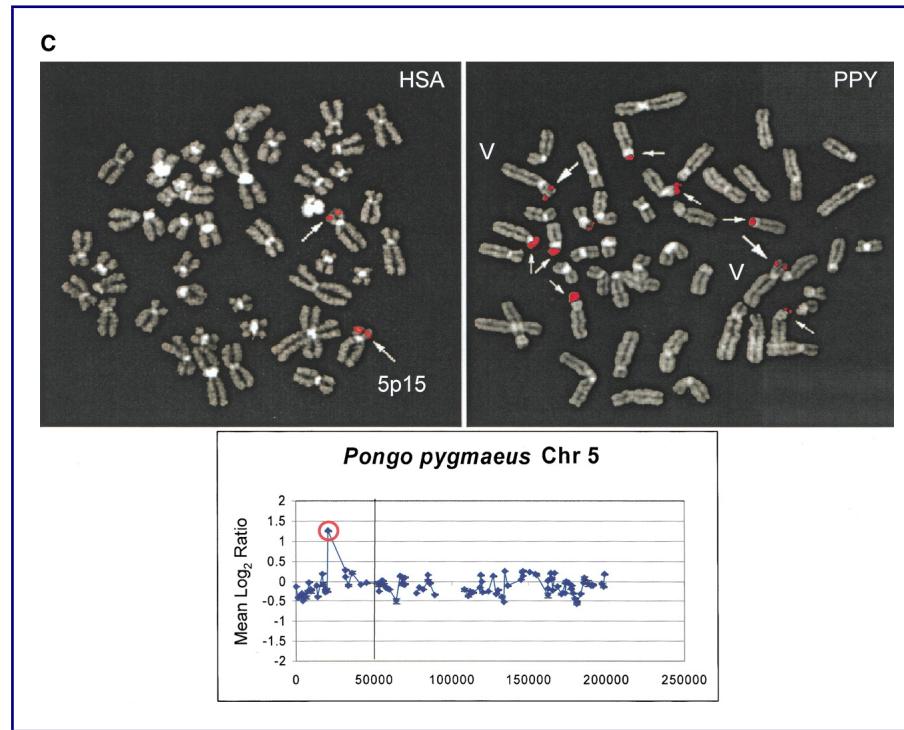
Davies *et al.* [2]

What can('t) be detected by array CGH ?



Albertson *et al.* [1]

Application of aCGH to genome comparison



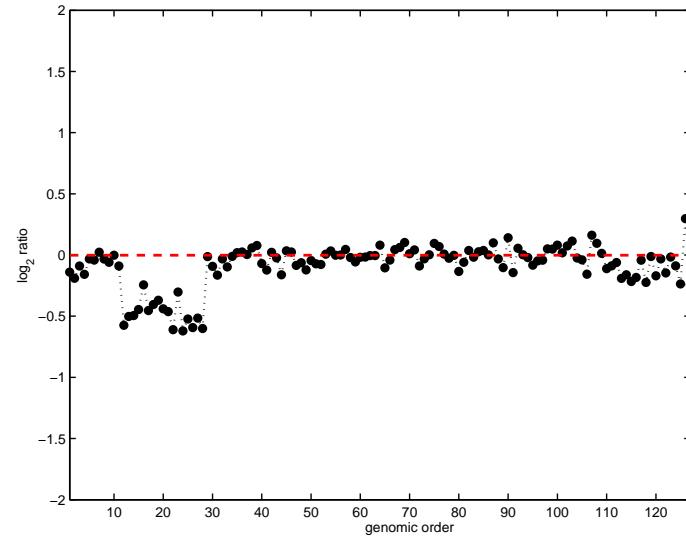
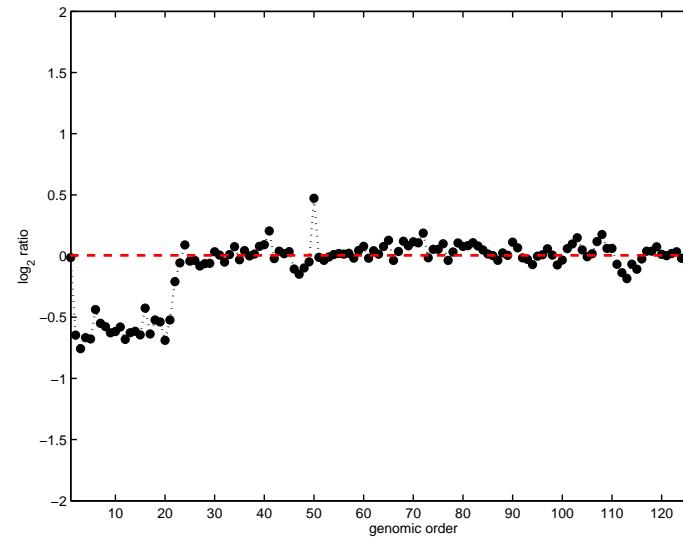
FISH validation of a duplication identified by array CGH (interphase and metaphase images). Interchromosomal duplication for an orangutan compared with 5p15 human locus. Locke *et al.* [8]

New applications in human genetics

Variation type	Definition	Frequency in the human genome
SNP	Single base pair variation found in > 1% of chromosomes in a given population	~ $10 \cdot 10^6$ SNPs in the human population
Ins./Del. Variants	Deletion or insertion of a segment of DNA. Includes small polymorphic changes and large chromosomal aberrations. Often called CNV when > 1kb	~ $1 \cdot 10^6$ Ins/Del polymorphism > 1bp
Microsatellite	Sequences containing variable numbers of 1-6bp repeats totaling < 200bp in length	> $1 \cdot 10^6$ microsat. in the human genome, accounting for ~ 3% of the sequence

Feuk *et al.* [4]

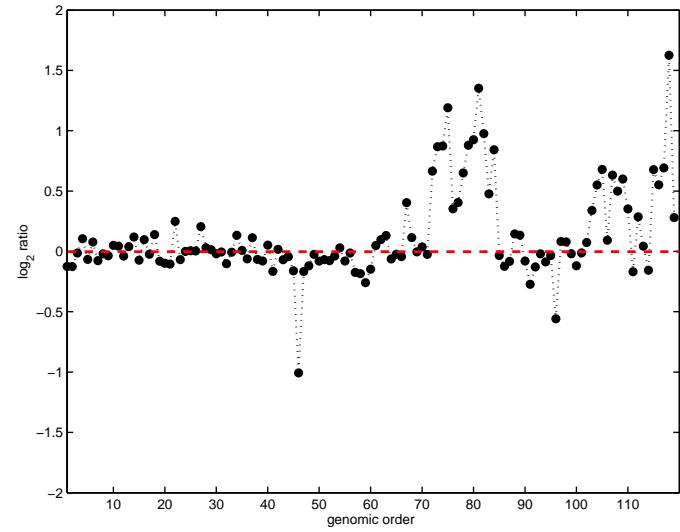
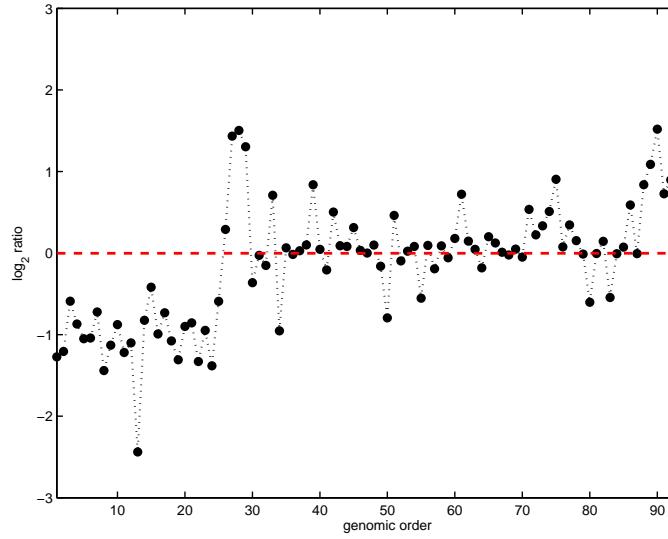
Purposes and Challenges of the statistical analysis - 1



low level of noise \rightarrow easy detection

Data described in Nakao et al. (2003) [11]

