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1. Rappels sur le modéle linéaire]

11. Modéle linéaire classique

111. Ecriture du modéle

Classiquement, on écrit:
y=XB+e (1.1)
ou

Y () © Vecteur (Nx1) des variables aléatoires dépendantes (observations);

X = (Xl,Xz,...,Xk,..., X p) : matrice d’incidence des variables explicatives

(Nxp)

(dites aussi variables «indépendantes» ou covariables ) qui peuvent étre continues (régression)

ou discrétes (ANOVA);

B¢ vecteur des coefficients dits de régression (covariables continues) ou «effets

fixes» (covariables discrétes); a priori B € R”;

€y, * vecteur de variables aléatoires résiduelles

112. Hypothéses

Toutes ou partie des hypothéses suivantes peuvent étre formulées ou requises selon les

techniques statistiques employées:

-spécification exacte de 1’espérance E(y),

et, vis-a-vis des variables aléatoires résiduelles:

-indépendance
-homoscédasticité
-normalité.

12. Estimation

121. Moindres carrés simples (OLS)

C’est une technique purement algébrique due a Legendre (1805) pour résoudre un systéme

linéaire ayant plus d’équations que d’inconnues.
Soit S(B) =||y—XB||2 le carré de la distance euclidienne entre les observations et la

partie explicative du modele, considérée comme une fonction de 3. La solution des moindres

carrés en 3 est obtenue par minimisation de S(B)



B = argmin, S(B) (1.2)

Or
% = 2X'(y - XP).
7°S®) =2X'X (définie non négative)
BP'

La condition de convexité de la fonction S() étant satisfaite, le minimum s’obtient par

annulation des dérivées premicres d’ou le systéme dit des moindres carrés ou des équations

normales:

X'Xp=X'y. (1.3)

Si X est de plein rang, B est «estimable», X'X est inversible et la solution s’écrit

ﬁ:(X'X)_IX'y; sinon, il faut déterminer quelles sont les fonctions estimablesk'f.

Rappelons que k'B est par définition une fonction estimable, si et seulement si, elle peut
s’exprimer comme une combinaison linéaire de I’espérance des observations soit
t, k'p=t'E(y),Vp.
L’estimation correspondante peut s’obtenir alors par 1’utilisation d’une inverse
généralisée:
k'B=k'(X'X) X'y, (1.4)
qui assure la propriété d’invariance suivante: k'(X'X)_X'X:k'l, cette formule pouvant

étre utilisée comme test d’estimabilité de toute combinaison linéaire A'B (Searle, 1971, page
185).

On gagnera le plus souvent a formuler le modéle avec une paramétrisation de plein rang, soit
des le départ, soit apres une manipulation adéquate (cf annexe 1-B). On utilise fréquemment la
décomposition:

y=Xp+é=Py+(I-P)y (1.5)

ou la matrice P est donnée par

P=X(X'X) X' (1.6)

' Cette propriété découle de I’égalité X(X'X) X'X = X quelle que soit I’inverse généralisée de X'X (cf
annexe [-A)



La matrice P est idempotente -tout comme (I—-P)-, et vérifie PX = X. En effet, le systeme
(1.3) s’écrit aussi X'(I-P)y=0, Vy d’ou PX=X et P=P’. La matrice P s’interprete
ainsi comme le projecteur orthogonal de y sur I’espace engendré par les colonnes de X .

122. Propriétés

Sous I’hypotheése E(y)=XP (modele correctement spécifié pour la partie systématique),

I’estimateur des moindres carrés d’une fonction estimable est sans biais:

Ek'B)=Kk'B|. (1.7)

Démonstration: c’est la méme que celle du critére d’estimabilité. k'p étant une fonction
estimable: 3t, k'=t'X, son estimateur des moindres carrés k'ﬁ peut se mettre alors sous la

forme k'B=t'Py. Alors E(t'Py)=t'PXp; or PX=X d’ou E(k'B)=t'Xp=Kk'B, QED.

A noter que cette propriété ne nécessite aucune hypothése sur la structure de variance

covariance V des résidus.

Sous I’hypothése additionnelle V =0’I, (indépendance et homoscédasticité), on

montre que k 'fi est le meilleur estimateur linéaire sans biais (BLUE) de k', et que

Var(k'B) = o’k '(X'X) k|. (1.8)

Comme précédemment, on part de la forme: k'ﬁ =t'Py et Var(k'ﬁ) =t'PPto’. En utilisant
la propriété d’idempotence de P et en remplacant P par son expression en (1.6), il vient

Var(k 'ﬁ) =t'X(X'X) X'to” soit le résultat en (1.8) puisque

Enfin, sous I’hypothése de normalité des résidus, la distribution de 1’estimateur est elle

aussi normale: k'ﬁ~./\/’[k'|3,02k'(X'X)f k} .

A 12
Soit SSE = Hy —XB|| , SSE peut s’écrire comme la forme quadratique suivante:

SSE =y'(I-P)y, (I-P) étant idempotente; on en déduit tout d’abord un mode de calcul

simple de SSE, soit

SSE=y'y-B'X'y=y'y-R(B), (1.9)



ou R(B) désigne selon la notation de Searle (1971), la part de variation «expliquée» par le

modele qualifiée aussi de réduction due au modele B .

Par ailleurs E(SSE)=p'X'I-P)Xp+tr(I-P)oc’. Le premier terme s’annule puisque
PX =X. De plus (I-P) étant idempotente, sa trace est €gale a son rang soit N —r(X) et
E(SSE) = [N — r(X)]O'2 , d’ou un estimateur sans biais de la variance résiduelle:

6° =SSE/[N -1(X)]. (1.10)
13. Tests d’hypotheéses

Soit a tester I’hypothése nulle H, : k' =m contre son alternative contraire, H, :k'B#m . ou
k' est une matrice (rx p) dont les » lignes sont linéairement indépendantes. Pour ce faire, on

va se placer sous 1’hypothése forte suivante: e ~ N(0,5°1,,). Sous H, :
A A -1 A
(k'B—m)'[Var(k'B)] (k'B—m)~;(f(k). (1.11)
Or Vark'B)=c’k '(X'X) k (cf. formule 1.8), la statistique définic par

. S
Q= (k "B m)'[k "(X'X) k} (k "B m) est donc proportionnelle a un Khi-deux soit

Q~c’y; (1.12)
De méme,
SSE=y'y-B'X'y ~ 0" 73 ix - (1.13)

Comme @ et SSE sont indépendants, on peut donc former la statistique

0/c’r
SSE/o? [N -1(X)]

F(H,) = du rapport de deux variables Khi-deux divisée chacune par son

nombre de degrés de liberté , et qui est une variable de Fisher-Snedecor. La variance inconnue

2 . .
o~ se simplifiant, on a donc:

