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FISH and molecular cytogenetics

- Aims at studying the structure function and evolution of chromosomes.

→ 1956: determination of the number of chromosomes in humans.

- Objectif: link between chromosomal defects and human pathologies.

→ karyotype, spectral karyotyping

→ Fluorescence In Situ Hybridization (FISH),

multiplex FISH

→ Comparative Genomic Hybridization

(CGH), array CGH
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FISH and molecular cytogenetics

Smeets et al. (2004) [15]
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CGH microarrays
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A simplified view of CGH microarray data
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Interpreting a CGH profile
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Diversity of array CGH

Davies et al. (2005)[2]
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Tiling Microarrays

a) marker based arrays

b) tiling arrays : 32433 overlapping clones, whole genome coverage

Lockwood et al. (2006) [9]
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Performance

Davies et al. [2]
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What can(’t) be detected by array CGH ?

Albertson et al. [1]
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Application of aCGH to genome comparison

FISH validation of a duplication identified by array CGH (interphase and metaphase

images). Interchromosomal duplication for an orangutan compared with 5p15 human

locus. Locke et al. [8]
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New applications in human genetics

Variation type Definition Frequency in the human genome

SNP Single base pair variation found in > 1% of

chromosomes in a given population

∼ 10.106SNPs in the human

population

Ins./Del. Variants Deletion or insertion of a segment of DNA.

Incudes small polymorphic changes and large

chromosomal aberrations. Often called CNV

vhen > 1kb

∼ 1.106 Ins/Del polymorphism >

1bp

Microsatellite Sequences containing variable numbers of 1-6bp

repeats totaling < 200bp in length

> 1.106 microsat. in the human

genome, accounting for ∼ 3% of the

sequence

Feuk et al. [4]
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Purposes and Challenges of the statistical analysis - 1
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low level of noise → easy detection

Data described in Nakao et al. (2003) [11]
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Purposes and Challenges of the statistical analysis - 2
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high level of noise → need for automatic detection tools

Data described in Snijders et al. (2001) [16]
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A First approach for the statistical analysis

Hidden Markov models

15



Notations and construction of a statistical model

- Clones along the genome: t = 1, . . . , n for the tth clone at position xt on the

genome. xt ∈ N ? or xt ∈ R ? We consider discrete-time models. (Continuous time

models are also possible [17]).

- The signal recorded for each clone Y (xt). It corresponds to the fluoresence log2

ratio. Basis 2 has been chosen for diploid organisms ! but the choice is questionable

(discrete gene copy numbers do not lead to fixed mean for the corresponding signals)

First step when constructing a model : what are the characteristics of the signal ?
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Why are copy numbers ”underestimated” ?

Even if the relationship between the number of X chromosomes and the ratio of the

intensity is linear, the slope differs from the theoretical expected value of 0.5. Pinkel et

al. [13]
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Why are copy numbers ”underestimated” ?

- If deletions concern only part of the clones the resulting signal will show less

dramatic differences than expected in the case of a complete clone deletion

- The presence of repetitive sequences depends on the clones and the efficiency of the

”blocking” procedure with Cot-1 DNA may not be 100%

- Presence of admixed normal DNA. In the case of tumor extraction, tissues are

composed of heterogeneous cell types resulting in a mix of different types of DNA.

This leads to a dilution of the aberrations.

Even if CGH aims at studying a discrete process (gene copy numbers), providing a

quantitative answer in terms of presence/absence is not straightforward.
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Construction of a Hidden Markov Model

- First category of models which a have been widely used for the analysis of array CGH

(Fridlyand et al.[5])

- The modeling framework is natural: aims at describing the distribution of observations

when part of the information is missing

- In the case of array CGH data analysis: observations: fluorescence signal, missing

information: copy number values

- widely used model in Bioinformatics, mainly in the discrete framework (sequence

analysis)
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Notations

- Clones along the genome: t = 1, . . . , n for the tth clone at position xt on the

genome. xt ∈ N.

- The signal recorded for the clones Y (xt) ∈ R, Y = {Y (x1), . . . , Y (xn)} the

sequence of observations, and y its realization.

- S(xt): the state of clone t which corresponds to the copy number of clone t,

S = {S(x1), . . . , S(xn)}, the sequence of hidden states, and s its realization.

- St ∈ {1, . . . , P}, with P the total number of possible states. This number is

unknown, and is considered fixed in the following.