Purposes and Challenges of the statistical analysis - 2



high level of noise → need for automatic detection tools

Data described in Snijders et al. (2001) [16]

A First approach for the statistical analysis

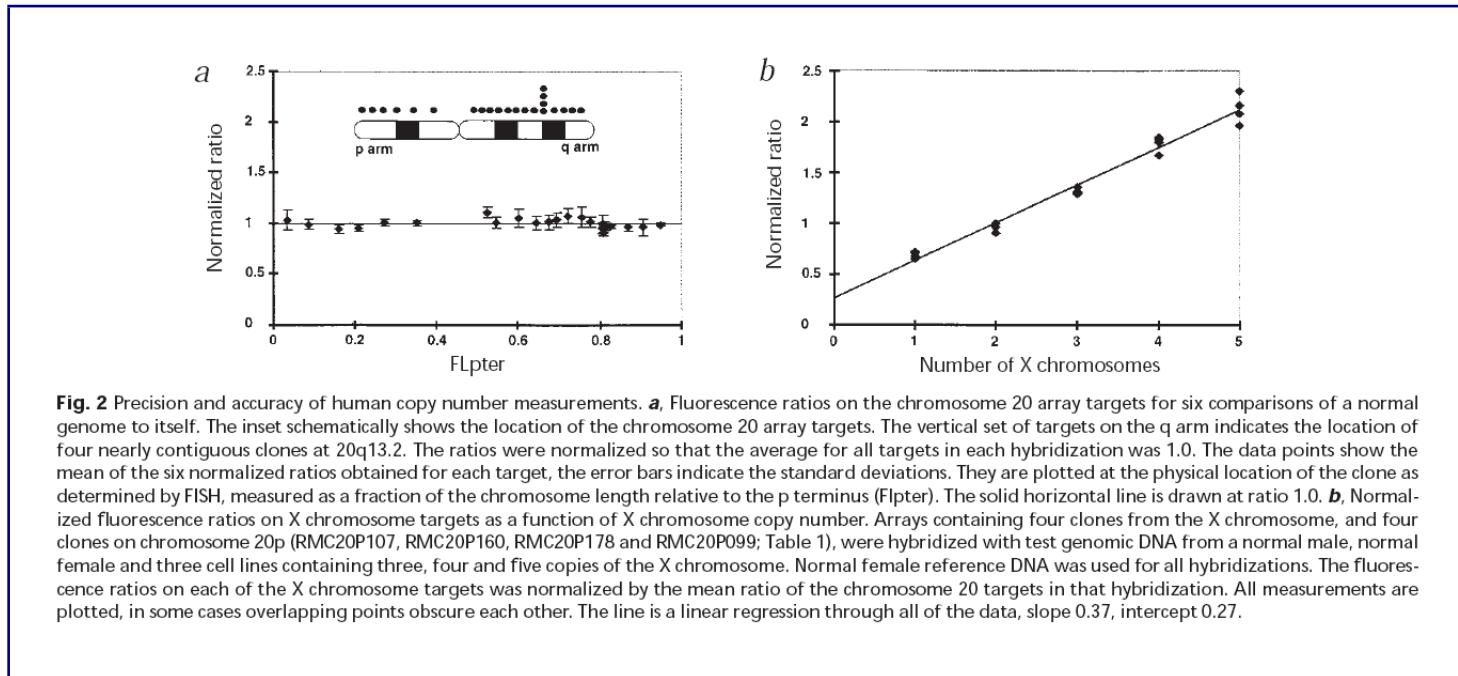
HIDDEN MARKOV MODELS

Notations and construction of a statistical model

- Clones along the genome: $t = 1, \dots, n$ for the t^{th} clone at position x_t on the genome. $x_t \in \mathbb{N}$? or $x_t \in \mathbb{R}$? We consider discrete-time models. (Continuous time models are also possible [17]).
- The signal recorded for each clone $Y(x_t)$. It corresponds to the fluorescence \log_2 ratio. Basis 2 has been chosen for diploid organisms ! but the choice is questionable (discrete gene copy numbers do not lead to fixed mean for the corresponding signals)

First step when constructing a model : **what are the characteristics of the signal ?**

Why are copy numbers "underestimated" ?



Even if the relationship between the number of X chromosomes and the ratio of the intensity is **linear**, the slope differs from the theoretical expected value of 0.5. Pinkel *et al.* [13]

Why are copy numbers "underestimated" ?

- If deletions concern only **part of the clones** the resulting signal will show less dramatic differences than expected in the case of a complete clone deletion
- The presence of **repetitive sequences** depends on the clones and the efficiency of the "blocking" procedure with Cot-1 DNA may not be 100%
- Presence of **admixed normal DNA**. In the case of tumor extraction, tissues are composed of heterogeneous cell types resulting in a mix of different types of DNA. This leads to a dilution of the aberrations.

Even if CGH aims at studying a **discrete** process (gene copy numbers), providing a quantitative answer in terms of presence/absence is not straightforward.

Construction of a Hidden Markov Model

- First category of models which have been widely used for the analysis of array CGH (Fridlyand *et al.*[5])
- The modeling framework is natural: aims at describing the distribution of observations when part of the information is missing
- In the case of array CGH data analysis: observations: fluorescence signal, missing information: copy number values
- widely used model in Bioinformatics, mainly in the discrete framework (sequence analysis)

Notations

- Clones along the genome: $t = 1, \dots, n$ for the t^{th} clone at position x_t on the genome. $x_t \in \mathbb{N}$.
- The signal recorded for the clones $Y(x_t) \in \mathbb{R}$, $\mathbf{Y} = \{Y(x_1), \dots, Y(x_n)\}$ the sequence of observations, and \mathbf{y} its realization.
- $S(x_t)$: the state of clone t which corresponds to the copy number of clone t , $\mathbf{S} = \{S(x_1), \dots, S(x_n)\}$, the sequence of hidden states, and \mathbf{s} its realization.
- $S_t \in \{1, \dots, P\}$, with P the total number of possible states. This number is unknown, and is considered fixed in the following.
- **First hypothesis:** we neglect the effect of the distance between clones:

$$Y(x_t) = Y_t, S(x_t) = S_t.$$

Conditional distributions

- Main idea: when the copy number is known, the conditional distribution of the observations is known: we model $\mathbb{P}\{\mathbf{Y} = \mathbf{y} | \mathbf{S} = \mathbf{s}\}$
- Central assumption: **conditional independence**
- For one observation: $Y_t | S_t = p \sim \mathcal{N}(m_p, \sigma^2)$
- if σ is constant, the model is *homoscedastic*, and *heteroscedastic* if σ depends on the hidden state (σ_p)
- the joint conditional distribution $\mathbb{P}\{\mathbf{Y} | \mathbf{S}\}$ is

$$\begin{aligned}\mathbb{P}\{\mathbf{Y} | \mathbf{S}; \mathbf{m}, \sigma\} &= \prod_{t=1}^n \mathbb{P}\{Y_t = y_t | S_t = s_t\} \\ &= \prod_{t=1}^n \prod_{p=1}^P \left\{ \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(y_t - m_p)^2}{2\sigma^2} \right) \right\}^{\mathbb{I}\{S_t=p\}}\end{aligned}$$

Hidden part of the model

- $\mathbb{P}\{S_t = p\}$ is the marginal distribution of the hidden states, such that:

$$\mathbb{P}\{S_t = p\} = \pi_p$$

- **Simple Hypothesis** the sequence \mathbf{S} is made of *iid* random variables with multinomial distribution:

$$S_t = p \sim \mathcal{M}(1, \pi_1, \dots, \pi_P)$$

- In this case, the model is often called Mixture Model (Mixture of distributions)
- **Markovian Hypothesis** the sequence \mathbf{S} is a Markov chain of order 1, with transition probability ϕ_{ql} such that:

