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5MODAL, INRIA Lille Nord Europe, F-59650 Villeneuve d’Ascq, France
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Summary. We propose a method for high-dimensional curve clustering in the presence of interindividual variability. Curve
clustering has longly been studied especially using splines to account for functional random effects. However, splines are not
appropriate when dealing with high-dimensional data and can not be used to model irregular curves such as peak-like data. Our
method is based on a wavelet decomposition of the signal for both fixed and random effects. We propose an efficient dimension
reduction step based on wavelet thresholding adapted to multiple curves and using an appropriate structure for the random
effect variance, we ensure that both fixed and random effects lie in the same functional space even when dealing with irregular
functions that belong to Besov spaces. In the wavelet domain our model resumes to a linear mixed-effects model that can be
used for a model-based clustering algorithm and for which we develop an EM-algorithm for maximum likelihood estimation.
The properties of the overall procedure are validated by an extensive simulation study. Then, we illustrate our method on
mass spectrometry data and we propose an original application of functional data analysis on microarray comparative genomic
hybridization (CGH) data. Our procedure is available through the R package curvclust which is the first publicly available
package that performs curve clustering with random effects in the high dimensional framework (available on the CRAN).

Key words: Clustering; Functional data; Mixed models; Wavelets.

1. Introduction
Functional data analysis has gained increased attention in
the past years, in particular in high-throughput biology with
the use of mass spectrometry. This method is used to char-
acterize the protein content of biological samples by sepa-
rating compounds according to their mass to charge ratio
(m/z). Among different technologies matrix assisted laser
desorption and ionization, time-of-flight (MALDI-TOF) mass
spectrometry is one the most used and has become standard
to improve proteomic profiling of diseases as well as clinical
diagnosis.

Dedicated methods have been developed to analyze such
data for differential analysis, supervised classification and
clustering (Hilario et al. 2006). Up to now the functional
setting has mostly been developed for differential analysis
(Morris et al. 2008). One central element is the modeling
of the interindividual variability by using functional ran-
dom effects, because subject-specific fluctuations are known
to be the largest source of variability in mass-spec data
(Eckel-Passow et al. 2009). In this article, we focus on the

nonsupervised task which consists in finding groups of indi-
viduals whose proteomic landscape is similar. Surprisingly the
clustering task received less attention, and is mainly based
on hierarchical clustering on the set of peaks detected across
spectra (Bensmail et al. 2005; Morris et al. 2010). However,
such method is known to depend heavily on the peak detec-
tion method and has the strong disadvantage to neglect the
interindividual variability whereas this information should be
central for subgroup discovery. Thus, our main focus in this
article is modeling and clustering curves of this type in a func-
tional mixed model framework.

When dealing with curve clustering in the presence of in-
dividual variability, a pioneer work is based on a spline de-
composition of the signal (James and Sugar 2003) which re-
sumes to a linear mixed effect model on which clustering and
low-dimensional representation can be performed. However,
splines show two main drawbacks: (i) they are inappropri-
ate when dealing with functions that show peaks and irregu-
larities, (ii) they require heavy computational efforts and so
are not adapted to high dimensional data. On the contrary,

Biometrics 69, 31–40
March 2013



32 Biometrics, March 2013

wavelet representations appear to be a natural framework
to consider such irregularities through the sequence space
of (usually sparse) Besov representation. Recent works have
been done about estimation and inference in the functional
mixed effects framework based on a wavelet decomposition ap-
proach. A fully Bayesian version has been proposed by Morris
and Carroll (2006), with nonparametric estimates of fixed and
random effects as well as between and within-curve covariance
matrix estimates to accomodate a wide variety of correlation
structures. In addition, Antoniadis and Sapatinas (2007) pro-
pose a study of both estimation and inference in a frequentist
framework. In this article, we use a wavelet representation for
both fixed and random effects to perform model-based cluster-
ing. Such strategy has been considered by Antoniadis, Bigot,
and von Sachs (2008) and by Ray and Mallick (2006) with-
out random effects for image clustering and for the analysis
of time course experiments respectively. We use a similar ap-
proach and we extend it by adding functional random effects.
Interindividual variability in the wavelet domain is modeled
using results of Antoniadis and Sapatinas (2007) but accomo-
dates a broader range of correlation structure. In particular
we allow within curve correlation to vary over groups and po-
sitions. Then we propose a two-step procedure which involves
a dimension reduction step and a clustering step based on
the EM-algorithm. We also propose a model-selection crite-
rion that accounts for the interindividual variability, and we
define a rigorous simulation framework for curve clustering.
Our method is implemented within the R package curvclust

(available on the CRAN), which is the first available soft-
ware dedicated to this task. In a first application, we illustrate
our method on the mass spectrometry data first published in
Petricoin et al. (2002).

Then our last contribution is to extend the use of functional
models to another type of high throughput data which are
comparative genomic hybridization (CGH) data. The CGH
array technology is used to map copy number imbalances be-
tween genomes by hybridizing differentially labeled genomic
DNAs on a chip. Fluorescence ratios are usually analyzed us-
ing change-point models to detect segments that correspond
to homogeneous regions on the genome in terms of copy num-
ber. Clustering patients based on their CGH profiles is very
promising and has been successfully used to identify molecular
subtypes of cancer. However, clustering CGH profiles based
on a segmentation has the same drawbacks that clustering
mass spectra based on detected peaks: results depend on the
segmentation methods. Moreover the interindividual variabil-
ity has never been investigated in this type of data, whereas
it is likely to represent an important part of the variability
of the data especially for cancer profiles. We use the breast
cancer data of Fridlyand et al. (2006) that have already been
analyzed for nonsupervised clustering by Van Wieringen et al.
(2008). We show the interest of functional random effects for
these type of data and we discuss the impacts in terms of
analysis and design for copy number studies.