- First hypothesis: we neglect the effect of the distance between clones:

Y (xt) = Yt, S(xt) = St.
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Conditional distributions

- Main idea: when the copy number is known, the conditional distribution of the

observations is known: we model P{Y = y|S = s}

- Central assumption: conditional independence

- For one observation: Yt|St = p ∼ N
`
mp, σ

2
´

- if σ is constant, the model is homoscedastic, and heteroscedastic if σ depends on the

hidden state (σp)

- the joint conditional distribution P{Y|S} is

P{Y|S; m, σ} =
nY
t=1

P{Yt = yt|St = st}

=
nY
t=1

PY
p=1

(
1

σ
√

2π
exp

 
−

(yt −mp)
2

2σ2

!)I{St=p}
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Hidden part of the model

- P{St = p} is the marginal distribution of the hidden states, such that:

P{St = p} = πp

- Simple Hypothesis the sequence S is made of iid random variables with multinomial

distribution:

St = p ∼M(1, π1, . . . , πP )

- In this case, the model is often called Mixture Model (Mixture of distributions)

- Markovian Hypothesis the sequence S is a Markov chain of order 1, with transition

probability φql such that:

φq` = P{St+1 = `|St = q}
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Interest of the Markovian distribution

- It is used to model the spatial dependency which exists between copy number.

- In a first approximation, the chain is homogeneous (independent on t)

- the distribution of the hidden states is:

P{S; π,φ} = P{S1 = s1}
n−1Y
t=2

P{St+1 = st+1|St = st}
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What is the interest of considering a Markov Chain for the hidden part ?

clustering results with mixture model clustering results with HMM

Considering a Markovian sequence models the spatial structure of the signal.
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Parameters and Likelihoods

- The parameters of the model are θ = {m, σ,π,φ}

- Hidden data likelihood: P{S; π,φ}

- Complete data likelihood:

P{Y, S; θ} = P{S; π,φ} × P{Y|S; m, σ}

- Observed incomplete data likelihood:

P{Y; θ} =
X

S

P{Y, S; θ}

- The idea is to calculate the observed data likelihood indirectly using:

P{Y, S; θ} = P{Y; θ} × P{S|Y; θ}
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How to calculate the observed-data likelihood ? - 1

- The EM algorithm was developed to optimize the observed data likelihood in the

context of models with hidden structure. Dempster et al. [3]

- The hidden structure can take many forms, and clustering models (HMMs, mixture

models) are widely used in applied Statistics

- Note that the complete-data likelihood is a random variable since the missing variables

S are random and unknown: P{Y, S; θ} = hY;θ(S)

- One way to calculate this quantity is to evaluate its conditional expectation given Y:

Eθ {log P{Y, S; θ}| Y} = Eθ {log hY;θ(S)| Y}

- Recall that

Eθ {log h(S)| Y} =
X

S

log h(S)× P{S|Y; θ}
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How to calculate the observed-data likelihood ? - 2

- Recalling that: P{Y, S; θ} = P{Y; θ} × P{S|Y; θ}

- When considering the conditional expectation we get:

E
θ(h)

{log P{Y; θ}| Y} = E
θ(h)

{log P{Y, S; θ}| Y} − E
θ(h)

{log P{S|Y; θ}| Y}

logL(Y; θ) = Q(θ; θ
(h)

)−H(θ; θ
(h)

)

- θ(h) is considered to calculate the expectation, θ parameter that will be optimized

- Q(θ; θ(h)) term which is easier to calculate and to optimize,

- H(θ; θ(h)) conditional entropy of the hidden structure which does not need to be

calculated (trick! because of the following )

On the EM algorithm 27 F. Picard



How to maximize the observed-data likelihood ?

- When estimating a parameter by maximum likelihood, we aim at solving:

∂ logL(Y; θ)

∂θ
= 0

- The basis of the EM algorithm lies in this relationship:

∂ logL(Y; θ)

∂θ
= Eθ


∂ log P{Y, S; θ}

∂θ

˛̨̨̨
Y
ff

- Consequently, maximizing the incomplete data log-likelihood can be done thanks to

the maximization of Q(θ; θ(h)).
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Proof - Fisher identity (1925)

∂ log P(Y; θ)

∂θ
=

1

P(Y; θ)
×
∂P(Y; θ)

∂θ

=
1

P(Y; θ)

Z
S

∂P(Y, S; θ)

∂θ
dS

=
1

P(Y; θ)

Z
S

∂ log P(Y, S; θ)

∂θ
P(Y, S; θ)dS

=
1

P(Y; θ)

Z
S

∂ log P(Y, S; θ)

∂θ
P(Y; θ)P(S|Y; θ)dS

=

Z
S

∂ log P(Y, S; θ)