3 Q/r B A
F(HO)_SSE/[N—r(X)] F[r;N-1(X)]|. (1.14)

14. Interprétation géométrique

Considérons le sous espace vectoriel C(X)={u:u:XB;BeR” ;X(pr)} engendré par les

colonnes de X, le principe des moindres carrés revient a chercher un vecteur de C(X) qui

c e , . g 2 , y. . . .
minimise le carré de la norme euclidienne ||y— u|| . Géométriquement, il s’agit de la

projection orthogonale de y sur C(X). Cette projection est telle que y —XP soit orthogonal a



tout vecteur colonne de X, soit <y—XB,Xj >=0, Vj=1,2,....p, X=(X1,X2,...,Xj,...,Xp)ce

qui s’écrit encore

X,(y-XB)=0
X, (y-XB)=0
& X'(y-XB)=0< X'XB=X'y (1.15)
X (y-XB)=0
X, (y-Xp)=0

Une illustration est fournie dans le plan IT pour X=(X,,X,). On a donc par exemple:
<OM,04>= |04 < y'Py=y'PPy
lom] =[jod] +[am] = y'y=y'Py+y'(1-P)y,

avec ||OA||2 =R(B);||AM ||2 = SSE, et qui traduit notamment ’orthogonalité de OA (Py ) et de

AM ((I-P)y).
De méme, le test de I’hypothése nulle H; :k'B=m s’interpréte comme la recherche

d’une solution (vecteur OB) dans un sous-espace de C(X) de dimension < p telle que OB

soit la projection orthogonale de OM sur ce sous-espace. Le triangle OBA est rectangle en B
selon le théoréme dit des «trois perpendiculaires», ce qui, formulé autrement, traduit le fait
que cette solution est également la projection orthogonale sur ce sous-espace de la solution

des moindres carrés du modele complet.

Dans le cas de la partition B=(B,,B,)' avec H,:B,=0, on peut écrire:
lo4] =|0B[ +||B4| < R(B,.B,)=R®B,)+R(B, |B,) et le test de H, utilisera le fait que la

statistique basée sur ||BA 2, (RB, B,/ [r(X)—r(Xl)] au numérateur du F) est indépendante

de celle basée sur |AM ||2 ([y'y—R(B,.B,)]/[N-r(X)] au dénominateur) eu égard a

I’orthogonalité des vecteurs BA et AM .



15. Généralisation
On considére le méme modéle qu’en (1): y=XB+¢&, mais cette fois avec un vecteur de
variables aléatoires résiduelles ayant une structure quelconque V de variance covariance
e~(0,V).

V ¢étant par définition une matrice définie positive, on peut lui appliquer une
décomposition de Cholesky V=UU' ou U est une matrice triangulaire inférieure de plein

rang. Si I’on considére la transformation y*=U""y, le modeéle correspondant a y * s’écrit:

y¥=X*B+g* (1.16)
X*=U"X (1.17)
e*=U"s. (1.18)



On se ramene ainsi au cas précédent d’un modele linéaire classique avec des résidus

indépendants et homoscédastiques puisque €*~ (0,I,). On peut donc écrire le systéme sous

la forme X*'X *ﬁ = X*'y qui équivaut avec les notations d’origine a:

X'VIXB=X'V'y|. (1.19)

En fait, il suffit de connaitre V a une constante pres ainsi qu’on 1’observe dans la forme
V =0’H ou H est une matrice définie positive connue et o’ un scalaire positif inconnu.

La décomposition selon les moindres carrés (1.5) conduit a:

y¥*=P*y*+(I-P*)y* (1.20)
ol P* = X * (X *'X*) X *',
Revenant a y par la transformation inverse y = Uy *, il vient

y=Uy*=UP*U 'y+(I-UP*U "yet, si I’on pose Q=UP*U"", c’est-a-dire

Q=XX'V'X)X'V, (1.21)
et,ona
y=XB+&=Qy+(1-Q)y. (1.22)

Q est le projecteur orthogonal de y sur C(X) selon la métrique V™' appelé aussi projecteur

V! orthogonal; on le note quelquefois Q = P 15 deméme I-Q est le projecteur de y sur

Vo
I’espace orthogonal a C(X). Q est aussi idempotent et vérifie donc Q(I-Q)=0
(orthogonalité de XB et de &).

En fait, la manipulation qui vient d’étre effectuée peut s’interpréter comme un

changement de base Y = Z,- Ve, =zi y;e, ou les vecteurs de la nouvelle base (*) choisie
orthonormale (<e,,e, >= 4, ), sont définis par la transformation e, = Zkuikek d’ou il résulte

que

<Y, Y>=yy =y(U"H)U'ly=y'Wy. (1.23)

oy*
oy

La transformation U est choisie de fagcon que le jacobien |J| ou J=det soit,

comme dans la loi normale, la racine carrée du déterminant de la précision V™'. Comme ici

J =(detU)™" = (det W)"*, on prend W=V"".
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\2. Mode¢les linéaires mixtes\

La théorie de I’analyse de variance en dispositif déséquilibré s’est développée principalement
dans le cadre du mode¢le linéaire a effets fixes (Yates, 1934; Herr, 1986) sans qu’apparit de
distinction nette entre effets fixes et aléatoires Il fallut attendre 1’article d’Eisenhart (1947)
pour que fussent clairement précisées les notions de modéles a effets fixes et de modéles a
effets aléatoires. Il est donc nécessaire de bien définir ces concepts délicats & manipuler.

21. Définition.
211. Présentation de Rao et Kleffe

Un modg¢le linéaire mixte est un modele linéaire tel qu’en (1.16) y =XB+¢, € ~(0,V), dans
lequel la variable aléatoire & est décomposée comme une combinaison linéaire des variables

aléatoires structurales u,; £k =0,1,2,...,K non observables (Rao and Kleffe, 1988, pages 61-
63):

K
e=, Zu, =Zu|, (1.24)

ou Z(Nx%) =(ZO,ZI,ZQ,...,Zk,...,ZK) est une concaténation de matrices connues Z, de

dimension (Nxg,) et u, xl):(ulo,u'l,u'z,...,u'k,...,u'K)' est le vecteur correspondant des
variables structurales u, = {u,d}; [=1,2,...,q, tel que
u~(0,2), (1.25)

Dans (1.25), X est une fonction linéaire de paramétres € ;m=1.2,..., M , les matrices F

m

étant des matrices données carrées d’ordre g, = ][::O q, , soit
,=>"0F (1.26)
u m=l m-m"* °

On ne posera pas de contraintes spécifiques sur 8, et F, dans le cas général hormis

que ces parameétres et ces matrices doivent assurer la positivité de 2 . Ce modele étant posé,

la matrice V de variance covariance des va observables y est une fonction linéaire en les
paramétres 6 ;m=12,..,M puisque par définition: V=7Z% Z'= ZZZI ZF 7'6, , soit,

€ncore:

M
v=> V0| (1.27)

Cette propriété est une caractéristique de ce qu’on entend sous le vocable de «modele

m-m >

., . . . . . , . M
linéaire mixte» qui est tel qu’a la fois, son espérance p = X et, sa variance V = E V.0
-

sont des fonctions linéaires de parameétres.
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Dans cette présentation, les effets aléatoires apparaissent en définitive comme un

moyen de structurer la matrice de variance-covariance V des observations.