2. Functional Clustering Modeling using Wavelets
2.1 Presentation of the Model
We observe N curves Yi (t) over M equally spaced time
points t = (t1, . . . , tM ) with tj ∈ [0, 1] for j ∈ [1, M ], and

M = 2J for some integer J . In the functional clustering set-
ting we suppose that individuals are spread among L un-
known clusters of prior size π� , � = 1, . . . , L, and we denote
by ζi� the indicator variable that equals 1 if the ith in-
dividual is in the �th group. Then, we consider the linear
functional model such that given {ζi� = 1}, Yi (t) = μ� (t) +
Ei (t), where μ� (t) is the principal functional fixed effect
that characterizes cluster �, Ei (t) is a zero mean Gaus-
sian process with covariance kernel cov(Ei (t), Ei (t′)) = σ2

E δtt ′ ,
where δtt ′ stands for the kronecker product. In the following,
we will use notations Yi (t) = (Yi (t1), . . . , Yi (tM ))T , μ� (t) =
(μ� (t1), . . . , μ� (tM ))T and Ei (t) = (Ei (t1), . . . , Ei (tM ))T . To
handle subject-specific random deviations from the clus-
ter average curve we introduce random functions Ui (t)
that are modeled as centered Gaussian processes with ker-
nel K� (t, t′) = cov(Ui (t), Ui (t′)) (given {ζi� = 1}), not neces-
sarily stationary, but independent from Ei (t). Then given
{ζi� = 1}, the previous model becomes Yi (t) = μ� (t) + Ui (t) +
Ei (t) (2.1). Once defined in the functional domain, a classi-
cal approach is to convert the original infinite-dimensional
clustering problem into a finite-dimensional problem using
a functional basis representation of the model. At this step
James and Sugar (2003) propose a spline-based representa-
tion of model (2.1) with individuals observed at sparse sets of
time points like in longitudinal data. Our procedure is more
adapted to high dimensional data thanks to the computa-
tional efficiency of wavelets, unlike splines that require ma-
trix inversions whose complexity increases with the density
of the design. Moreover, as we will see below, the wavelet
representation allows us to account for a wider range of
functional shapes than splines, thanks to their connection
with Besov spaces. Using a wavelet representation of this
model allows us to characterize different types of smooth-
ness conditions assumed on the response curves Yi (t) by the
mean of their wavelet coefficients. Moreover, wavelet repre-
sentations are sparse for a wide variety of functional spaces,
which is crucial when dealing with high dimensional data.
This property will be central while performing dimension re-
duction. Briefly, we are working with a dyadic orthonormal
wavelet basis {φj0k (t), k = 0, 1, . . . 2j0 − 1; ψjk (t), j ≥ j0, k =
0, . . . , 2j − 1} generated from a father wavelet φ and a mother
wavelet ψ of regularity r, (r ≥ 0). In this basis Yi (t) has
the following decomposition: Yi (t) =

∑2j 0−1
k=0 c∗i ,j0k φj0k (t) +∑

j≥j0

∑2j −1
k=0 d∗

i ,j k ψjk (t). In practice we use the discrete
wavelet transform (DWT) which can be performed thanks to
Mallat’s fast algorithm with O(M ) operations only. We denote
by W the [M × M ]-matrix containing filters of the chosen
wavelet basis. The resulting scaling and wavelet coefficients
ci = (ci,j0k )k=0. . .2j 0−1 and di = (di,j k )k=0. . .2j −1

j=j0. . .J −1 of the individ-
ual curves are empirical discrete coefficients. They are related
to their theoretical continuous counterparts c∗i ,j0k and d∗

i ,j k

by: ci,j0k ≈ √
Mc∗i ,j0k and di,j k ≈ √

Md∗
i ,j k . In the following,

we denote by α� = (α�,j0k )k=0. . .2j 0−1 and β� = (β�,j k )k=0. . .2j −1
j=j0. . .J −1

the [2j0 × 1] and [(M − 2j0 ) × 1] vectors of scaling and wavelet
coefficients of μ� (t), and we denote by νi = (νi,j0k )k=0. . .2j 0−1

and θi = (θi,j k )k=0. . .2j −1
j=j0. . .J −1 the [2j0 × 1] and [(M − 2j0 ) × 1] vec-

tors of scaling and wavelet random coefficients of Ui (t) =
(Ui (t1), . . . , Ui (tM ))T . We apply the DWT to model (2.1) such
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that WYi (t) = Wμ� (t) + WUi (t) + WEi (t), and in the co-
efficients domain our model resumes to a linear mixed-effect
model, such that given {ζi� = 1}, (cT

i ,dT
i )T = (αT

� , βT
� )T +

(νT
i , θT

i )T + (εT
ci

, εT
di

)T . (εT
ci

, εT
di

)T stands for the vector of
errors on scaling and wavelet coefficients, distributed as
N (0M , σ2

ε IM ) with 0M the vector of zeros and IM the iden-
tity matrix of size M , and σ2

ε = σ2
E . Then we suppose that

(νT
i , θT

i )T ∼ N (0M ,G = Diag(Gν ,Gθ )), with, Gν and Gθ the
covariance matrices of νi and θi , respectively. We further sup-
pose that these random coefficients are independent from the
errors and that matrix G is diagonal, thanks to the whitening
property of wavelets (Zhang and Walter 1994). Without loss
in generality, we will assume that j0 = 0 in the following.