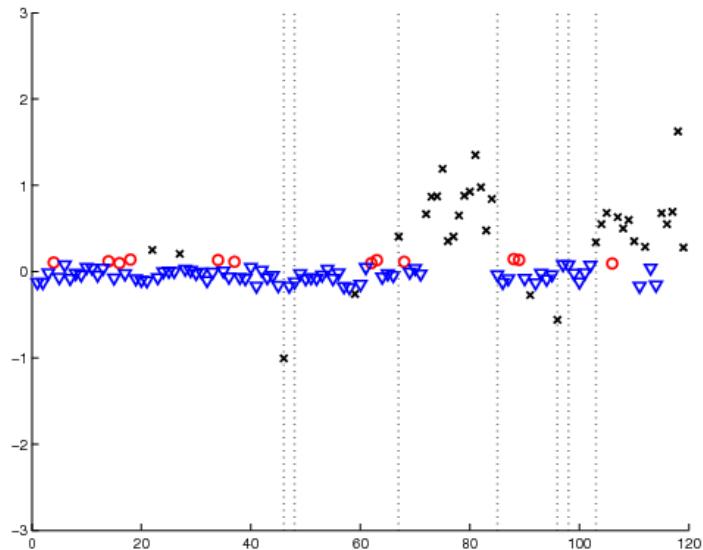
$$\phi_{ql} = \mathbb{P}\{S_{t+1} = \ell | S_t = q\}$$

Interest of the Markovian distribution

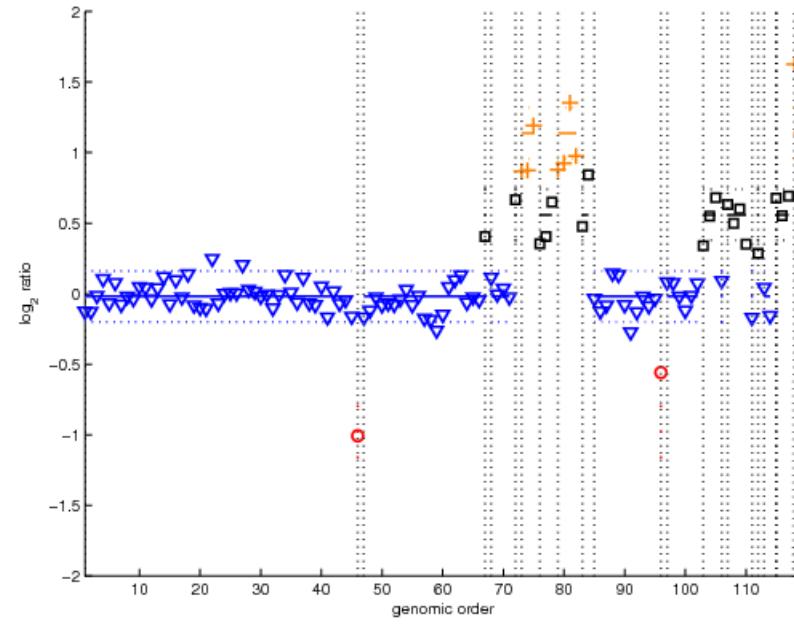
- It is used to model the spatial dependency which exists between copy number.
- In a first approximation, the chain is homogeneous (independent on t)
- the distribution of the hidden states is:

$$\mathbb{P}\{\mathbf{S}; \boldsymbol{\pi}, \boldsymbol{\phi}\} = \mathbb{P}\{S_1 = s_1\} \prod_{t=2}^{n-1} \mathbb{P}\{S_{t+1} = s_{t+1} | S_t = s_t\}$$

What is the interest of considering a Markov Chain for the hidden part ?



clustering results with mixture model



clustering results with HMM

Considering a Markovian sequence models the spatial structure of the signal.

Parameters and Likelihoods

- The parameters of the model are $\boldsymbol{\theta} = \{\mathbf{m}, \sigma, \boldsymbol{\pi}, \boldsymbol{\phi}\}$
- Hidden data likelihood: $\mathbb{P}\{\mathbf{S}; \boldsymbol{\pi}, \boldsymbol{\phi}\}$
- Complete data likelihood:

$$\mathbb{P}\{\mathbf{Y}, \mathbf{S}; \boldsymbol{\theta}\} = \mathbb{P}\{\mathbf{S}; \boldsymbol{\pi}, \boldsymbol{\phi}\} \times \mathbb{P}\{\mathbf{Y}|\mathbf{S}; \mathbf{m}, \sigma\}$$

- Observed incomplete data likelihood:

$$\mathbb{P}\{\mathbf{Y}; \boldsymbol{\theta}\} = \sum_{\mathbf{S}} \mathbb{P}\{\mathbf{Y}, \mathbf{S}; \boldsymbol{\theta}\}$$

- The idea is to calculate the observed data likelihood indirectly using:

$$\mathbb{P}\{\mathbf{Y}, \mathbf{S}; \boldsymbol{\theta}\} = \mathbb{P}\{\mathbf{Y}; \boldsymbol{\theta}\} \times \mathbb{P}\{\mathbf{S}|\mathbf{Y}; \boldsymbol{\theta}\}$$

How to calculate the observed-data likelihood ? - 1

- The EM algorithm was developed to optimize the observed data likelihood in the context of models with hidden structure. Dempster *et al.* [3]
- The hidden structure can take many forms, and clustering models (HMMs, mixture models) are widely used in applied Statistics
- Note that the complete-data likelihood is a random variable since the missing variables \mathbf{S} are random and unknown: $\mathbb{P}\{\mathbf{Y}, \mathbf{S}; \boldsymbol{\theta}\} = h_{\mathbf{Y};\boldsymbol{\theta}}(\mathbf{S})$
- One way to calculate this quantity is to evaluate its conditional expectation given \mathbf{Y} :

$$\mathbb{E}_{\boldsymbol{\theta}} \{ \log \mathbb{P}\{\mathbf{Y}, \mathbf{S}; \boldsymbol{\theta}\} \mid \mathbf{Y} \} = \mathbb{E}_{\boldsymbol{\theta}} \{ \log h_{\mathbf{Y};\boldsymbol{\theta}}(\mathbf{S}) \mid \mathbf{Y} \}$$

- Recall that

$$\mathbb{E}_{\boldsymbol{\theta}} \{ \log h(\mathbf{S}) \mid \mathbf{Y} \} = \sum_{\mathbf{S}} \log h(\mathbf{S}) \times \mathbb{P}\{\mathbf{S} \mid \mathbf{Y}; \boldsymbol{\theta}\}$$

How to calculate the observed-data likelihood ? - 2

- Recalling that: $\mathbb{P}\{\mathbf{Y}, \mathbf{S}; \boldsymbol{\theta}\} = \mathbb{P}\{\mathbf{Y}; \boldsymbol{\theta}\} \times \mathbb{P}\{\mathbf{S}|\mathbf{Y}; \boldsymbol{\theta}\}$
- When considering the conditional expectation we get:

$$\begin{aligned}\mathbb{E}_{\boldsymbol{\theta}^{(h)}} \{\log \mathbb{P}\{\mathbf{Y}; \boldsymbol{\theta}\} | \mathbf{Y}\} &= \mathbb{E}_{\boldsymbol{\theta}^{(h)}} \{\log \mathbb{P}\{\mathbf{Y}, \mathbf{S}; \boldsymbol{\theta}\} | \mathbf{Y}\} - \mathbb{E}_{\boldsymbol{\theta}^{(h)}} \{\log \mathbb{P}\{\mathbf{S}|\mathbf{Y}; \boldsymbol{\theta}\} | \mathbf{Y}\} \\ \log \mathcal{L}(\mathbf{Y}; \boldsymbol{\theta}) &= \mathcal{Q}(\boldsymbol{\theta}; \boldsymbol{\theta}^{(h)}) - \mathcal{H}(\boldsymbol{\theta}; \boldsymbol{\theta}^{(h)})\end{aligned}$$

- $\boldsymbol{\theta}^{(h)}$ is considered **to calculate** the expectation, $\boldsymbol{\theta}$ parameter that will be **optimized**
- $\mathcal{Q}(\boldsymbol{\theta}; \boldsymbol{\theta}^{(h)})$ term which is easier to calculate and to optimize,
- $\mathcal{H}(\boldsymbol{\theta}; \boldsymbol{\theta}^{(h)})$ conditional entropy of the hidden structure which does not need to be calculated (trick! because of the following)

How to maximize the observed-data likelihood ?