212. Exemples

Un exemple classique réside dans le modele linéaire mixte a K facteurs aléatoires
indépendants qui s’écrit:

y=XB+> " Zu, +e, (1.28)

ou encore, en incorporant la résiduelle dans la structure générale des u via u, =e¢; Z, =1,
K

y=XB+>, Zu,, (1.29)

et, pour lequel, E(y)=XB, u, ~(0,05;1,), E(u,u,)=0,Vk =1 et, donc,
K L) '
Z,=®cl et V= D OLZ, .
Il est a noter que les mémes propriétés de linéarité de V en les parametres subsistent

dans le cas ou les facteurs u, sont corrélés entre eux comme cela se produit dans les modeles

«péere» et «grand-pere» des généticiens (Quaas et al, 1979) ou dans les modeles a coefficients
de régression aléatoires (Laird et Ware, 1982). Ces modeles s’écrivent dans le cas le plus
simple:

y=XB+Zu,+Z,u,+e (1.30)

ou par exemple u, = {”u} est le vecteur des «intercepts» des individus (indicés par i) mesurés

de fagon répétée et u, = {u,, }, celui des pentes tels que

2
I I
Var(ulj= O T =30I,, (1.31)
u, opl, o1,
Uy O'12 Op . . ’ 2 2
avec X = var = , | formée par les variances de I’intercept (o ), de la pente (o)
Uy, Op O,

et leur covariance (o}, ).

Par définition du modéle, il vient:

e I, 0 0 0 0 0 0 0 0 0 0 0
varju, [=c;| 0 0 0|+57|0 I, 0 +02(0 0 0 |+5,/0 0 I,
u, 0 00 0 0 0 0 0 I 01 0
(1.32),

qui suit bien la forme linéaire (1.27).
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22. Approche marginale de modéles hiérarchiques

221. Présentation de Lindley-Smith

La référence en ce domaine est ’article de Lindley and Smith (1972) intitul¢ «Bayes
estimates for the linear model». On considére un processus d’échantillonnage gaussien en
deux étapes relatives aux données et aux parameétres de position respectivement:

a)y|0,,C, ~N(A0,,C),

b) 6,10,,C, ~N(A,0,,C,). (1.33)

La résultante de ces deux étapes conduit a la distribution marginale des données suivantes:
y|0,,C, ~ N(A,A,0,,C, + A,C,A)). (1.34)

Pour s’en convaincre, il suffit d’écrire a) et b) sous forme de modeles lin€aires soit

y=A0, +e e~ N(0,C)

(1.35)
6,=A,0, +u; u~ N(0,C,)
et, en reportant la deuxiéme équation dans la premiére, on obtient:
y=AA0,+Au+e, (1.36)

qu’on identifie bien a la structure y = Xp+ Zu +e.

On se référe quelquefois au qualificatif de «mélange» pour désigner 1’approche

marginale de modeles hiérarchiques. En effet, un mélange d’un nombre fini (p) de

composantes ayant chacune pour loi f(y|0,) avec par exemple un vecteur de parametres

0, = ( U, 0! )' comportant I’espérance 4 et la variance o; a une densité qui s’écrit:

P
fy)= zizlﬂ-if(y | ei) 5
ou r, est la proportion de la composante i telle que Zip:l T, =1.

Cette sommation finie se généralise au cas continu et peut alors rendre compte d’un processus
de marginalisation :

S =[Sy [wdp. (1.37)

tel celui réalisé en (1.34) f(y)= j;z(el |C)f(y|9,,C,)d0, par intégration des paramétres

0,.

222. Exemples

-Le modele «perex» de la sélection animale
Dans les espéces animales domestiques, la sélection des reproducteurs males s’effectue
fréquemment a partir des performances de leurs descendants obtenus par accouplement de

chacun des peéres avec un échantillon de femelles reproductrices. Conditionnellement au
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mérite génétique u, de chaque pere, un modele simple d’analyse réside dans le modele
linéaire suivant (Henderson, 1973 ; Thompson, 1979):

Yyl =x;Btu;+e,
avec

E(y; |u)=x;B+u; e, ~iid(0,07)
ou y, est la performance du j" descendant du pére i; X;.fB représente la contribution des
facteurs systematiques de milieu et ¢, la résiduelle.

Si I’on pose:

Yo =05} W ={}, X, =(X0.X000 XX ),

—(x”,x X xl.n‘_), Z,., =1

i(pxn;) - (290 Rjjocees -1 n; 2

on peut écrire la loi conditionnelle des observations sachant les mérites des peres sous la

forme matricielle suivante:

y|u~N(XB+Zu,R), (1.38)
avec R=0"1,.
En fait, il est d’'usage de considérer que le vecteur u des effets des péres est lui-méme

une va d’espérance Qg et de matrice de variance covariance G .

u~ N(Qg,G). (1.39)
Qg correspond a une structuration des peres en différentes souches ou groupes ancestraux
(Thompson, 1979; Quaas and Pollak, 1980; Quaas, 1988) et G = Ao représente la variabilité

génétique entre ceux-ci compte tenu de la matrice de parenté A . Marginalement ¢’est-a-dire
apres avoir éliminé par intégration la variation des u, on a:
y ~N(XB+ZQg,ZGZ'+R), (1.40)
ce qui équivaut au modele linéaire mixte suivant:
y=XB+ZQg+7Zu*+e, (1.41)
avec u*~N(0,Ac’) et e~N(0,0671,).
-Le modele a coefficients de régression aléatoires
On peut introduire ce mod¢le a partir de 1’exemple simple des données de croissance faciale a

4 ages (8, 10, 12 et 14 ans) de 11 filles et 16 gargons présentées par Pothoff et Roy (1964).

14



Ces données ont ¢té analysées en détail par Verbeke et Molenberghs (1997) et Foulley et al
(2000).

Un modéle simple et pertinent d’analyse de ces données consiste en 1’ajustement d’une
droite de régression propre a chaque individu. Si i désigne I’indice du sexe (i=1,2 pour les
sexes femelle et méle), j I'indice de la période de mesure (j=1,2,3,4) avec ¢, le temps
correspondant et k celui de I’individu intra-sexe (k=1,2,...,11 pour i=1; k=1,2,...,16 pour i=2),
ce modele s’écrit:

Ve = Ay + Byt +ey (1.42)
ou 4, est!’intercept propre a I’individu ik et B,, la pente.
Conditionnellement aux valeurs des coefficients de régression A

B, des individus, le

ik >
modele (1.42) est un modele linéaire classique du type décrit en (1.1) a va résiduelles
indépendantes.

Si, maintenant, en une deuxiéme phase du raisonnement, on considére que les individus

représentent un échantillon aléatoire des enfants de chaque sexe, les 4, et les B, sont des
variables aléatoires qu’on peut aisément caractériser par leurs deux premiers moments:

SN =] 1

Cela revient a décomposer 1’intercept et la pente en la somme de deux parties:

A, =a;+ay, (1.44a)

B, =p+b, (1.44b)
une composante systématique &, et 3, propre a chaque sexe et un écart aléatoire centré @, et
b, propre a I'individu k du sexe i.