2.2 Besov Spaces and Specification of the Variance of Random
Effects

The strength of the wavelet representation is that it allows us
to handle very diverse shapes of curves among which curves
with irregularities that lie in particular Besov spaces. Besov
spaces consist of functions that have a specific degree of
smoothness. Roughly speaking, for a Besov space Bs

p,q [0, 1],
parameter s indicates the number of function’s derivatives,
where their existence is required in a Lp -sense, q allowing
finer control of the function’s regularity. For a detailed study
of Besov spaces, we refer to Donoho and Johnstone (1998).
When dealing with functional mixed models the difficulty lies
in the control of the regularity of random functions Ui , so
that if the fixed function μ� is supposed to belong to some
Besov space, Ui belongs to the same functional space. Fol-
lowing Antoniadis and Sapatinas (2007), this goal is achieved
by controlling the exponential decrease of the variances of
the random wavelet coefficients such that V(θi,j k ) = 2−j η γ2

θ

with parameter η being associated with the regularity of pro-
cess Ui . Indeed, Abramovich, Sapatinas, and Silverman (1998)
state that given a mother wavelet ψ of regularity r, where
max(0, 1

p
− 1

2 ) < s < r and given that μ� (t) ∈ Bs
p,q [0, 1], then,

Ui (t) ∈ Bs
p,q [0, 1] a.s. ⇐⇒{

s + 1
2 − η

2 = 0 if 1 ≤ p < ∞ and q = ∞,

s + 1
2 − η

2 < 0 otherwise.

We further allow γ2
θ to depend on scale and position (γ2

θ ,j k ) as
proposed by Morris and Carroll (2006) or on cluster (γ2

θ ,� ) or
on both (γ2

θ ,�j k ). As mentioned by Antoniadis and Sapatinas
(2007), even if the model restricts matrix G to the class of
matrices diagonalisable by the DWT, modeling V(θi,j k ) as a
function of scale and position allows us to account for depen-
dencies and nonstationarities in the functional domain.

2.3 Dimensionality Reduction
Wavelet representations are sparse for a wide class of func-
tional spaces which makes their use very efficient when deal-
ing with high dimensional data. In the case of a single curve,
shrinkage estimation and hard thresholding have been devel-
oped by Donoho and Johnstone (1994). Both methods present
the double advantage to reduce dimensionality and to ensure
good reconstruction properties. In the framework of curve
clustering, our goal is to reduce the dimensionality of the
problem to handle heavy datasets and not to find the op-
timal reconstruction rule. With this in mind we follow the

strategy proposed by Antoniadis et al. (2008) and we propose
a dimension reduction procedure that proceeds in two steps,

(1) We first perform individual denoising to keep coeffi-
cients which contain individual-specific information. This is
done by applying nonlinear wavelet hard thresholding of co-
efficients di via an universal threshold as described in Donoho
and Johnstone (1994). For recall, it consists in setting to zero
coefficients di,j k whose absolute value are below the univer-
sal threshold σ

√
2 log M . A traditional way to estimate σ is

to take the average of the N robust individual noise variance
estimates defined by the median absolute deviation (σ̂MAD)
of empirical wavelet coefficients at the finest resolution level
J − 1 divided by 0.6745. In our setting this quantity provides
a robust estimation of the variance level at the finest resolu-
tion level, i.e., V(di,J −1,k ) = 2−(J −1)η γ2

θ + σ2
ε .

(2) In a second part, we take the union set of wavelet co-
efficients that survived thresholding. This has the advantage
to remove wavelet coefficients that are zero for all individ-
uals, and hence which are not informative regarding to the
clustering goal.

As a first remark, we can point that a mixed-model spe-
cific thresholding rule could be applied by taking an estimate
of the global variance of the observations which is given by
V(di,j k ) = 2−j η γ2

θ + σ2
ε . Such a level dependent thresholding

would lead to greater variance estimate and hence to a greater
dimensionality reduction. Nevertheless its estimation would
require estimates of both parameters σ2

ε and γ2
θ . This can

be easily done when the individual labels are known. Oth-
erwise, this estimation is a difficult task when individual la-
bels are unknown because it leads to estimate variance from
samples with different and unknown means. Moreover, simu-
lations showed that the difference was negligible (not shown).
Finally note that we do not use the third reduction step pro-
posed by Antoniadis et al. (2008) which is dedicated to image
segmentation.