- When estimating a parameter by maximum likelihood, we aim at solving:

$$\frac{\partial \log \mathcal{L}(\mathbf{Y}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = 0$$

- The basis of the EM algorithm lies in this relationship:

$$\frac{\partial \log \mathcal{L}(\mathbf{Y}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \mathbb{E}_{\boldsymbol{\theta}} \left\{ \frac{\partial \log \mathbb{P}\{\mathbf{Y}, \mathbf{S}; \boldsymbol{\theta}\}}{\partial \boldsymbol{\theta}} \middle| \mathbf{Y} \right\}$$

- Consequently, maximizing the incomplete data log-likelihood can be done thanks to the maximization of $\mathcal{Q}(\boldsymbol{\theta}; \boldsymbol{\theta}^{(h)})$.

Proof - Fisher identity (1925)

$$\begin{aligned}\frac{\partial \log \mathbb{P}(\mathbf{Y}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} &= \frac{1}{\mathbb{P}(\mathbf{Y}; \boldsymbol{\theta})} \times \frac{\partial \mathbb{P}(\mathbf{Y}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \\ &= \frac{1}{\mathbb{P}(\mathbf{Y}; \boldsymbol{\theta})} \int_{\mathbf{S}} \frac{\partial \mathbb{P}(\mathbf{Y}, \mathbf{S}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} d\mathbf{S} \\ &= \frac{1}{\mathbb{P}(\mathbf{Y}; \boldsymbol{\theta})} \int_{\mathbf{S}} \frac{\partial \log \mathbb{P}(\mathbf{Y}, \mathbf{S}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \mathbb{P}(\mathbf{Y}, \mathbf{S}; \boldsymbol{\theta}) d\mathbf{S} \\ &= \frac{1}{\mathbb{P}(\mathbf{Y}; \boldsymbol{\theta})} \int_{\mathbf{S}} \frac{\partial \log \mathbb{P}(\mathbf{Y}, \mathbf{S}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \mathbb{P}(\mathbf{Y}; \boldsymbol{\theta}) \mathbb{P}(\mathbf{S}|\mathbf{Y}; \boldsymbol{\theta}) d\mathbf{S} \\ &= \int_{\mathbf{S}} \frac{\partial \log \mathbb{P}(\mathbf{Y}, \mathbf{S}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \mathbb{P}(\mathbf{S}|\mathbf{Y}; \boldsymbol{\theta}) d\mathbf{S} \\ &= \mathbb{E}_{\boldsymbol{\theta}} \left\{ \frac{\partial \log \mathbb{P}(\mathbf{Y}, \mathbf{S}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \middle| \mathbf{Y} \right\}\end{aligned}$$

Two steps for the EM algorithm

- **E-Step:** Expectation step. This step consists in the calculation of $\mathcal{Q}(\boldsymbol{\theta}; \boldsymbol{\theta}^{(h)})$ which is a conditional expectation
- **M-Step:** Maximization step. This step consists in the maximization of $\mathcal{Q}(\boldsymbol{\theta}; \boldsymbol{\theta}^{(h)})$ to get an up-dated value of the estimator $\boldsymbol{\theta}$:

$$\boldsymbol{\theta}^{(h+1)} = \arg \max_{\boldsymbol{\theta}} \mathcal{Q}(\boldsymbol{\theta}; \boldsymbol{\theta}^{(h)})$$

- Those steps are repeated alternatively until $|\boldsymbol{\theta}^{(h+1)} - \boldsymbol{\theta}^{(h)}| < \varepsilon$
- Warning : the stopping criterion should not be

$$|\log \mathcal{L}(\mathbf{Y}; \boldsymbol{\theta}^{(h+1)}) - \log \mathcal{L}(\mathbf{Y}; \boldsymbol{\theta}^{(h)})| < \varepsilon$$

Properties of the EM algorithm

- With the maximization step,

$$\mathcal{Q}(\boldsymbol{\theta}; \boldsymbol{\theta}^{(h+1)}) \geq \mathcal{Q}(\boldsymbol{\theta}; \boldsymbol{\theta}^{(h)})$$

- It can be shown that

$$\mathcal{H}(\boldsymbol{\theta}; \boldsymbol{\theta}^{(h+1)}) \leq \mathcal{H}(\boldsymbol{\theta}; \boldsymbol{\theta}^{(h)})$$

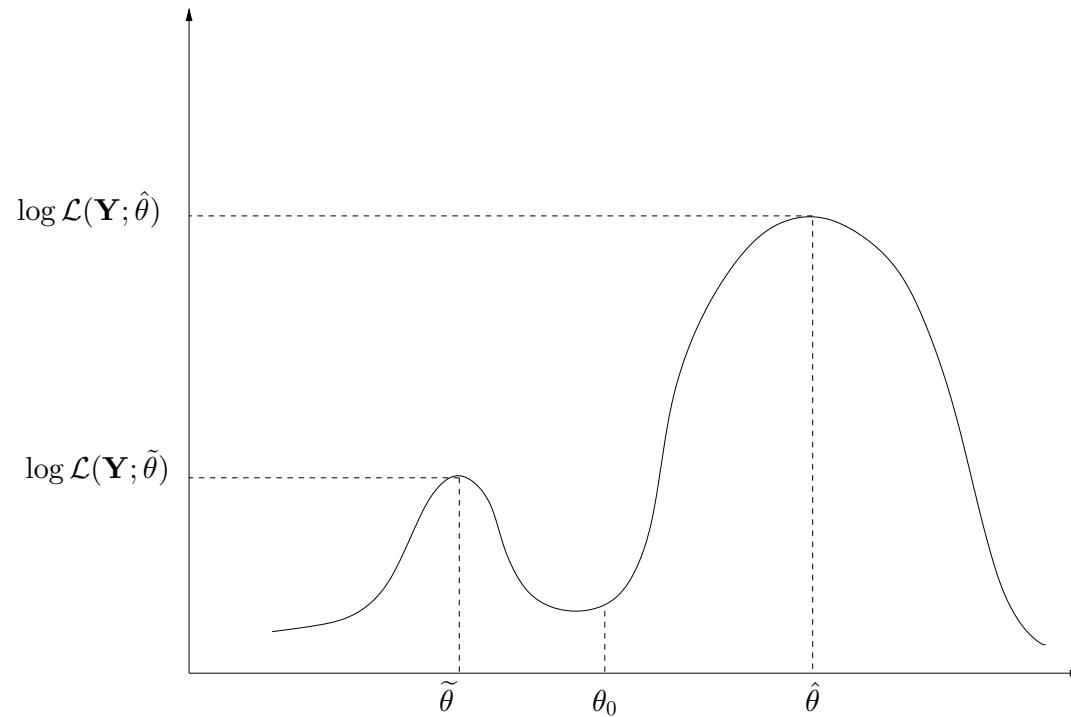
- This implies a **monotonicity** property such that:

$$\mathcal{L}(\mathbf{Y}; \boldsymbol{\theta}^{(h+1)}) \geq \mathcal{L}(\mathbf{Y}; \boldsymbol{\theta}^{(h)}),$$

- This property means that the EM algorithm improves the incomplete data likelihood at each step.
- Does the likelihood reach its maximum ?

Convergence properties of the EM algorithm

What is the convergence of an iterative algorithm ? Very difficult to show from a theoretical point of view! The convergence generally concerns the reach of local optima and strongly depends on the starting point !!!