Ce faisant, le modele d’origine se met sous la forme usuelle:

Vik =0+ Bt +ag +byt; +ey (1.45)
qui sépare la partie fixe (o, + B¢,) de la partie aléatoire (a, +b,t,).
Si I’on pose y, :{yijk},eik :{eijk} s Bo =(a.,—a, B, 5= B) w, =(ay.b,)" auxquels
correspondent les matrices d’incidence X, =(1,,0,,t,0,) si i=1, X, =(1,,1,,t,t) si i=2
et Z, =(1,.t) avec t,, = {tj} , (1.45) s’écrit sous la forme matricielle typique d’un modele

linéaire mixte:

Y. =X,B+Z,u, +e,, (1.46)
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2
o o
Otl uik ~ (0’ G)a eik ~ (0, R) avec G = a azb
Gab Gb

et R=01,.

Un modele linéaire mixte apparait donc comme un mod¢le linéaire dans lequel toute ou partie
des parameétres associés a certaines unités expérimentales sont traités comme des variables

aléatoires du fait de I’échantillonnage de ces unités dans une population plus large.
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ANNEXE I-A

IDémonstration PX = X|

C’est une conséquence des deux lemmes suivants (Searle, 1982, p62-63)
Lemme 1 : Pour toute matrice réelle A(nxn) = {aij} ;A'A=0=>A=0.

En effet, le jéme ¢lément diagonal du produit s’écrit Z; af,. et sa nullit¢ implique a, =0, Vi
et cela est vrai aussi Vj .

Lemme 2 : Pour toutes matrices réelles R, S et X, RX'X=SX'X= RX'=SX"

Cela découle de I'identité suivante : (RX'X-SX'X)(R-S)'=(RX'-SX")(RX'-SX")".

Si RX'X=SX'X, Ia relation ci-dessus est nulle ; on peut donc appliquer le lemme 1 au
membre de droite d’ou RX'=SX".

Par application du lemme 2 a3 X'X(X'X) X'X=X"'X, on a X'X(X'X) X'=X", soit en
transposant X(X'X) X'X=X,ie PX =X, QED.
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ANNEXE I-B

1) Dispositif a deux facteurs croisés A et B suivant:

[Paramétrisation et codage]

A\B (1) (2) (3)
(M Hi Hio His
@) Hyy Hy Hos

ou f4; est I’espérance des observations de la ligne i etdelacolonne j.

2) Analyse par un modéle additif: s, = st +a, +b,

21) Paramétrisation en écart a une cellule de référence («incremental effects models» SAS); GLM, Mixed,

Genmod
b
H @ @ () 2 A3)
1, 1 1 0 1 0 0
e 1 1 0 0 1 0
L5 1 1 0 0 0 1
Ly, 1 0 1 1 0 0
Ly 1 0 1 0 1 0
Loy 1 0 1 0 0 1

La régle pratique consiste a éliminer les colonnes de X relatives aux niveaux de la cellule de référence: ici a, et
b, . C’est la convention choisie par SAS de mise & zéro des niveaux d’indice les plus élevés. La paramétrisation
relative a ce codage de X est la suivante : (1= p+a,+b, ; a4, =a,—a, ; by=b—b; ; b, =b, —b,.

22) Paramétrisation « Z = 0 » («deviation from the mean model» SAS); Catmod, Logistic

a b
H &) @ (M 2 €))
m 1 1 0 1 0 0
i, 1 1 0 0 1 0
ek ! ! 0 -1 -1 1
10, 1 1 1 1 0 0
1h, 1 1 1 0 1 0
My ! 1 ! -1 -1 !

La matrice X a toujours 4 colonnes pour que la paramétrisation soit de plein rang. Cette fois, on retranche la
colonne @, de celle de g, et la colonne b, de celle de b, et de celle de b,, les colonnes a, et b; étant

écartées. La paramétrisation relative a ce codage de X est la suivante: ji= y+a+b ou @ = (a,+a,)/2 et
b=(b+b,+b)/3:d =a—-a=(a,—a,))/2 ;b =b-b=2b—b,—b)/3;
b, =b,—b = (b —2b,—b,)/3.

3) Analyse par un modéle avec interaction: g4, = f+a, +b; + (ab)ij

La matrice X a maintenant 6 colonnes, les 4 précédentes auxquelles s’ajoutent deux colonnes pour les effets
d’interaction. Celles-ci s’obtiennent en multipliant la colonne @, par respectivement celle de bl et celle de bz.
Dans le cas d’une paramétrisation en écart a une cellule de référence, on obtient ainsi:
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a b ab
H M @) 2 an 12
m 1 1 1 0 1 0
s 1 1 0 1 0 1
L5 1 1 0 0 0 0
Ly, 1 0 1 0 0 0
Ly 1 0 0 1 0 0
Ly 1 0 0 0 0 0

La paramétrisation relative a ce codage de X est la suivante:

M=y 5 G =y — sy 5 by = gy — 1y 5 by = ) — s
(ab),, :(ﬂn _ﬂzl)_(ﬂls _ﬂ23)? (ab),, :(ﬂlz _ﬂzz)_(ﬂla _ﬂza)-

De méme, avec la paramétrisation « % = 0 », X s’écrit:

a b ab
H Q) &) 2 at 12)
m 1 1 1 0 1 0
Ly 1 1 0 1 0 1
s 1 1 -1 -1 -1 -1
Ly, 1 -1 1 0 -1 0
iy 1 -1 0 1 0 -1
s 1 -1 -1 -1 1 1

La paramétrisation relative a ce codage de X est la suivante :

f=p o a=p —p b= = by =, -
(ab)y, =y — gy — oy + 5 (ab)yy, = phy — g — iy + 41,

ol =(Zf:1u,»j)/J, K =(Zf:lﬂi,»)/1 et 41 =(Z;ﬂi.)/l=(Zf:,ﬂ‘,»)/J-

3) Justification
On se pose la question de déterminer X sous une paramétrisation de plein rang. On part d’'un modéle initial

E(y) = XB ou X est une matrice (N xk ) qui n’est pas de plein rang suivant les colonnes k > 1(X) = p
et est le vecteur correspondant (£ X 1) des coefficients de régression. On introduit un vecteur ]3 (px1)relatif
au modele E(y) = XB ayant une paramétrisation de plein rang et tel que [3 = TP, T étant une matrice de
passage (pX k) connue et de plein rang suivant les lignes. En identifiant les deux modéles, il vient XT =X

ouencore XTT'= XT'. Comme T est de plein rang suivant les lignes, TT" est inversible et X s’écrit:

X =XT'(TT')"
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Exemple: paramétrisation additive

1) en écart a la cellule (23)

110100
1 1.0 010 1 01 0O
1 1.0 0 01 01 -1 00 O
X= ; T= . On trouve bien par application de la
1 01100 00 0 1 0 -1
1 01 010 00 0 01 -1
11 01 0 0 1]
1 1 1 0]
1 1 0 1
) 1 1 00
formule: X = .
1 01 0
1 0 0 1
1 0 0 0]
2) paramétrisation « % = 0 »,
1 1 1 0]
1 1/2 1/2 1/3 1/3 1/3 1 1 0 1
0 1/2 -1/2 0 0 0 : 1 1 -1 -1
Tsécrit: T = et on obtient X =
0 O 0 2/3 —-1/3 -1/3 1 -1 1 0
0 O 0 -1/3 2/3 -1/3 1 -1 0 1
11 -1 -1 -1}
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\1. Approche directe\

11. Définition

Le concept de prédiction apparait rarement dans la littérature tel quel; il reste la plupart
du temps indéfini ou confondu avec celui de 1’estimation alors qu’il s’en distingue nettement.