∂θ
P(S|Y; θ)dS

= Eθ

∂ log P{Y, S; θ}

∂θ

˛̨̨̨
Y
ff
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Two steps for the EM algorithm

- E-Step: Expectation step. This step consists in the calculation of Q(θ; θ(h)) which

is a conditional expectation

- M-Step: Maximization step. This step consists in the maximization of Q(θ; θ(h)) to

get an up-dated value of the estimator θ:

θ
(h+1)

= arg max
θ
Q(θ; θ

(h)
)

- Those steps are repeated alternatively until |θ(h+1) − θ(h)| < ε

- Warning : the stopping criterion should not be

| logL(Y; θ(h+1))− logL(Y; θ(h))| < ε
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Properties of the EM algorithm

- With the maximization step,

Q(θ; θ
(h+1)

) ≥ Q(θ; θ
(h)

)

- It can be shown that

H(θ; θ
(h+1)

) ≤ H(θ; θ
(h)

)

- This implies a monotonicity property such that:

L(Y; θ
(h+1)

) ≥ L(Y; θ
(h)

),

- This property means that the EM algorithm improves the incomplete data likelihood

at each step.

- Does the likelihood reach its maximum ?
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Convergence properties of the EM algorithm

What is the convergence of an iterative algorithm ? Very difficult to show from a

theoretical point of view! The convergence generally concerns the reach of local optima

and strongly depends on the starting point !!!

θ̃ θ̂

logL(Y; θ̂)

logL(Y; θ̃)

θ0
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Calculating Q(θ;θ(h+1)) for Mixture Models

P{Y, S; θ} =
nY
t=1

PY
p=1

ˆ
πpf(yt;mp)

˜I{St=p}

log P{Y, S; θ} =
nX
t=1

PX
p=1

I{St = p} log πp +
nX
t=1

PX
p=1

I{St = p} × log f(yt;mp)

E {log P{Y, S; θ}|Y} =
nX
t=1

PX
p=1

E {I{St = p}|Y} log πp

+
nX
t=1

PX
p=1

E {I{St = p}|Y} × log f(yt;mp)

=
nX
t=1

PX
p=1

E {I{St = p}|Yt} log πp

+
nX
t=1

PX
p=1

E {I{St = p}|Yt} × log f(yt;mp)
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EM algorithm for mixture models

- Let us denote by τtp the posterior probability of membership to state p:

τtp = E {I{St = p}|Yt} = Pr{St = p|Yt = yt}

- Using this notation we get :

Q(θ; θ
(h+1)

) =
nX
t=1

PX
p=1

τ
(h+1)
tp log π

(h)
p +

nX
t=1

PX
p=1

τ
(h+1)
tp × log f(yt;m

(h)
p )

- The E-step consists in the update of {τtp} using the Bayes formula

τ
(h+1)
tp =

π(h)
p f(yt;m

(h)
p )P

` π
(h)
` f(yt;m

(h)
` )

- The M step consists in the maximization of Q(θ; θ(h+1))

Example of mixture models 34 F. Picard



Calculating Q(θ;θ(h+1)) for HMMs

P{Y, S; θ} =
PY
`=1

ˆ
π`
˜I{S1=`} ×

n−1Y
t=1

PY
q=1

PY
`=1

h
φq`

iI{St+1=`,St=q}

×
nY
t=1

PY
`=1

ˆ
f(yt;m`)

˜I{St=`}
log P{Y, S; θ} =

X
`

I{S1 = `} log π` +
X
t,q,`

I{St+1 = `, St = q} log φq`

+
X
t,`

I{St = `} log f(yt;m`)

E {log P{Y, S; θ}|Y} =
X
`

E {I{S1 = `}|Y} log π`

+
X
t,q,`

E
n

I{St+1 = `, St = q}|Y
o

log φq`

+
X
t,`

E {I{St = `}|Y} log f(yt;m`)
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Towards the forward backward equations

Recalling that if X ∈ {0, 1} then:

E(X) =
X
x=0,1

x× P(X = x) = P(X = 1)

The calculation of Q(θ; θ(h+1)) requires the calculation of the following conditional

probabilities:

E{I{St = q}|Y; θ} = P{St = q|Y; θ},

E{I{St+1 = `, St = q}|Y; θ} = P{St+1 = `, St = q|Y; θ}

which is done using the Forward-Backward algorithm.