3. Parameter Estimation and Model Selection
3.1 An EM Algorithm for Maximum Likelihood Estimation
Once projected in the wavelet domain, the clustering model
resumes to a standard clustering model with additional
random effects whose variance is of particular form. Thus,
parameters are estimated by maximum likelihood using the
EM algorithm. Both label variables ζ and random effects
(ν, θ) are unobserved and the complete data log-likelihood
can be written such that logL(c,d, ν, θ, ζ ; π, α, β,G, σ2

ε ) =
logL(c,d|ν, θ, ζ ; π, α, β, σ2

ε ) + logL(ν, θ|ζ ;G) + logL(ζ ; π).
This likelihood can be easily computed thanks to the prop-
erties of mixed linear models: ((cT

i ,dT
i )T |(νT

i , θT
i )T , {ζi� =

1}) ∼ N ((αT
� + νT

i , βT
� + θT

i )T , σ2
ε IM ). The E-step consists

in replacing the unobserved variables by their conditional
expectation. Hence, cluster labels predictors ζ̂i� are up-dated
using posterior probabilities τi� such that,

ζ̂
[h+1]
i� = τ

[h+1]
i� =

π
[h ]
�

f
(
ci, di; α

[h ]
�

, β
[h ]
�

, G[h ]+σ
2[h ]
ε IM

)∑
p

π
[h ]
p f

(
ci, di; α

[h ]
p , β

[h ]
p , G[h ]+σ

2[h ]
ε IM

) ,

with f (.) the probability density function of the Gaussian
distribution. Then, using notation ν̂ i� = E(νi |ci , ζi� =
1) = (ν̂i ,j0k � )k=0, . . . ,2j 0−1 and θ̂i� = E(θi |di , ζi� = 1) =

(θ̂i ,j k � )
k=0, . . . ,2j −1
j=j0, . . .J −1 , we apply the Henderson’s trick (Robinson
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1991) to get the following updates of the best linear unbi-
ased predictors (BLUPs) of random effects: ν̂

[h+1]
i� = (ci −

α
[h ]
� )/(1 + λ

[h ]
ν ), and θ̂

[h+1]
i� = (di − β

[h ]
� )/(1 + 2j η λ

[h ]
θ ), with

(λν , λθ ) = (σ2
ε /γ2

ν , σ2
ε /γ2

θ ). As for the maximization part, it
provides the estimators of the mean curve coefficients α

[h+1]
� =∑n

i=1 ζ̂
[h+1]
i� (ci − ν̂

[h+1]
i� )/N̂

[h+1]
� , and β

[h+1]
� =

∑n

i=1 ζ̂
[h+1]
i� (di −

θ̂
[h+1]
i� )/N̂

[h+1]
� , with N̂

[h+1]
� =

∑
i
ζ̂

[h+1]
i� , and π

[h+1]
� = N̂

[h+1]
� /

N . Moreover, the EM algorithm provides a ML estimator of
the variances of the model (using j0 = 0): N (M − 1)

γ
2[h+1]
θ =

∑
ij k �

2j η ζ̂
[h+1]
i� (θ̂2[h+1]

i ,j k � + σ
2[h ]
ε

1+2j η λ
[h ]
θ

), Nγ
2[h+1]
ν =∑

i�
ζ̂

[h+1]
i� (ν̂2[h+1]

i ,00� + σ
2[h ]
ε

1+λ
[h ]
ν

), and MNσ
2[h+1]
ε =

∑
i�

ζ̂
[h+1]
i�

{∑
j k

[(di,j k − β̂
[h+1]
�,j k − θ̂

[h+1]
i ,j k � )

2 + σ
2[h ]
ε

1+λ
[h ]
θ

2j η
] + (ci,00 − α̂

[h+1]
�,00 −

ν̂
[h+1]
i ,00� )2 + σ

2[h ]
ε

1+λ
[h ]
ν

}. Note that we use SEM, a stochastic

version of EM to avoid random initializations (Celeux and
Diebolt 1986). Hard clustering can also be performed using
the Maximum a posteriori (MAP) rule based on posterior
probabilities (τi� ). As last point, we mention that η can be
estimated by maximization of the likelihood using the golden
search section algorithm (Kiefer 1953).

3.2 Choosing the Number of Clusters
We propose to choose the number of clusters using the frame-
work of penalized likelihoods. In the following, we use no-
tations mL [γ2],mL [γ2

� ] for clustering models with L groups
with constant and group-dependent variances, respectively.
We first use the Bayesian Information Criterion and we select
the dimension that maximizes

BIC(mL [γ2]) =

logL
(
c,d; π̂, α̂, β̂, Ĝ, σ̂2

ε ,mL [γ2]
)
− |mL [γ2]|

2
× log(N ).

This classical criterion is a penalized version of the observed-
data log-likelihood where |mL [γ2]| = (M + 1)L + |G| is the
number of free parameters of a model with L clusters, the
dimension of G (denoted by |G| here) depending on the vari-
ance structure of the random effects. When considering mixed
models, it is likely that the prediction of the random effects
provides information regarding the number of clusters to
select. To use information from hidden variables we propose
to derive an integrated classification likelihood criterion in
the spirit of Biernacki, Celeux, and Govaert (2000). The ICL
criterion is based on the integrated likelihood of the complete
data: logL(c,d, ν, θ, ζ |mL [γ2

� ]) = logL(c,d|ν, θ, ζ,mL [γ2
� ]) +

logL(ν, θ|ζ,mL [γ2
� ]) + logL(ζ |mL [γ2

� ]). For the first term
we use a BIC-like approximation such that −2 logL
(c,d|ν, θ, ζ,mL [γ2