Faire une prédiction, c’est substituer & une variable aléatoire /' -non observable dans
les conditions du probléme- une variable aléatoire /4 qui est fonction d’une variable aléatoire
Y observable’ie W = f(Y)et telle que la distribution de W soit aussi proche que possible de
celle de W selon un critére donné. Il pourra s’agir d’une distance (ex celle de Kullback-
Leibler) ou d’un critére tel que 1’erreur quadratique moyenne MSE =E [(W — W)z] .

12. Meilleur prédicteur

Nous utiliserons ici la terminologie d’Henderson. 11 s’agit ici du meilleur prédicteur au
sens de D’erreur quadratique moyenne (abréviation BP en anglais). Soit W= f(Y)le
prédicteur et w= f(») une réalisation, I’erreur quadratique moyenne se décompose en
2

E[(W—W)z] :Var(Vf/—W)Jr[E(W)—E(W)] 2.1)

On peut appliquer au premier terme de (2.1) le théoréme de conditionnement-

déconditionnement de la variance, soit

Var(W - W) =E, {Var[(W —W)|y = y]} + Var, {E[(W —W)|y = y]} (2.2)

Or, conditionnellement & Y =y, W|Y =y est une constante égale a w; son espérance est
donc w et sa variance est nulle, si bien que (2.2) se réduit alors a:
Var(W —W)=E, [ Var(W |[Y = y) |+ Var, [W-EW|Y = ) ]. (2.3)

Le premier terme de (2.3) ne dépend pas du choix du prédicteur; le second s’annule si 1’on

prend un prédicteur tel que

w=EW|Y =y)|. (2.4)

Par construction, ce prédicteur vérifie

E(W)=E,[EW|Y = y)|=EW) (2.5)

Il est donc sans biais -au sens de E(Vf/) =E(W) - et minimise (2.1) par construction; il vérifie
¢galement la propriété suivante:

MSE =Var(W —W)=E, [ Var(W|Y = y)]. (2.6)

? Aucune hypothése a ce stade sur la dimension de Y
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Ces résultats s’appliquent aisément au cas gaussien avec u':(,uW, p,Y) et

Z — |:ZWW ZWY

. On connait alors la forme de la loi conditionnelle de W|Y =Yy qui est aussi
ZYW Z'YY

normale

2.7)

-

W|Y =Y NN(IUW,Y’ Zywy)

ou, lespérance i, , =, +X,,X,, (y—uy) est linéaire en 'y, et la variance

Xy =Zuw —Zpy Ly ne dépend pas de la valeur particuliére de y pour laquelle on

conditionne.
13. Meilleur prédicteur linéaire

Comme précédemment, on suppose que les deux premiers moments de la loi conjointe
(W,Y ') sont connus, mais la forme précise de celle-ci ne 1’est pas. Une des possibilités est de
se restreindre a une classe particuliére de prédicteurs, en 1’occurrence aux prédicteurs linéaires

de la forme: W =a, + a'(Y—p, ). Dans ces conditions:
E( y —W)zao—,uw
Var(l/f/—W) =a'Y,a-2a'%, +X
Soit O=E (Vf/ - W)2 }, la minimisation de @ par rapport aux coefficients a, et

a={a.}; k=12,..,N (N étant la dimension de Y) conduit aux équations aux dérivées

partielles suivantes:

0
% 2ay - 1) =0
oa,

a—Q:2ZYYa—2):.YW =0.
oa

Il vient immédiatement: a, =y, (propriété de non biais) et a=X, X, si bien que le

prédicteur s’écrit en définitive:

W:/JW + 2y, 2y (Y =1y (2.8)

et a la méme forme que le meilleur prédicteur résultant du cas gaussien. Ce prédicteur vérifie
0 = Var (W - W) = Var(W) - Var(W) (2.9)

avee
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Var(#)=a'L,a=a'L, =X, 2 % . (2.10)
14. Meilleur prédicteur linéaire sans biais (BLUP)
Ce type de prédicteur est connu mondialement sous 1’acronyme anglais de BLUP’
(«Best Linear Unbiased Predictor») suite aux travaux notamment de CR Henderson a
I’Université Cornell et de ses ¢léves (Harville, Quaas, Schaeffer).

Ce prédicteur a été proposé pour répondre a la levée de I’hypothése de moments connus
de 1 ordre de la distribution de (W,Y'). On va supposer que ceux-ci sont des fonctions
linéaires d’un vecteur de paramétres inconnus pe R"ie u, =k'B et p, = Xp. En fait, on
exprime la variable aléatoire a prédire sous la forme: W = 1, + m'u. Dans ces conditions le
probléme se formalise dans un cadre de modéle linéaire mixte: Y=Xp+Zu+e ou
E(Y)=Xp et Var(Y)=V =ZGZ'+R avec u~(0,G) et e~(0,R).

141. Formulation classique

On recherche un prédicteur qui soit a priori
a-linéaire,
b-sans biais au sens de E(Vf/) =EW),
c-optimum au sens de I’erreur quadratique moyenne (MSE) minimum.
Ces conditions se traduisent respectivement par:
a) W=a'Y
b)X'a-k=0,,
c) Var(l/f/ -W)=a'Va+m'Gm-2a'Cm minimum ou C=Cov(Y,u")=2G.
Minimiser I’expression en c¢) sous la contrainte b) revient & minimiser la fonction
O(a,0)=a'Va-2a'Cm+20'(X'a-k), (2.11)
ou 0 estun vecteur (p x1)de multiplicateurs de Lagrange.

Les dérivées partielles par rapport a a et 6 s’écrivent:

9 _5va-2cm+2X0, (2.12)
oa
o0
—==2(X"'a-k). 2.13
00 ( ) ( )

Par annulation, on tire: a=V"' (Cm — XG) et, en reportant dans (2.13), il vient:

X'v' (Cm - XB) =k soit, en résolvant en 0, puis en reportant dans 1’expression de a:

? Le sigle a été en fait introduit par Goldberger (1962)
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a'=(m'C-0'X")V"', dou
W=a'Y =m'C'V"Y+(k'—m'C'V‘1X)(X'V"X)_ X'V'y,

qui, apres réarrangement, se met sous la forme:

Wzk'ﬁ+m'C'V‘1(Y—X|§), (2.14)

ou ﬁ est I’estimateur GLS de B, solution du systéme:

X'V'Xp=X'V'Y (2.15)
et C'V_I(Y—Xﬁ) s’obtient a partir du meilleur prédicteur linéaire de w, ie
flzCov(u,Y')[Var(Y)]_1 [Y—E(Y)](cf (2.8)) dans lequel on a remplacé E(Y) par son

estimateur GLS, Xﬁ . Ce résultat est du a Goldberger (1962; page 371, eq 3.13) et Henderson
(1963; page 161, equations 19 et 20).