In the following we will use a new notation : Yt
1 = {Y1, . . . , Yt}
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Forward equations

The recursion starts as follows:

P{S1 = q; θ} = πq

∀t > 1, P{St = `|Yt−1
1 ; θ} =

QX
q=1

φq` × P{St−1 = q|Yt−1
1 ; θ}

Then calculate:

P{St = `|Yt−1
1 ; θ} =

f(yt;m`)× P{St = `|Yt−1
1 ; θ}PQ

q=1 f(yt;mq)× P{St = q|Yt−1
1 ; θ}
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Backward equations

It consists in calculating:

P{St = `, St+1 = q|Y; θ} =
P{St = `|Yt

1; θ} × φq` × P{St+1 = q|Y; θ}
P{St+1 = q|Yt

1; θ}

From which is deduced the desired quantity:

P{St = `|Y; θ} =

QX
q=1

P{St = `, St+1 = q|Y; θ}

=

QX
q=1

ξt(q, `)

= ξt(+, `)

This quantity is the posterior probability of being in state ` at position t.
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Maximization step

The quantity to maximize is :

Q(θ; θ
(h+1)

) =
X
`

ξ
[h]
1 (+, `) log π`

+
X
t,q,`

ξ
[h]
t (q, `) log φq`

+
X
t,`

ξ
[h]
t (+, `) log f(yt;m`, σ

2
)

under the following constraints:

QX
p=1

πp = 1

∀q ∈ [1, P ],

QX
`=1

φq` = 1
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Estimators

The maximization of Q(θ; θ(h+1)) under constraint leads to the following estimators:

π
[h+1]
` = ξ

[h]
1 (+, `)

φ
[h+1]
q` =

Pn−1
t=1 ξ

[h]
t (q, `)Pn−1

t=1 ξ
[h]
t (q,+)

m
[h+1]
` =

Pn−1
t=1 ξ

[h]
t (+, `)ytPn−1

t=1 ξ
[h]
t (+, `)

σ
2[h+1]

=

Pn−1
t=1

PP
`=1 ξ

[h]
t (+, `)(yt −m[h+1]

` )2Pn−1
t=1 ξ

[h]
t (+, `)

with
Pn−1

t=1 ξ
[h]
t (q, `) being the estimated number of transitions from state q to state `.
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Different strategies to recover the hidden states

- This is the final goal of the analysis: recover the optimal sequence of hidden states

{ŝ1, . . . , ŝn}.

- This can be done once the parameters of the model have been estimated.

- Difficulty to define what is the optimal sequence !

- One possibility is to choose the states which are individually most likely:

ŝt = arg max
q

P{St = q|Y; θ}

- Another strategy is to consider the complete sequence of hidden states: this is the

Viterbi algorithm.
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The Viterbi algorithm - 1

The objective is to calculate: {ŝ1, . . . , ŝn} = arg maxsn1
P{Sn1 = sn1 |Y

n
1 = yn1 ; θ}.

It starts with a forward recurrence initialized with P{S1 = q, y1} = πqf(y1;mq, σ
2),

and then ∀t > 1

max
st1

P{St−1
1 = s

t−1
1 , St = q, y

t
1} = max

st−1
1

“
f(yt;mq, σ

2
)φ(st−1, q)

× max
st−2
1

P{St−2
1 = s

t−2
1 , St−1 = st−1, y

t−1
1 }

”
ψt(q) = arg max

st1

P{St−1
1 = s

t−1
1 , St = q, y

t
1}
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The Viterbi algorithm - 2

The backward recurrence finds ŝn1 = (ŝ1, . . . , ŝn) such that:

ŝ
n
1 = arg max

q

0@max
sn−1
1

P{Sn−1
1 = s

n−1
1 , Sn = q, y

n
1}

1A
Termination: ∀t = n− 1, . . . , 1

ŝt = ψt(ŝt+1)
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Examples and comparison

Forward-Backward Viterbi
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Examples and comparison

Forward-Backward Viterbi
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Model selection - in brief

- In practice, the total number of hidden states is unknown, and should be estimated

- This is done using a penalized criterion:

P̂ = arg max
P

logL(Y; θ̂)− βpen(P )

- The motivation of such criterion is to establish a trade-off between a good quality of

fit and a reasonnable number of parameters to estimate

- Parcimony is the rule !

- Different penalty fonction according to different objectives which makes the choice

controversial.

- This is an important field of research in Statistics
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Other developments for HMMs and aCGH

- HMMs are very appropriate for aCGH modelling !