Calculating $\mathcal{Q}(\boldsymbol{\theta}; \boldsymbol{\theta}^{(h+1)})$ for Mixture Models

$$\begin{aligned}
 \mathbb{P}\{\mathbf{Y}, \mathbf{S}; \boldsymbol{\theta}\} &= \prod_{t=1}^n \prod_{p=1}^P [\pi_p f(y_t; m_p)]^{\mathbb{I}\{S_t=p\}} \\
 \log \mathbb{P}\{\mathbf{Y}, \mathbf{S}; \boldsymbol{\theta}\} &= \sum_{t=1}^n \sum_{p=1}^P \mathbb{I}\{S_t = p\} \log \pi_p + \sum_{t=1}^n \sum_{p=1}^P \mathbb{I}\{S_t = p\} \times \log f(y_t; m_p) \\
 \mathbb{E} \{\log \mathbb{P}\{\mathbf{Y}, \mathbf{S}; \boldsymbol{\theta}\} | \mathbf{Y}\} &= \sum_{t=1}^n \sum_{p=1}^P \mathbb{E} \{\mathbb{I}\{S_t = p\} | \mathbf{Y}\} \log \pi_p \\
 &\quad + \sum_{t=1}^n \sum_{p=1}^P \mathbb{E} \{\mathbb{I}\{S_t = p\} | \mathbf{Y}\} \times \log f(y_t; m_p) \\
 &= \sum_{t=1}^n \sum_{p=1}^P \mathbb{E} \{\mathbb{I}\{S_t = p\} | Y_t\} \log \pi_p \\
 &\quad + \sum_{t=1}^n \sum_{p=1}^P \mathbb{E} \{\mathbb{I}\{S_t = p\} | Y_t\} \times \log f(y_t; m_p)
 \end{aligned}$$

EM algorithm for mixture models

- Let us denote by τ_{tp} the posterior probability of membership to state p :

$$\tau_{tp} = \mathbb{E} \{ \mathbb{I}\{S_t = p\} | Y_t \} = \Pr\{S_t = p | Y_t = y_t\}$$

- Using this notation we get :

$$\mathcal{Q}(\boldsymbol{\theta}; \boldsymbol{\theta}^{(h+1)}) = \sum_{t=1}^n \sum_{p=1}^P \tau_{tp}^{(h+1)} \log \pi_p^{(h)} + \sum_{t=1}^n \sum_{p=1}^P \tau_{tp}^{(h+1)} \times \log f(y_t; m_p^{(h)})$$

- The E-step consists in the update of $\{\tau_{tp}\}$ using the Bayes formula

$$\tau_{tp}^{(h+1)} = \frac{\pi_p^{(h)} f(y_t; m_p^{(h)})}{\sum_{\ell} \pi_{\ell}^{(h)} f(y_t; m_{\ell}^{(h)})}$$

- The M step consists in the maximization of $\mathcal{Q}(\boldsymbol{\theta}; \boldsymbol{\theta}^{(h+1)})$

Calculating $\mathcal{Q}(\boldsymbol{\theta}; \boldsymbol{\theta}^{(h+1)})$ for HMMs

$$\begin{aligned}
\mathbb{P}\{\mathbf{Y}, \mathbf{S}; \boldsymbol{\theta}\} &= \prod_{\ell=1}^P [\pi_\ell]^{\mathbb{I}\{S_1=\ell\}} \times \prod_{t=1}^{n-1} \prod_{q=1}^P \prod_{\ell=1}^P [\phi_{q\ell}]^{\mathbb{I}\{S_{t+1}=\ell, S_t=q\}} \\
&\times \prod_{t=1}^n \prod_{\ell=1}^P [f(y_t; m_\ell)]^{\mathbb{I}\{S_t=\ell\}} \\
\log \mathbb{P}\{\mathbf{Y}, \mathbf{S}; \boldsymbol{\theta}\} &= \sum_{\ell} \mathbb{I}\{S_1 = \ell\} \log \pi_\ell + \sum_{t,q,\ell} \mathbb{I}\{S_{t+1} = \ell, S_t = q\} \log \phi_{q\ell} \\
&+ \sum_{t,\ell} \mathbb{I}\{S_t = \ell\} \log f(y_t; m_\ell) \\
\mathbb{E}\{\log \mathbb{P}\{\mathbf{Y}, \mathbf{S}; \boldsymbol{\theta}\} | \mathbf{Y}\} &= \sum_{\ell} \mathbb{E}\{\mathbb{I}\{S_1 = \ell\} | \mathbf{Y}\} \log \pi_\ell \\
&+ \sum_{t,q,\ell} \mathbb{E}\left\{\mathbb{I}\{S_{t+1} = \ell, S_t = q\} | \mathbf{Y}\right\} \log \phi_{q\ell} \\
&+ \sum_{t,\ell} \mathbb{E}\{\mathbb{I}\{S_t = \ell\} | \mathbf{Y}\} \log f(y_t; m_\ell)
\end{aligned}$$

Towards the forward backward equations

Recalling that if $X \in \{0, 1\}$ then:

$$\mathbb{E}(X) = \sum_{x=0,1} x \times \mathbb{P}(X = x) = \mathbb{P}(X = 1)$$

The calculation of $\mathcal{Q}(\boldsymbol{\theta}; \boldsymbol{\theta}^{(h+1)})$ requires the calculation of the following conditional probabilities:

$$\mathbb{E}\{\mathbb{I}\{S_t = q\}|\mathbf{Y}; \boldsymbol{\theta}\} = \mathbb{P}\{S_t = q|\mathbf{Y}; \boldsymbol{\theta}\},$$

$$\mathbb{E}\{\mathbb{I}\{S_{t+1} = \ell, S_t = q\}|\mathbf{Y}; \boldsymbol{\theta}\} = \mathbb{P}\{S_{t+1} = \ell, S_t = q|\mathbf{Y}; \boldsymbol{\theta}\}$$

which is done using the Forward-Backward algorithm.

In the following we will use a new notation : $\mathbf{Y}_1^t = \{Y_1, \dots, Y_t\}$

Forward equations

The recursion starts as follows:

$$\begin{aligned}\mathbb{P}\{S_1 = q; \boldsymbol{\theta}\} &= \pi_q \\ \forall t > 1, \mathbb{P}\{S_{\textcolor{red}{t}} = \ell | \mathbf{Y}_1^{t-1}; \boldsymbol{\theta}\} &= \sum_{q=1}^Q \phi_{q\ell} \times \mathbb{P}\{S_{t-1} = q | \mathbf{Y}_1^{t-1}; \boldsymbol{\theta}\}\end{aligned}$$

Then calculate:

$$\mathbb{P}\{S_{\textcolor{red}{t}} = \ell | \mathbf{Y}_1^{t-1}; \boldsymbol{\theta}\} = \frac{f(y_t; m_\ell) \times \mathbb{P}\{S_t = \ell | \mathbf{Y}_1^{t-1}; \boldsymbol{\theta}\}}{\sum_{q=1}^Q f(y_t; m_q) \times \mathbb{P}\{S_t = q | \mathbf{Y}_1^{t-1}; \boldsymbol{\theta}\}}$$

Backward equations

It consists in calculating:

$$\mathbb{P}\{S_t = \ell, S_{t+1} = q | \mathbf{Y}; \boldsymbol{\theta}\} = \frac{\mathbb{P}\{S_t = \ell | \mathbf{Y}_1^t; \boldsymbol{\theta}\} \times \phi_{q\ell} \times \mathbb{P}\{S_{t+1} = q | \mathbf{Y}; \boldsymbol{\theta}\}}{\mathbb{P}\{S_{t+1} = q | \mathbf{Y}_1^t; \boldsymbol{\theta}\}}$$

From which is deduced the desired quantity:

$$\begin{aligned}\mathbb{P}\{S_t = \ell | \mathbf{Y}; \boldsymbol{\theta}\} &= \sum_{q=1}^Q \mathbb{P}\{S_t = \ell, S_{t+1} = q | \mathbf{Y}; \boldsymbol{\theta}\} \\ &= \sum_{q=1}^Q \xi_t(q, \ell) \\ &= \xi_t(+, \ell)\end{aligned}$$

This quantity is the *posterior* probability of being in state ℓ at position t .