� ]) � NM log RSS(c,d|ν, θ) + (ML + 1) ×
log(N ), with RSS(c,d|ν, θ, ζ) the residual sum of squares de-
fined such that RSS(c,d|ν, θ, ζ) =

∑
i�

ζi�‖ci − α̂� − νi�‖2 +∑
i�

ζi�‖di − β̂� − θi�‖2. Then we derive the integrated
log-likelihood of the random effects. We assume a noninfor-
mative Jeffrey prior for the variance parameters such that
g(γ2

ν ,� |ζ,mL [γ2
� ]) ∝ 1/γ2

ν ,� . Using notations N� =
∑N

i=1 ζi�

and RSS� (ν, ζ) =
∑N

i=1 ζi� ν
2
i ,00� , we get,

−2 logL(ν|ζ,mL [γ2
� ]) �

∑
�

N� log RSS� (ν, ζ)

−2
∑

�

log Γ(N�/2).

Similarly for the detail coefficients we get,

−2 logL(θ|ζ,mL [γ2
� ]) � (M − 1)

∑
�

N� log RSS� (θ, ζ)

−2
∑

�

log Γ(N� (M − 1)/2).

Finally for the classification term a Dirichlet prior is as-
sumed for π and the corresponding integrated likelihood is
approximated such as,

logL(ζ |mL [γ2
� ]) �

L∑
�=1

N� log
(

N�

N

)
− (L − 1)

2
log(N ).

The last step of this derivation is to replace hidden variables
by their predictions provided by the EM algorithm. Random
effects (ν, θ) are replaced by their BLUP (ν̂, θ̂), and label vari-
ables ζ are replaced by their conditional expectation τ . Put
together we obtain the following integrated classification like-
lihood criterion (ICL), such that −2 × ICL(mL [γ2

� ])/N equals

M log RSS(c,d|ν̂, θ̂, τ ) +
∑

�

π̂�

[
log RSS� (ν̂, τ )

+ (M − 1) log RSS� (θ̂, τ )
]

− 2
N

∑
�

[
log Γ

(
N̂�

2

)
+ log Γ

(
N̂� (M − 1)

2

)]

− 2
L∑

�=1

π̂� log(π̂� ) +
(M + 1)L

N
× log(N ).

Those criteria will be compared in the simulation study.

4. Simulations and Comparison of Methods
4.1 Definition of a General Simulation Framework
In this section, we propose to define a unified framework for
synthetic data generation for functional mixed models and
functional clustering models (FCMs). Using this unified strat-
egy different methods can be fairly compared based on appro-
priately simulated data. First we properly define the signal-
to-noise ratio (SNR) in the functional domain. The SNR is
defined as the ratio of signal power to the power of the mea-
surement noise corrupting the signal. In our case, the power
of the signal is defined such as,

limT → ∞ 1
T

∫ − T
2

T
2

∑
�

π�E
(
|μ� (t) + Ui (t)|

)2
dt

=
1
M

L∑
�=1

π�

(
2j 0−1∑
k=0

α2
�,j0k +

∑
j≥j0

2j −1∑
k=0

β2
�,j k

)

+2j0γ2
ν +

2j0(1−η )γ2
θ

1 − 2(1−η ) .
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Figure 1. Example of simulated curves with varying SNRμ and λU (one curve per cluster).

The derivation of such formula is given in the Web Sup-
plementary Material. Hence we need to control two terms:
SNRμ that accounts for the power of the fixed effects and λU

for the power of the random effect using an analogy with the
λ parameter used in the EM algorithm. For this purpose we
introduce parameters,

SNR2
μ =

1
Mσ2

E

L∑
�=1

π�

(
2j 0−1∑
k=0

α2
�,j0k +

∑
j≥j0

2j −1∑
k=0

β2
�,j k

)
,

λU = σ2
E /

(
γ2

ν +
γ2

θ

1 − 2(1−η )

)
.

When performing simulations, SNRμ usually lies in
{0.1, 1, 3, 5, 7} and λU varies in {1/4, 1, 4} such that small val-
ues of λU indicate an important variance for the random ef-
fects. In practice, we also choose γ2

ν = γ2
θ .

To build fixed effects for simulations we generalize the ap-
proach described in Amato and Sapatinas (2005) which uses
the well-known synthetic functions Blocks, Bumps, Heavisine
and Doppler originally proposed by Donoho and Johnstone
(1994). We choose L fixed effects for each synthetic function
classes using expressions given in the Supplementary Mate-
rial. Once parameters (SNRμ , λU, {μ� (t)}� ) have been chosen
(i.e., values for σ2

E , γ2
ν , γ2

θ , and α� , β� are deduced), our simula-
tion procedure is performed in the wavelet domain such that
realizations of centered Gaussian distribution with variance
2−j η γ2

θ are added to the fixed effect empirical wavelet coeffi-
cients to account for interindividual variability. Then Gaus-
sian noise with variance σ2

ε is added to account for measure-
ment errors. This unified method ensures that both fixed and
random effects lie in the same Besov space, as mentioned ear-
lier, and observed signals Yi (t) can be recovered using the
inverse DWT. An example of such simulated data is given in
Figure 1.