- Other refinements can be found in the literature to account for aCGH specificity

- Account for distances between clones using heterogeneous HMMs [10]:

φql(t) = f(xt, xt+1)

- Account for possible overlap between clones with continuous-time HMMs [17]

- Other estimation strategies : the Bayesian framework [14].
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A Second approach for the statistical analysis

Segmentation models
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Presentation and motivations for segmentation models

- A first motivation is that the signal shows discontinuities when copy numbers change.

- Then the mean of the signal is constant between two changes.

- This is what is called a segmentation model

- We aim at recovering the change points (also called break-points): their number and

their position.

- Segmentation models belong to a wide variety of models with many applications in the

field of signal processing. Also widely used for segmenting biological sequences

(discrete framework).
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Definitions and notations for segmentation models

- Suppose we observe the process Y = {Y1, . . . , Yn} such that the Yts are i.i.d. with

distribution N (µt, σ
2)

- Then we suppose that there exists a sequence of change-points t1, . . . , tK such that

the mean of the signal is constant between two changes and different from a change

to another

- we denote by Ik =]tk−1, tk] this interval of stationarity and µk the mean of the

signal between two changes. Then the model is

∀t ∈ Ik, Yt = µk + εt, εt ∼ N (0, σ
2
)
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Parameters and estimation

- The parameters of the model are T = {t1, . . . , tK}, µ = {µ1, . . . , µK} and σ2

- The estimation is done for a given number of segments K, and K is estimated

afterwards.

- The likelihood of the model is:

LK(Y; T,µ, σ2
) =

KY
k=1

tkY
t=tk−1+1

f(yt;µk, σ
2
)

=
KY
k=1

tkY
t=tk−1+1

1

σ
√

2π
exp


−

1

2σ2
(yt − µk)2

ff
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A 3-step methodology for parameter estimation

- When K and T are known, how to estimate µ ? Is µ the only parameter to be

concerned by abrupt changes ?

- When K is known, how to estimate T ? Optimization of the likelihood. This is a

partitioning problem which is solved by Dynamic Programming which can be applied

thanks to the additivity property of the log-likelihood.

- How to choose K ? Model selection

Segmentation for CGH 52 F. Picard



Step 1, estimation of the mean

- When K and T are known the estimation of µ is straightforward:

µ̂k =
1

t̂k − t̂k−1

t̂kX
t=t̂k−1+1

yt

σ̂
2

=
1

n

KX
k=1

t̂kX
t=t̂k−1+1

(yt − µ̂k)2

- Is the model homoskedastic ?

- Otherwise the estimation of heterogeneous variances is also straightforward:

σ̂
2
k =

1

t̂k − t̂k−1

t̂kX
t=t̂k−1+1

(yt − µ̂k)2
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Step 2, estimation of the change points

Objectif : find ˆTbf such that:

T̂ = arg max
T

n
logLK(Y; T,µ, σ2

)
o
.

- Many strategies have been considered, in particular splitting strategies.

- Dynamic Programming is an efficient algorithm to solve this partitioning problem

- The problem is to partition n data points into K segments: the theoretical complexity

of an exhaustive search would be O(nK).

- Dynamic programming reduces the complexity to O(n2) when K is fixed.

- It is based on the Bellman principal : ”subpaths of optimal paths are themselves

optimal”. Analogy with the shortest path problem
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Dynamic programming for segmentation

- Denoting by Jk(i, j) the cost of the path connecting i to j in k steps (k segments)

∀0 ≤ i < j ≤ n, J1(i, j) =

jX
t=i+1

(yt − ȳij)2

- Then to calculate the next steps:

J2(1, n) = min
h
{J1(1, h) + J1(h+ 1, n)}

J3(1, n) = min
h
{J2(1, h) + J1(h+ 1, n)}

- The general recursion is given by

∀1 ≤ k ≤ K − 1, Jk+1(1, j) = min
1≤h≤j

{Jk(1, h) + J1(h+ 1, j)}
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Model selection for segmentation models

- the number of segments K should be estimated.

- This is done using a penalized criterion:

K̂ = arg max
K

logLK(Y; T̂, µ̂, σ̂2
)− βpen(K)

- Once again, the penalty pen(K) is difficult to derive, since there exists CK−1
n−1 possible

partitions for a model with K segments

- Theoretical results exists [7] and gives a general form to the penalty function:

βpen(K) =
K

n
σ

2 ×
„
c1 + c2 log

n

K

«
- Other methods have been developed, based on an adaptive estimation of K [6, 12].
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Examples and comparison

Homogeneous Variance Heterogeneous Variances
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Examples and comparison

Homogeneous Variance Heterogeneous Variances
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