Maximization step

The quantity to maximize is :

$$\begin{aligned} \mathcal{Q}(\boldsymbol{\theta}; \boldsymbol{\theta}^{(h+1)}) &= \sum_{\ell} \xi_1^{[h]}(+, \ell) \log \pi_{\ell} \\ &+ \sum_{t, q, \ell} \xi_t^{[h]}(q, \ell) \log \phi_{q\ell} \\ &+ \sum_{t, \ell} \xi_t^{[h]}(+, \ell) \log f(y_t; m_{\ell}, \sigma^2) \end{aligned}$$

under the following constraints:

$$\begin{aligned} \sum_{p=1}^Q \pi_p &= 1 \\ \forall q \in [1, P], \sum_{\ell=1}^Q \phi_{q\ell} &= 1 \end{aligned}$$

Estimators

The maximization of $\mathcal{Q}(\boldsymbol{\theta}; \boldsymbol{\theta}^{(h+1)})$ under constraint leads to the following estimators:

$$\begin{aligned}\pi_\ell^{[h+1]} &= \xi_1^{[h]}(+, \ell) \\ \phi_{q\ell}^{[h+1]} &= \frac{\sum_{t=1}^{n-1} \xi_t^{[h]}(q, \ell)}{\sum_{t=1}^{n-1} \xi_t^{[h]}(q, +)} \\ m_\ell^{[h+1]} &= \frac{\sum_{t=1}^{n-1} \xi_t^{[h]}(+, \ell) y_t}{\sum_{t=1}^{n-1} \xi_t^{[h]}(+, \ell)} \\ \sigma^{2[h+1]} &= \frac{\sum_{t=1}^{n-1} \sum_{\ell=1}^P \xi_t^{[h]}(+, \ell) (y_t - m_\ell^{[h+1]})^2}{\sum_{t=1}^{n-1} \xi_t^{[h]}(+, \ell)}\end{aligned}$$

with $\sum_{t=1}^{n-1} \xi_t^{[h]}(q, \ell)$ being the estimated number of transitions from state q to state ℓ .

Different strategies to recover the hidden states

- This is the final goal of the analysis: recover the *optimal* sequence of hidden states $\{\hat{s}_1, \dots, \hat{s}_n\}$.
- This can be done once the parameters of the model have been estimated.
- Difficulty to define what is the optimal sequence !
- One possibility is to choose the states which are individually most likely:

$$\hat{s}_t = \arg \max_q \mathbb{P}\{S_t = q | \mathbf{Y}; \boldsymbol{\theta}\}$$

- Another strategy is to consider the complete sequence of hidden states: this is the *Viterbi* algorithm.

The Viterbi algorithm - 1

The objective is to calculate: $\{\hat{s}_1, \dots, \hat{s}_n\} = \arg \max_{s_1^n} \mathbb{P}\{S_1^n = s_1^n | Y_1^n = y_1^n; \theta\}$.

It starts with a forward recurrence initialized with $\mathbb{P}\{S_1 = q, y_1\} = \pi_q f(y_1; m_q, \sigma^2)$,

and then $\forall t > 1$

$$\begin{aligned} \max_{s_1^t} \mathbb{P}\{S_1^{t-1} = s_1^{t-1}, S_t = q, y_1^t\} &= \max_{s_1^{t-1}} \left(f(y_t; m_q, \sigma^2) \phi(s_{t-1}, q) \right. \\ &\quad \times \left. \max_{s_1^{t-2}} \mathbb{P}\{S_1^{t-2} = s_1^{t-2}, S_{t-1} = s_{t-1}, y_1^{t-1}\} \right) \\ \psi_t(q) &= \arg \max_{s_1^t} \mathbb{P}\{S_1^{t-1} = s_1^{t-1}, S_t = q, y_1^t\} \end{aligned}$$

The Viterbi algorithm - 2

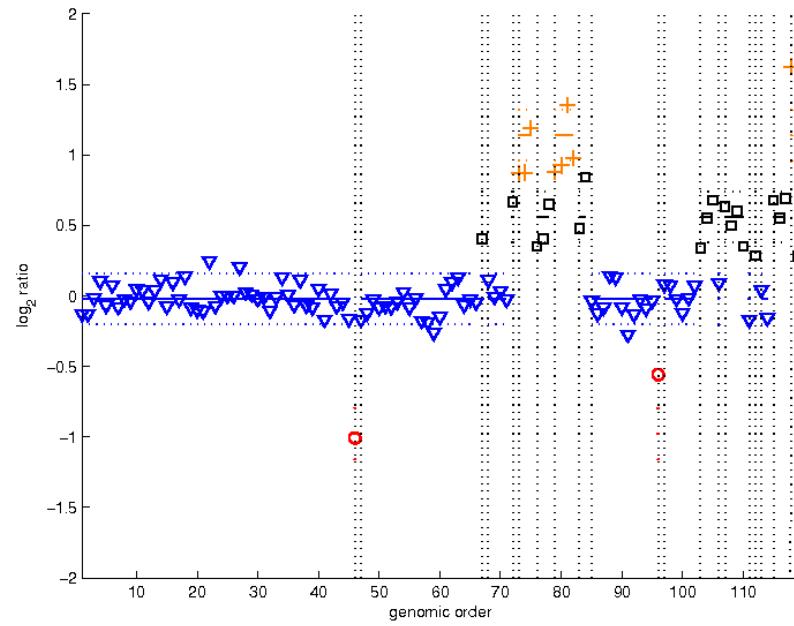
The backward recurrence finds $\hat{s}_1^n = (\hat{s}_1, \dots, \hat{s}_n)$ such that:

$$\hat{s}_1^n = \arg \max_q \left(\max_{s_1^{n-1}} \mathbb{P}\{S_1^{n-1} = s_1^{n-1}, S_n = q, y_1^n\} \right)$$

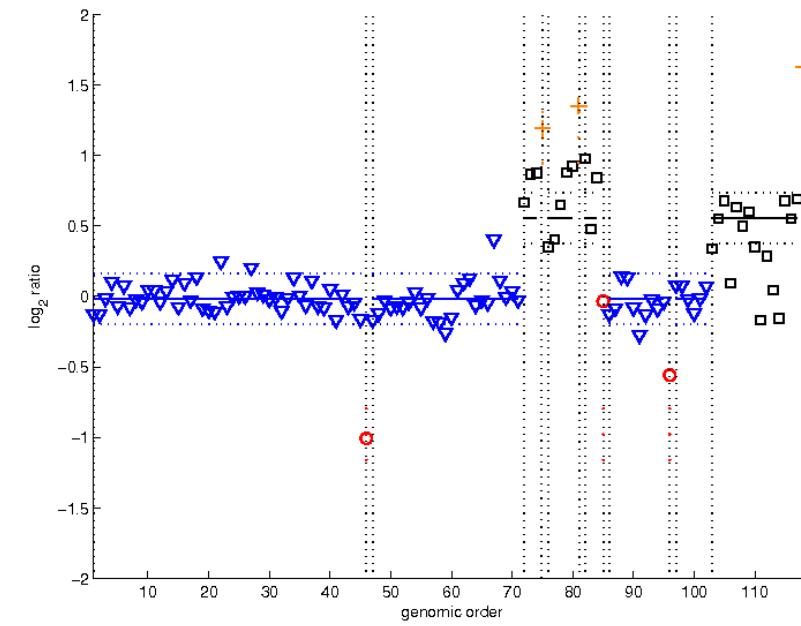
Termination: $\forall t = n-1, \dots, 1$

$$\hat{s}_t = \psi_t(\hat{s}_{t+1})$$

Examples and comparison

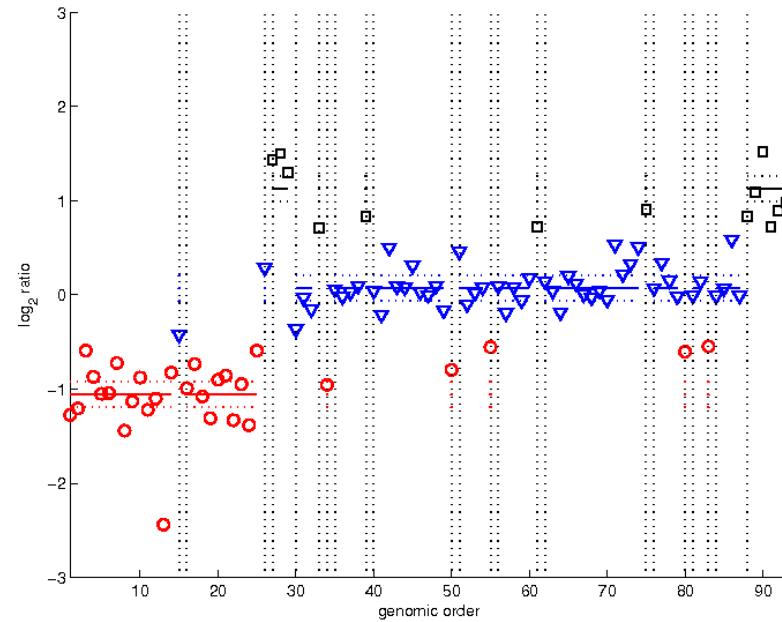


Forward-Backward



Viterbi

Examples and comparison



Forward-Backward



Viterbi

Model selection - in brief

- In practice, the total number of hidden states is unknown, and should be estimated
- This is done using a penalized criterion:

$$\hat{P} = \arg \max_P \log \mathcal{L}(\mathbf{Y}; \hat{\theta}) - \beta \text{pen}(P)$$

- The motivation of such criterion is to establish a trade-off between a good quality of fit and a reasonable number of parameters to estimate
- Parcimony is the rule !
- Different penalty function according to different objectives which makes the choice controversial.
- This is an important field of research in Statistics

Other developments for HMMs and aCGH

- HMMs are very appropriate for aCGH modelling !
- Other refinements can be found in the literature to account for aCGH specificity
- Account for distances between clones using heterogeneous HMMs [10]:

$$\phi_{ql}(t) = f(x_t, x_{t+1})$$

- Account for possible overlap between clones with continuous-time HMMs [17]
- Other estimation strategies : the Bayesian framework [14].