4.2 Simulation Design and Indicators of Performance
Because too many configurations could be explored using
simulations, we propose to fix the number of individuals at
N = 50, the number of groups at L = 2, 4, the length of the
signals at M = 512, and parameter η is set to 2. Then the sim-
ulation design explores the following configurations: SNRμ ∈
{0.1, 1, 3, 5, 7}, λU ∈ {1/4, 1, 4}, π ∈ {0.1, 0.25, 0.5} (π = 1/4
when L = 4), each simulation being repeated 50 times. In
terms of methods, we compete functional clustering mod-
els with or without mixed effects (FCMM/FCM, Functional
Clustering Mixed Model/Functional Clustering Model), and
we consider (or not) the dimension reduction method based
on the union of coefficients. We compare these four methods
to the functional clustering mixed model based on splines as
proposed by James and Sugar (2003) whose R code is available
on the web page of the authors (http://www-bcf.usc.edu/
gareth/). Our purpose is to highlight the benefit of using
wavelets when dealing with high dimensional data.

The performance of the clustering procedures are com-
pared using the empirical error rate (EER) defined by EER =
1N

∑N

i=1

∑L

�
I{ζ̂MAP

i� �= ζi�}, where ζ̂M A P
i� is the predicted

class for individual i using the MAP rule, and ζi� is the true
class. This criteria ranges from 0, for which no classification
error is made to 1 which means that all individuals are mis-
classified. We finally consider the speed of execution of each
procedure.

4.3 Simulation Results

4.3.1 Clustering results. Figure 2 presents the variations
of the Empirical Error Rates according to SNRμ and to the
strength of the random effect (a small λU indicates a strong
random effect). A general comment is that the functional
clustering mixed model (FCMM) outperforms all methods in
terms of EER compared with the FCM and Splines. This re-
sult is true even for unbalanced clusters and with an increas-
ing number of groups (see Supplementary Material). FCMM
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Figure 2. Variation of the empirical error rate (EER) for different estimation methods: functional clustering mixed model
(FCMM), functional clustering model (FCM), with or without dimension reduction (“union”), and Splines. In columns different
intensities for the variance of the random effect are considered: λU = 0.25/1/4 for a strong/mild/small random effect. In rows
are considered different shapes for the mean curve of each group (Blocks, Bumps, Heavisine, Doppler). Results correspond to
L = 2 clusters with balanced proportions 0.5/0.5

has two main advantages. First the modeling of functional
random effects leads to a better identification of the informa-
tive structures in terms of clustering. Table 1 clearly shows
that FCMM is the best method to estimate the variance of
the residuals contrary to FCM that provides over-estimates
(which leads to poor clustering performance).

Then dimension reduction increases the performance of
FCMM by removing coefficients that are not informative with
respect to clustering. This is not true for the FCM for which
dimension reduction increases the EER. This trend can be
explained by the bad estimation of the error’s variance when
random effects are not considered in the model. The selec-
tion of the coefficients that all survived thresholding leads
to worst estimators in the case of FCM but the impact is
moderate on the FCMM (Table 1). In the Supplementary
Material we also illustrate the performance of the dimension
reduction procedure. This table was not provided by Anto-
niadis et al. (2008) when they first proposed the union-set
method. Our results show that taking the union of coefficients
that survived thresholding keeps less than 10% of the coeffi-

cients. Among those coefficients, we show that a high propor-
tion should have been thresholded whereas they are not. This
means that the procedure is sensitive but not very specific,
as expected when considering a union-based strategy. How-
ever, because our objective is not functional reconstruction,
we consider that keeping too many coefficients is not a major
issue.

Our last point concerns the time of execution of each
method. When dealing with high dimensional data, it is cru-
cial to propose methods that show reasonable computational
time. Table 1 clearly shows that using wavelet-based FCMs
gives the best execution times, and even when random effects
are considered, time of execution remains moderate (less than
10 minutes for N = 50 individuals and M = 512 positions).
Splines are known to be poorly efficient in terms of compu-
tational efficiency. This issue becomes critical when dealing
with functional models with many individuals. The size of
our simulated datasets was the upper limit that could be an-
alyzed by Splines, in particular due to memory constraints.
To this extent, our R package curvclust is the only freely
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Table 1
Relative bias of the estimator of the error variance: (σ2 − σ̂2)/σ2, and average time of execution (TOE) in minutes for different

models on simulated data (N = 50 individuals, M = 512 positions). FCM, functional clustering model, FCMM, functional
clustering mixed model. FCMu/FCMMu, functional clustering (mixed) models based on the union of coefficients for dimension

reduction. Programs were run on a cluster of 2 octo-bicore Opteron 2.8Ghz and 2 octo-quadcore Opteron 2.3GHz

Bias TOE

SNR2
μ 0.1 1 3 5 7 0.1 1 3 5 7

FCM Blocks −2.57 −2.66 −2.96 −3.02 −2.99 2.3 2.4 2.3 2.4 2.3
Bumps −2.50 −2.69 −2.93 −2.93 −2.93 2.6 2.5 2.6 2.5 2.5
Heavisine −2.15 −2.17 −3.22 −4.30 −2.50 2.8 2.7 2.7 2.7 2.8
Doppler −2.73 −3.07 −3.32 −3.33 −3.33 2.9 3.2 3.1 3.2 3.2