142. Formulation de Bulmer

Bulmer (1980) s’intéresse a la meilleure prédiction d’une variable centrée telle que u a

partir d’une variable observable Y d’espérance inconnue X[ . Pour ce faire, il procéde en

deux étapes:

-corriger les observables pour les effets systématiques estimés par GLS, soit
Y, =Y-Xp
-prédire u par le meilleur prédicteur linéaire de Y, ce qui est 1égitime puisque u et
Y, ont une espérance connue —en 1’occurrence nulle.
Un tel prédicteur u s’écrit:
i =Cov(u,Y,)[Var(Y,)] Y.. (2.16)

Il est a noter que cette expression fait intervenir une inverse généralisée des observables
puisque, du fait de la correction, la matrice de variance covariance correspondante n’est plus

de rang N mais de rang N —rang(X). En fait Y, peut s’écrire sous la forme Y, = VPY ou
P=V'(I-Q) et Q=X(X'V'X)" X'V est le projecteur défini au chapitre I (cf 1.21).

Alors
Var(Y,) = VPVPV = VPV (V étant une inverse généralisée de P),

Cov(u,Y,)=C'PV, V' =(VPV)

et, en remplacant dans (2.16), on obtient:
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u=C'PY, =C'PVPY =C'PY, (2.17)
qui correspond bien au BLUP, 41 =GZ'V"' (y —Xf&)de u, basé¢ sur Y (Gianola et Goffinet,
1982).
L’expression (2.17) illustre bien la propriété d’invariance par translation du BLUP
puisque @ est bati sur (I-Q)Y et que QX =X.
Cette expression permet également d’établir aisément que:
Var(ia) = Cov(a,u")=C'PC, (2.18)
et donc, du fait de I’absence de corrélation entre et u—u, que:
Var(i—u)=G-C'PC. (2.19)
On notera a ce propos que s’il s’était agi du meilleur prédicteur linéaire-cas ou p, ou B est
connu-, on aurait eu:
Var(i-u)=G-C'V''C. (2.20)
On notera que, dans (2.19), P remplace V'; on retrouvera cette substitution dans

I’estimation des composantes de la variance quand on passe du maximum de vraisemblance

au maximum de vraisemblance restreinte.

. Equations du modéle mixte]

21. Approche d’Henderson
C’est dans un article collectif de Biometrics publi¢ en 1959 (Henderson et al, 1959)

qu’Henderson présente le systtme des équations dites du modéle mixte. Celles-ci sont

relatives a 1’estimateur des moindres carrés généralisés, ﬁ=(X'V‘1X)_ X'V'y de B et au

Blup, i =GZ'V™' (y - Xﬁ) de u qui interviennent dans un modele linéaire mixte de la forme:
y=Xp+Zu+e (2.21)

ou E(y)=Xp et Var(y)=V =ZGZ'+R avec u~(0,G), e~(0,R)et Cov(u,e')=0.

Ce systéme s’écrit comme suit:

XVR—IX XVR—IZ ﬁ XVR—ly
1 1 L= b (2.22)
Z'R"X Z'RZ+G  ||u Z'Ry

L’intérét calculatoire de ce systéme est manifeste puis qu’il ne nécessite plus le calcul de
I’inverse de la matrice V de variance-covariance des observations dont la dimension N peut

étre trés élevée; celle-ci n’a pas dans le cas général de structure simple contrairement a2 R..
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22. Justification
Henderson présente ce systeme de facon détournée -et un peu étrange- comme le résultat de la

maximisation de la densité conjointe f(y,u) (ou de son logarithme) par rapport a et u sous

I’hypothéese de multinormalité, soit:
[~3,ﬁ =argmaxg, In f(y,u). (2.23)

On résumera ici les étapes de cette maximisation. On part de la décomposition de la
densit¢ conjointe en le produit suivant: f(y,u)= f (y|u) f(u)ou y|u~N (Xp+Zu,R)et
u~N(0,G) . De 1, on tire:

—21nf(y|u) :N1n27z+ln|R|+(y—XB—Zu)'R’1(y—XB—Zu)
—2In f(u) =¢In27+1n|G|+u'Gu.
La minimisation de la somme de ces deux termes considérée comme fonction de B et u se

fait par I’écriture et I’annulation des dérivées partielles. Soit /(B,u;y)=1n f(y,u), on a:

8[_2I(Bauvy] :—ZX'Ril(y—XB—Zu) =0
op
w =2Z'R'(y-Xp-Zu)+2G'u=0
u

d’ou découle immédiatement le systeme (2.22).

Cependant, /(B,u; y)n’est pas le logarithme d’une vraisemblance classique de données

observées et, de plus, u n’est pas un parametre si bien qu’a priori toute cette manipulation
parait tout a fait illégitime sinon infondée; heureusement, comme on le verra a la fin, la
maximisation de cette fonction trouve sa pleine justification non plus dans un cadre classique
mais dans la théorie bayésienne.

Au préalable, et ce fut la démarche d’Henderson, on va montrer qu’on peut identifier les
solutions Bet i du systéme (2.22) a celle des moindres carrés généralisés d’une part, et au
Blup, d’autre part.

La premiére équation s’écrit aussi: X'R™'Xp=X'R™ (y—Zii). De méme la deuxiéme,
(Z 'R'Z+G™ )ﬁ =Z'R"' (y - Xﬁ) et, en reportant I’expression de @i de celle-ci dans celle-13,
on obtient:

X'WXB=X'Wy, (2.24)

ou
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W=R'-R'Z(ZR'Z+G") Z'R". (2.25)
On peut montrer (cf. annexe II) que:

W=(Z'GZ+R) =V, (2.26)

et donc = ﬁ :
De la deuxieéme équation, on tire:

~ -1 -\ - A

i=(Z'R'Z+G") Z'R (y—XB)
et, en utilisant les résultats de I’annexe A, on montre alors que:

Q- -\ it -l

(zR'2+G") Z'R'=GZ'V
ce qui établit I’identité entre la solution t en u et le BLUP u.

23. Variances d’erreur
Il s’agit des variances d’échantillonnage des effets fixes et des variances d’erreur de
prédiction des effets aléatoires. Leurs expressions ont été établies par Henderson (1975) dans
un article de Biometrics.

Soit C une inverse de la matrice® des coefficients et qu’on peut partitionner comme suit:

C C -1 - -l
{ﬁﬁ ﬂu}{XR X XR'Z } 227

C, C. Z'R'X Z'R'Z+G

On montre que:

Var(k'B) =k'C kK, (2.28a)
Cov(k'B,ia") =0, (2.28b)
COV[k'ﬁ,(ﬁ—u)']Zk'Cﬁu, (2.28¢)
Var(i)=G-C,, . (2.28d)
Var(i—u)=C,,, (2.28¢)

La formule en a) découle directement de 1’expression de I’inverse d’une matrice

B -1
partitionnée en blocs. En effet Cﬁﬁ=[X'R‘IX—X'R"lZ(Z'R_lZJrG‘l) lZ'R_IX} soit,

compte tenu de la propriété (2.26) se réduit a Cy; = (X'V‘IX)_1 QED.