SEGMENTATION MODELS

Presentation and motivations for segmentation models

- A first motivation is that the signal shows discontinuities when copy numbers change.
- Then the mean of the signal is constant between two changes.
- This is what is called a **segmentation model**
- We aim at recovering the change points (also called break-points): their number and their position.
- Segmentation models belong to a wide variety of models with many applications in the field of signal processing. Also widely used for segmenting biological sequences (discrete framework).

Definitions and notations for segmentation models

- Suppose we observe the process $\mathbf{Y} = \{Y_1, \dots, Y_n\}$ such that the Y_t s are i.i.d. with distribution $\mathcal{N}(\mu_t, \sigma^2)$
- Then we suppose that there exists a sequence of change-points t_1, \dots, t_K such that the mean of the signal is constant between two changes and different from a change to another
- we denote by $I_k =]t_{k-1}, t_k]$ this interval of stationarity and μ_k the mean of the signal between two changes. Then the model is

$$\forall t \in I_k, \quad Y_t = \mu_k + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, \sigma^2)$$

Parameters and estimation

- The parameters of the model are $\mathbf{T} = \{t_1, \dots, t_K\}$, $\boldsymbol{\mu} = \{\mu_1, \dots, \mu_K\}$ and σ^2
- The estimation is done for a given number of segments K , and K is estimated afterwards.
- The likelihood of the model is:

$$\begin{aligned}\mathcal{L}_K(\mathbf{Y}; \mathbf{T}, \boldsymbol{\mu}, \sigma^2) &= \prod_{k=1}^K \prod_{t=t_{k-1}+1}^{t_k} f(y_t; \mu_k, \sigma^2) \\ &= \prod_{k=1}^K \prod_{t=t_{k-1}+1}^{t_k} \frac{1}{\sigma \sqrt{2\pi}} \exp \left\{ -\frac{1}{2\sigma^2} (y_t - \mu_k)^2 \right\}\end{aligned}$$

A 3-step methodology for parameter estimation

- When K and \mathbf{T} are known, how to estimate $\boldsymbol{\mu}$? Is $\boldsymbol{\mu}$ the only parameter to be concerned by abrupt changes ?
- When K is known, how to estimate \mathbf{T} ? Optimization of the likelihood. This is a partitioning problem which is solved by Dynamic Programming which can be applied thanks to the additivity property of the log-likelihood.
- How to choose K ? Model selection

Step 1, estimation of the mean

- When K and \mathbf{T} are known the estimation of μ is straightforward:

$$\hat{\mu}_k = \frac{1}{\hat{t}_k - \hat{t}_{k-1}} \sum_{t=\hat{t}_{k-1}+1}^{\hat{t}_k} y_t$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{k=1}^K \sum_{t=\hat{t}_{k-1}+1}^{\hat{t}_k} (y_t - \hat{\mu}_k)^2$$

- Is the model homoskedastic ?
- Otherwise the estimation of heterogeneous variances is also straightforward:

$$\hat{\sigma}_k^2 = \frac{1}{\hat{t}_k - \hat{t}_{k-1}} \sum_{t=\hat{t}_{k-1}+1}^{\hat{t}_k} (y_t - \hat{\mu}_k)^2$$

Step 2, estimation of the change points

Objectif : find $\hat{T}bf$ such that:

$$\hat{\mathbf{T}} = \arg \max_{\mathbf{T}} \left\{ \log \mathcal{L}_K(\mathbf{Y}; \mathbf{T}, \boldsymbol{\mu}, \sigma^2) \right\}.$$

- Many strategies have been considered, in particular splitting strategies.
- Dynamic Programming is an efficient algorithm to solve this partitioning problem
- The problem is to partition n data points into K segments: the theoretical complexity of an exhaustive search would be $\mathcal{O}(n^K)$.
- Dynamic programming reduces the complexity to $\mathcal{O}(n^2)$ when K is fixed.
- It is based on the Bellman principal : "subpaths of optimal paths are themselves optimal". Analogy with the shortest path problem

Dynamic programming for segmentation

- Denoting by $J_k(i, j)$ the cost of the path connecting i to j in k steps (k segments)

$$\forall 0 \leq i < j \leq n, \quad J_1(i, j) = \sum_{t=i+1}^j (y_t - \bar{y}_{ij})^2$$

- Then to calculate the next steps:

$$J_2(1, n) = \min_h \{ J_1(1, h) + J_1(h + 1, n) \}$$

$$J_3(1, n) = \min_h \{ J_2(1, h) + J_1(h + 1, n) \}$$

- The general recursion is given by

$$\forall 1 \leq k \leq K - 1, \quad J_{k+1}(1, j) = \min_{1 \leq h \leq j} \{ J_k(1, h) + J_1(h + 1, j) \}$$

Model selection for segmentation models

- the number of segments K should be estimated.
- This is done using a penalized criterion:

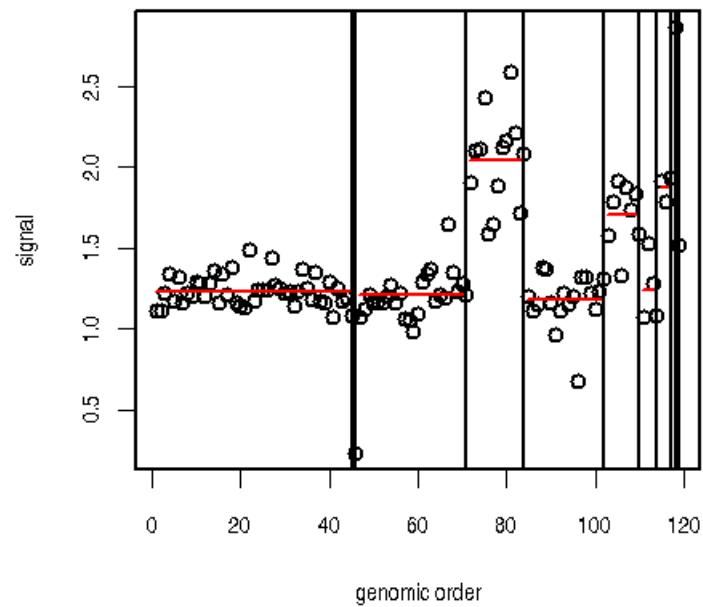
$$\hat{K} = \arg \max_K \log \mathcal{L}_K(\mathbf{Y}; \hat{\mathbf{T}}, \hat{\boldsymbol{\mu}}, \hat{\sigma}^2) - \beta \text{pen}(K)$$

- Once again, the penalty $\text{pen}(K)$ is difficult to derive, since there exists C_{n-1}^{K-1} possible partitions for a model with K segments
- Theoretical results exists [7] and gives a general form to the penalty function:

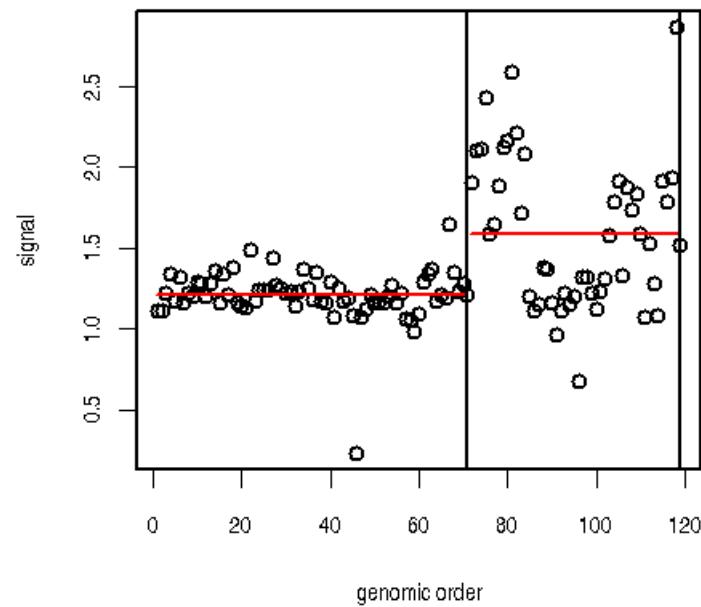
$$\beta \text{pen}(K) = \frac{K}{n} \sigma^2 \times \left(c_1 + c_2 \log \frac{n}{K} \right)$$

- Other methods have been developed, based on an adaptive estimation of K [6, 12].

Examples and comparison

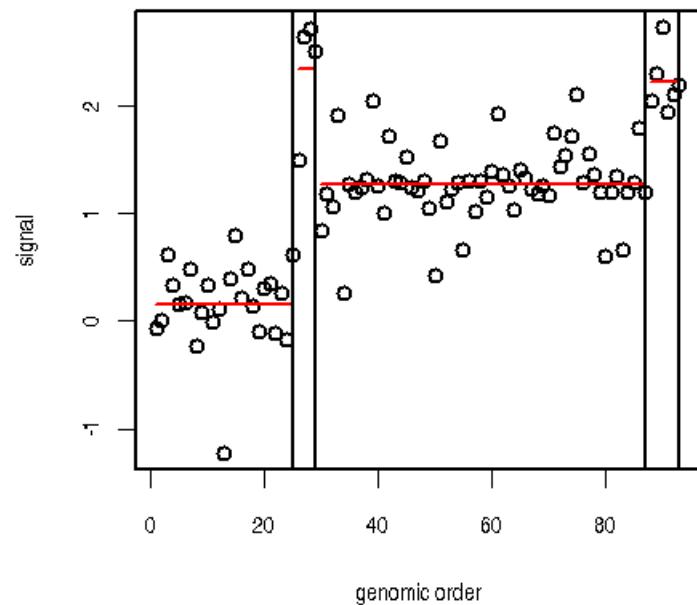


Homogeneous Variance

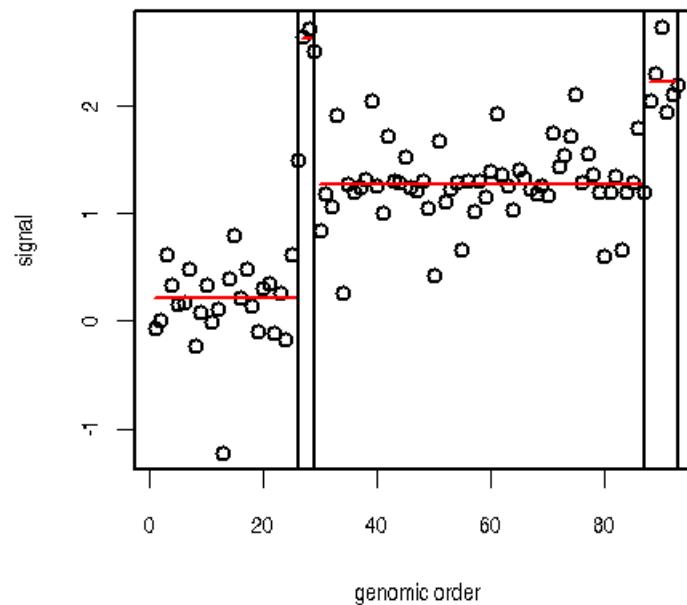


Heterogeneous Variances

Examples and comparison



Homogeneous Variance



Heterogeneous Variances

References

- [1] D.G. Albertson, C. Collins, F. McCormick, and JW. Gray. Chromosome aberrations in solid tumors. *Nature Genetics*, 34(4):369–376, 2003.
- [2] J.J. Davies, I.M. Wilson, and W.L. Lam. Array cgh technologies and their applications to cancer genomes. *Journal Chromosome Research*, 13(3):237–248, 2005.
- [3] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. *Journal of the Royal Statistical Society Series B*, 39:1–38, 1977.
- [4] L. Feuk, C.R. Marshall, R.F. Wintle, and S.W. Scherer. Structural variants: changing the landscape of chromosomes and design of disease studies. *Hum. Mol. Genet.*, 15(1):57–66, 2006.
- [5] J. Fridlyand, A. Snijders, D. Pinkel, D.G. Albertson, and A.N. Jain. Hidden markov models approach to the analysis of array CGH data. *Journal of Multivariate Analysis*, 90(1):132–1533, 2004.
- [6] M. Lavielle. Using penalized contrasts for the change-point problem. *Signal Processing*, 85(8):1501–1510, 2005.
- [7] E. Lebarbier. Detecting multiple change-points in the mean of Gaussian process by model selection. *Signal Processing*, 85:717–736, 2005.
- [8] D. P. Locke, R. Segraves, L. Carbone, N. Archidiacono, D.G. Albertson, D. Pinkel, and E.E. Eichler. Large-Scale Variation

Among Human and Great Ape Genomes Determined by Array Comparative Genomic Hybridization. *Genome Res.*, 13(3):347–357, 2003.

- [9] W.W. Lockwood, C.B. Chi, and W.L. Lam. Recent advances in array comparative genomic hybridization technologies and their applications in human genetics. *European Journal of Human Genetics*, 14:139–148, 2006.
- [10] J.C. Marioni, N.P. Thorne, and S. Tavaré. BioHMM: a heterogeneous hidden Markov model for segmenting array CGH data. *Bioinformatics*, 22(9):1144–1146, 2006.
- [11] K. Nakao, K.R. Mehta, J. Fridlyand, D. H. Moore, A.J.Jain, A. Lafuente, J.W. Wiencke, J.P. Terdiman, and F.M. Waldman. High-resolution analysis of DNA copy number alterations in colorectal cancer by array-based comparative genomic hybridization. *Carcinogenesis*, 25(8):1345–1357, 2004.
- [12] F. Picard, S. Robin, M. Lavielle, C. Vaisse, and J-J. Daudin. A statistical approach for CGH microarray data analysis. *BMC Bioinformatics*, 6:27, 2005.
- [13] D. Pinkel, R. Segraves, D. Sudar, S. Clark, I. Poole, D. Kowbel, C. Collins, W. Kuo, C. Chen, Y. Zhai, S.H. Dairkee, B. Ljung, and J.W. Gray. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. *Nature Genetics*, 20:207–211, 1998.
- [14] O.M. Rueda and R. Díaz-Uriarte. Flexible and accurate detection of genomic copy-number changes from acgh. *PLOS Computational Biology*, 3(6):1115–1122, 2007.

- [15] D.F. Smeets. Historical prospective of human cytogenetics: from microscope to microarray. *Clin Biochem*, 37(6):439–446, 2004.
- [16] A. M. Snijders, N. Nowak, R. Segraves, S. Blakwood, N. Brown, J. Conroy, G. Hamilton, A. K. Hindle, B. Huey, K. Kimura, S. Law, K. Myambo, J. Palmer, B. Ylstra, J. P. Yue, J. W. Gray, A.N. Jain, D. Pinkel, and D. G. Albertson. Assembly of microarrays for genome-wide measurement of DNA copy number. *Nature Genetics*, 29:263–264, 2001.
- [17] S. Stjernqvist, T. Ryden, M. Skold, and J. Staaf. Continuous-index hidden Markov modelling of array CGH copy number data. *Bioinformatics*, 23(8):1006–1014, 2007.