FCMu Blocks −12.93 −11.33 −9.42 −9.38 −8.89 0.4 0.4 0.5 0.5 0.5
Bumps −12.98 −11.11 −13.46 −11.98 −11.93 0.5 0.5 0.5 0.5 0.5
Heavisine −11.62 −10.20 −10.07 −12.05 −15.68 0.5 0.5 0.5 0.5 0.5
Doppler −14.75 −13.14 −11.33 −8.59 −7.87 0.5 0.5 0.5 0.6 0.6

FCMM Blocks 0.11 0.05 −0.01 −0.01 −0.00 16.0 16.1 15.6 15.8 16.0
Bumps 0.09 0.04 0.01 0.01 0.01 16.1 16.3 15.2 15.3 15.4
Heavisine 0.10 0.09 0.08 0.03 0.02 16.4 16.2 16.0 16.4 15.9
Doppler 0.08 0.01 −0.02 −0.02 −0.01 17.5 17.4 17.5 16.4 17.0

FCMMu Blocks −0.11 −0.06 0.03 0.06 0.05 6.9 7.1 7.6 7.6 7.6
Bumps −0.10 −0.04 −0.08 −0.08 −0.05 6.7 6.7 6.8 6.7 6.7
Heavisine −0.10 −0.10 −0.18 −0.21 −0.19 7.1 7.3 6.8 6.8 6.8
Doppler −0.18 −0.06 −0.04 −0.16 −0.11 7.3 7.1 7.3 7.8 7.9

Spline Blocks . . . . . 25.5 26.2 23.0 23.6 22.3
Bumps . . . . . 23.3 26.6 22.0 21.2 21.7
Heavisine . . . . . 24.2 21.6 21.8 22.4 22.3
Doppler . . . . . 33.2 32.4 24.2 24.8 24.2

available software that performs curve clustering with func-
tional random effects within a reduced amount of time in high
dimension.

4.3.2 Model selection results. The model selection crite-
ria are compared using the same simulation design with four
groups (Figure 3). The BIC selects four clusters even when the
SNR is low (except for Heavisine), contrary to ICL which is
more stringent. Their behavior differ slightly with respect to
the strength of the random effect, with ICL penalizing more
when the random effect is strong whereas BIC gives simi-
lar results with respect to the strength of the random effect.
Overall, differences between criteria are mild.

5. Applications
5.1 Mass Spectrometry Data
We first consider a SELDI-TOF mass spectrometry dataset
issued from a study on ovarian cancer (Petricoin et al.
2002). The sample set includes serum profiles of 162 subjects
with ovarian cancer and 91 non-cancer control subjects.
Each serum profile consists of 15,154 recorded intensities
corresponding to distinct m/z values. This dataset was
produced by the Ciphergen WCX2 protein chip. It is avail-
able through the Clinical Proteomics Programs Databank
(http://home.ccr.cancer.gov/ncifdaproteomics/ppatter
-ns.asp, ovarian dataset 8-7-02). Before clustering, raw
data are background corrected using a quantile regression
procedure, and spectra are aligned using a procedure based
on wavelets zero crossings (Antoniadis et al. 2007). Then
the ovarian cancer dataset is made of 8192 intensities

within the range of m/z ratio [1500, 14,000], ratios below
1500 being discarded due to the effects of matrix. We
compete wavelet-based FCMs on these data considering
different random effect structures. Procedures are applied
in a nonsupervised framework to retrieve the known labels
(cancer/control) and comparisons are based on empiri-
cal error rate estimates (EER, Table 2). Note that the
spline-based procedure of James and Sugar (2003) could
not be applied on these data because of their too high
dimensionality.

The first result is that empirical error rates are high for
all methods and that the introduction of random effects
slightly decreases the EER whatever the random effect struc-
ture (from 38% to ∼ 25%). To investigate the origins of such
modest performance, we also performed clustering based on
group-wise aligned spectra instead of global alignment (which
should be done in the unsupervised context). Results are
striking: when spectra are aligned according to known labels,
model m2[γ2

j k ] (for which the variance of random effects de-
pends on scale and position) results in one mismatch only
(EER=0.4%). This result leads to the following conclusions.
First spectra alignment is a challenge when performing sub-
group discovery, and the task is much more difficult com-
pared with supervised clustering for which labels are known.
Indeed inaccuracy in spectra alignment could lead to artifi-
cial differences in individual serum profiles which decreases
the performance of clustering. A promising (but challenging)
perspective would be to perform clustering and alignment si-
multaneously. Moreover as wavelets have been shown to per-
form best for peak-detection/alignment (Yang et al. 2009),
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Figure 3. Estimated number of clusters using ICL and BIC when the simulated number of clusters is four (with balanced
cluster sizes).

Table 2
Empirical error rates (in percent) for the Petricoin et al.

(2002) data for different models: functional clustering without
random effects, two groups (m2), functional clustering with

random effect with different variance structures for the
random effect: constant m2[γ2], group m2[γ2

� ], scale-position
m2[γ2

j k ], or group-scale-position dependent m2[γ2
�,j k ]

m2 m2[γ2] m2[γ2
� ] m2[γ2

j k ] m2[γ2
�,j k ]

Global alignment 38 24 24 23 23
Group alignment 20 21 22 0.4 36

our wavelet-based procedure for clustering would be a good
starting point to integrate both strategies.