* Celle-ci est supposée ici de plein rang pour simplifier la présentation, mais les résultats s’appliquent aussi a une
inverse généralisée.
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La propriété b) découle de I’orthogonalité des projecteurs Q et I-Q (c.f. 1.21) comme

suit. k'p étant une fonction estimable peut s’exprimer comme une combinaison linéaire de
I’espérance des observations soit k'p=1"'Xp d’ou k'ﬁ = X‘Xﬁ = A'Qy ; par ailleurs comme
on I’a montré précédemment (2.21) u=C'Py d’ou Cov(k'B,ﬁ‘) =A'QVPC; or
QVP=Q(I-Q)=0.

Compte tenu de b), la relation c¢) est équivalente a Cov(k'f},u') =-k'C,,. Or k'ﬁ peut

~ X
se mettre sous la forme: k'B=k'(Cﬁﬁ Cﬂu)(

Z'jR_]y de telle sorte que

X'R'Z

7 'RIZJG . Or, par définition de ’inverse:

Cov(k'B,u’)=k'(C,, cﬂu)(

(e )(Z' :};ZGIJ =0, d’ot Cov(k'B,u’)=—k'C,G"'G ,QED.

Pour établir la relation d), on peut utiliser la propriét¢ du BLUP selon laquelle
Var(ia) = Cov(ua,u') (c.f. 2.18); puis, on procédera selon la méme méthode que précédemment

X

en écrivant: 0 = (Cuﬂ C.. )( 7

' X'R'Z
Ry si bien que Cov(i,u")=(C , C G ou
,J y q ( ) ( ufp uu)(Z,R_]ZJ

encore (I -C,G"' )G , QED.
La relation e) sur la variance des erreurs de prédiction u—u découle de la relation
précédente et du corollaire de (2.18) a savoir. Var(u) = Var(a)+ Var(u—1).
Enfin, s’agissant d’une combinaison linéaire w=Kk'f+m'u quelconque d’effets fixes et
d’effets aléatoires, sa variance d’erreur de prédiction s’obtient par :
Var(w—w)=k'C k+m'C,m+2k'C, m. (2.29)

24. Interprétation bayésienne

Les liens qui unissent le BLUP et la statistique bayésienne ont été soulignés depuis
longtemps (Dempfle, 1977; Lefort,1980; Gianola et Fernando, 1986, Searle et al, 1992). Les
fondements de I’analyse bayésienne du modele linéaire ont été donnés par Lindley et Smith
(1972) et c’est cette présentation que nous utiliserons ici comme au chapitre 1 (cf 2.2
«approche marginale de modeles hiérarchiques»). Rappelons briévement qu’on considére ici
un modele gaussien avec échantillonnage en deux étapes suivantes:

1) y|0~N(TO,R), (2.30a)

2) 0] a~N(Wa,Q). (2.30b)
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D’aprés le théoreme de Bayes, f(0|y)ocf(y|0)f(0), et comme les densités a

priori f(0) et conditionnelle des observations f(y |0) sont conjuguées,

f(0|y) cexp(-Q/2), (2.31)

avec
O=(y-T6)'R"'(y—T6)+(6-Wa)'Q"'(6-Wa)
On montre que Q peut se mettre sous la forme alternative suivante:

0=(0-6)(T'R'T+Q")(0-6)+y'R"y

X , (2.32)
~0'(T'R'y+Q 'Wa)+a'W'Q 'Wa
ou @ est solution du systeme
(TR'T+Q7")0=T'R'y+Q 'Wa|. (2.33)

Seul le premier terme de (2.32) concoure a I’expression du noyau de la densité a

posteriori qui est donc
0|y~N (é, c). (2.34)
ou
C=(TR'T+Q")
Posons 8=(p'u")', T=(X,Z), f(8)=f(B)f(u) avec p~N (B,,B)et u~N(0,G). On
va différencier le statut de pet de u en postulant une information a priori uniforme sur p

qu’on peut assimiler a un cas limite de la spécification précédente pour B — o ; dans ce cas,

o 0 0 o 0 0B, 0) . T .
Q - L, @ Wa— L = si bien que: 0 =<|3',u')' est solution
0 G 0 G 0 0

du systéme des équations du modele mixte.
De plus, on a compte tenu de (2.34):

Bly.G.R~N (B,C,, ), (2.35)

uly,G,R~N(4,C,,) . (2.36)
propriétés qui conduisent & une interprétation plus riche des solutions des équations du
modele mixte; en particulier 1’estimateur GLS [3 des effets fixes s’interpréte dans cette
formulation comme 1’espérance a posteriori de B sachant Get R avec une information a

priori uniforme sur B. Cela permet au passage d’illustrer la différence de présentation des
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propriétés de I’inférence sur les effets fixes en statistique bayésienne B|y~N (B, C ﬂﬁ) par

rapport a la présentation classique ﬁ~/\/’ (B, Cﬁﬂ). De la méme fagon, le BLUP de u

s’interprete comme 1’espérance de la distribution a posteriori de u sachant Get R et la
variance de cette distribution équivaut alors a la variance des erreurs de prédiction sous
I’hypothése de normalité:
Var(uly,G,R) = Var(i —u) (2.37)
Le lien apparait maintenant clairement avec la justification premicre donnée par

Henderson de ses équations. En effet, considérons la densité conjointe de (y,u,p). Sous

I’hypothése d’une distribution uniforme de f, f(y,u,p) est proportionnelle a f(y,u|p):
f(y,u,p) = f(y,ulB)f(B) o f(y,ulp) (2.38)

qui est la densit¢ qu’Henderson maximisait par rapport a fet u. D’un autre coté par

application du théoréme de Bayes, on trouve que f(y,u,p) est proportionnelle a f(,uly)
f(y,u, p) = f(ylu, p)f(u, p) o (B, uly) (2.39)

Donc maximiser le logarithme de (2.38) par rapport a et u équivaut a chercher le mode de

f(B,uly) en (2.39). Or, sous I’hypothese de normalité, I’espérance et le mode de la densité a

posteriori de (P,u)sont confondus et égaux a la solution GLS [§ de B et au BLUP u de u

basé sur les observations y .

Au terme de ce chapitre, nous avons défini un cadre conceptuel rigoureux pour aborder
le probleme de la prédiction. Celle-ci se décline suivant différents vocables selon les
hypothéeses faites sur la distribution conjointe de la variable a prédire (W)et de la variable
prédictrice (Y).

L’espérance de la distribution conditionnelle joue un role cl¢ dans la prédiction avec le
critére d’erreur quadratique moyenne. Dans ce cadre, la théorie permet des développements
simples quand on se place sous 1I’hypothése de normalit¢ ou dans le cadre de prédicteurs
linéaires.