Then a second result is that best clustering performance are
provided by a functional clustering mixed model for which the
random effect has a covariance structure that depends on both
scale and location. This implies that interindividual variations
occur at specific ranges of m/z values, which reinforces the
importance of correct spectra alignment. Interestingly, an im-
portant proportion of variance terms are close to zeros which
would make the BLUPs sparse if dimension reduction was per-

formed on random effects. Unfortunately, the task is difficult
in the nonsupervised setting because BLUPs can not be com-
puted without the knowledge of group-specific means (which
would be possible in the supervised setting). Thus dimension
reduction for clustering using mixed functional model remains
challenging and still needs to be investigated.

5.2 Comparative Genomic Hybridization Data
In this last application we consider the clustering of breast-
cancer tumors based on their copy number aberration profiles
measured by array-based Comparative Genomic Hydridiza-
tion (Fridlyand et al. 2006). Array CGH is a widely used tech-
nology that enables the characterization of genome-wide chro-
mosomal aberrations using the microarray technology. Many
statistical methods have been developed to analyze these data
(van de Wiel et al. 2011). They are mainly based on segmenta-
tion methods to retrieve segments of homogeneous copy num-
ber along the genome.

Clustering individuals based on their CGH profiles is a very
challenging issue and has already been considered to identify
new subtypes of tumors (Chin et al. 2007). For now, sub-
group discovery is mainly performed using hierarchical clus-
tering based on segmentation results (Van Wieringen et al.
2008). However, the interindividual variability has never been
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Table 3
Estimated SNR2

μ and λU for the breast tumor dataset of
Fridlyand et al. (2006)

Complete dataset

Cluster ID ŜNR
2

μ λ̂U

1 2.1e-4 3.9e-04
2 2.3e-3 3.8e-05
3 1.3e-3 6.4e-04

4 (1q/16p) 1.5e-3 1.3e-04
5 9.3e-4 4.3e-05

ER+ dataset w

1 2.1e-3 2.2e-04
2 7.8e-3 1.9e-05
3 1.1e-2 3.8e-05

4 (1q/16p) 4.4e-3 4.4e-04

quantified in these data, contrary to mass spectrometry for in-
stance. Thus using our method for clustering with the Haar
basis (piece-wise constant basis) is a way to perform subgroup
discovery by considering random effects. In the Fridlyand
et al. (2006) article, the authors analyzed the genomic pro-
files of 62 samples using P1/BAC CGH arrays (2464 genomic
clones). We used the 55 profiles for which additional clinical
information were available (the raw data can be downloaded
as a supplementary material of the Fridlyand et al. 2006 ar-
ticle). The authors identified three main subtypes of breast
cancer that differ with respect to level of genomic instabil-
ity. Interestingly, Van Wieringen et al. (2008) re-analyzed the
data and do not mention much correspondance between the
two clustering results. Moreover, they discovered much more
subgroups and noticed that “the samples in the study could
be more heterogeneous than previously implied.”

We also find more subgroups than the original study, with
five clusters selected by ICL (two by the BIC). First, this
shows the power which is gained when considering the random
effect in the selection step. Then we were able to identify the
1q/16p subtype on the complete dataset (with one mismatch).
This subtype was identified in the first study (Fridlyand et al.
2006) but not by other clustering methods (Van Wieringen
et al. 2008) whereas it is associated to the best patient out-
come. Because two of the three identified clusters in the origi-
nal article concern ER positive tumors, we also performed our
method on this subset of patients and retrieve the 1q/16p sub-
type without mismatch. In this classification, one cluster was
made of three tumors (S0041, S0041, S1519) also identified as
similar in the original article. As a last result Table 3 indicates
that the estimated signal to noise ratio is low and the impres-
sive strength of the random effect (λ̂U ∼ 10−4) also indicates
that the interindividual variability is ultra-high in these data.
As a consequence, finding clusters with biological significance
will require rather hundreds/thousands of patients compared
with 55 in the original study.

6. Conclusion
In this work we provide a methodology for model-based clus-
tering of functional data in the presence of interindividual

variability. Our method is based on a wavelet decomposition
of the signal and on a mixture model that integrates random
effects. We illustrate the power of such an approach in two
different fields of high-throughput biology using our package
curvclust, and we show the potentialities of functional mod-
els on array CGH data. Overall, random effects allow us to
properly model the variance structure of the data, and to ex-
hibit the high proportion of variance due to interindividual
variability. This part is usually omitted in high-throughput
modelling. First perspective will concern the generalization
of our approach to the supervised setting. Finding biomark-
ers has received enormous attention in the past years, with
moderate success due to the lack of reproducibility. Our study
in the nonsupervised framework shows that the interindivid-
ual variability is important in these data, which may be one
explanation of the difficulty to find reliable markers. Inte-
grating random effects in the supervised setting may produce
more moderate results, but at least they would be more repre-
sentative of the biological variability. Finally methodological
perspectives of this work will mainly concern dimension re-
duction. The task is difficult in the non-supervised setting
and the illustration on MS data shows that dimension re-
duction should be performed for fixed and for random ef-
fects which remains challenging. This would provide a better
representation of the signal by thresholding coefficients with
poor information, and would increase the speed of the esti-
mation algorithm that is sensitive to the number of selected
coefficients, which is of central interest of high dimensional
data.

7. Supplementary Materials
Web Appendices, tables and figures referenced in Sections 4.1,
4.2 and 4.3 are available with this article at the Biometrics
website on Wiley Online Library.
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