Dans le cas ou les moments de premier ordre ne sont pas connus et peuvent se
formaliser dans le cadre d’un mode¢le linéaire mixte, on aboutit dans la classe des prédicteurs
lin€aires sans biais a un prédicteur aux propriétés remarquables et qui, a la suite de

Goldberger et d’Henderson, est dénommé BLUP. Son intérét est d’autant plus grand qu’on

31



peut D’obtenir simplement a partir d’un systéme d’équations dites du modele mixte
d’Henderson qui est proche de celui des moindres carrés et dont la justification apparait tout
naturellement dans un cadre bayésien.

Cela explique pourquoi le BLUP et les équations du modele mixte ont une portée qui
dépasse largement le cadre des applications de la génétique et la sélection animale pour
lesquelles ces outils ont été congus au départ par Henderson, puis développés avec grand
succes par ses ¢leves. Ils sont aussi au ceeur des méthodes d’estimation des composantes de la
variance et des algorithmes correspondants tel 1’algorithme EM. Les équations d’Henderson
constituent donc un outil incontournable dans la traitement général -qu’il soit classique ou

bayésien- des modeles mixtes linéaires et méme non linéaires.
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ANNEXE II-A

INVERSE DE V|

Considérons la partition suivante en blocs d’une matrice carrée non singuliére et de son

-1
A11 A12 _ All Alz (H-A 1)
21 22 :
A21 Azz A A

inverse :

ou A, et A,,sont deux matrices carrées supposées non singuliéres.

La démonstration proposée repose sur les deux résultats suivants:
A= (Au - Ale;Azl )_l = Al_ll + Al_llAlezzAzlAl_ll ) (II-A.2)
A" =-A A, A” =-A"A AL (II-A.3)

Idem pour A et A*'.

Posons maintenant:

A, A R R™'Z
S 1 1 - (1I-A.4)
A, A,| |ZR' ZR'Z+G

En appliquant la 1°° partie de (II-A.2) & A%, il vient:

-1 -1

A”=(A,-A,A A,) =(ZR'Z+G'-Z'R'RR'Z) =G

De méme pour A'', on a:
_ -1

Al = [Rl —R’1Z(Z'R’1Z +G") ‘ Z'RI} =W (II-A.5)
puis la 2™ partie de (II-A.2) donne:

A"=R+RR"'ZGZ'R'R=R+ZGZ'=V, QED. (ITI-A.6)
L’application de (II-A.3) a la matrice définie en (2-1.4) conduit a:

A”=-A,/A,A” =-RR"'ZG =-ZG

A”=-A"A A, =-VR'Z(Z'R'Z+G" )71
soit a I’égalité:

GZ'V'=(Z'R'Z+G") Z'R", (I-A.7)

¢tablissant 1’équivalence entre le BLUP u et la solution a des équations d’Henderson.
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Introductio

Le maximum de vraisemblance est une méthode générale d’estimation due a Fisher
(1922,1925) qui possede des propriétés statistiques intéressantes surtout dans les conditions
asymptotiques (Cox et Hinkley, 1974). Dans le cas de la variance, cette méthode a été utilisée
par Crump (1947) dans des situations simples (mode¢le a une voie, dispositifs équilibrés). Mais
ce sont Hartley et Rao (1967) qui, les premiers, en donnérent un formalisme général dans le
cadre du modgc¢le linéaire mixte gaussien (cf la revue historique de Searle, 1989). L’article de
Hartley et Rao marque la rupture avec les estimateurs quadratiques. Ceux-ci s’inspiraient de
I’analyse de variance qui fut la technique reine imprégnant fortement tout le secteur de
I’estimation des composantes de la variance depuis les travaux originaux de Fisher sur le
coefficient de corrélation intra classe jusqu’aux méthodes d’Henderson (1953) dites I, 1T et 111
basées sur les idées de Yates (1934).

Avec Rao (1971ab), le choix des formes quadratiques quitta I'univers de I’ANOVA et des
moindres carrés pour se rationaliser autour de propriétés d’optimalité. En fait, cette classe
d’estimateurs quadratiques sans biais et localement de norme minimum (dits MINQUE)
(LaMotte, 1973) n’apparait plus aujourd’hui que comme une transition entre la période
d’Henderson et celle du maximum de vraisemblance puisque le MINQUE aboutit
naturellement sous sa forme itérée a un estimateur du maximum de vraisemblance.

On distingue a cet égard deux approches. La premiére, dite en abrégé ML, utilise le concept
classique de fonction de vraisemblance de I’ensemble des parametres (position et dispersion).
L’autre méthode, dite REML, fut introduite par Anderson et Bancroft (1952) et Thompson
(1962) dans I’analyse de dispositifs équilibrés puis généralisée a un modéle mixte gaussien
quelconque par Patterson et Thompson (1971). Cette méthode considére la vraisemblance
d’une fonction des observations, libre des effets fixes —«contrastes d’erreur» dans la
terminologie d’Harville (1977)- d’ou son appellation de vraisemblance restreinte ou résiduelle
(acronyme anglais REML). Cette vraisemblance résiduelle possede par ailleurs une
interprétation bayésienne (Harville, 1974) en terme de vraisemblance marginalisée par

intégration des effets fixes selon une distribution uniforme.

Les techniques du maximum de vraisemblance ont suscit¢ beaucoup d’intérét en
biostatistiques depuis le début de la décennie 80. La raison principale de ’essor de ces
méthodes en est la faisabilit¢é numérique grace au développement simultané des ordinateurs,

d’algorithmes performants (algorithmes dits EM «Expectation Maximisation» ou Al
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«Average Information» par exemple) et de logiciels faciles d’accés et d’utilisation (SAS,
ASREML, Splus). L’objet de cet article est de faire le point sur ces deux techniques

d’inférence dans une optique a la fois pédagogique et opérationnelle.

1. Méthode dite ML

11. Fonction de vraisemblance
Nous nous placerons tout d’abord dans le cadre du modele linéaire gaussien exprimé

sous sa forme la plus générale:

y~N(XB.V,) (3.1)
ou Xest la matrice (N x p)des p variables explicatives relatives aux N ¢éléments du vecteur
y des observations et P, le vecteur (px1)des coefficients de ces variables ou effets fixes.

V, est la matrice (N xN)de variance-covariance des observations (notée en abrége V)

supposée symétrique, définie-positive, dépendant d’un vecteur y € I’ de parametres et dont la
structure caractéristique est, dans le cas des modeles linéaires mixtes, V = Zsz o Vi7, ou les

V, sont des matrices réelles connues.
La densité des observations y s’écrit:

—N/2| -1/2

py (y|B.1)=(27) |V eXp[—%(y—XB)'V“(y—XB)}, (3.2),

d’ou le logarithme de la vraisemblance L(B,y; y) =In pY(y| B,y) (dite logvraisemblance)

considéré ici comme une fonction des parametres B et y (Edwards, 1972):

L(B,y;y)= —gln(Zﬂ)—%ln|V| —%(y—X[i)‘Vl (y-XB), (3.3a)

ou, sous sa forme « —2L »

—2L(B,y;y)=NIn(27)+ ln|V| +(y—-XB)'V'(y—XB)|. (3.3b)

12. Maximisation

121. Dérivées premieres

Rappelons que la recherche des points o= (B LY ')' qui maximisent L (a; y) (ou
minimisent —2L(a;y)) soit
Q = arg max s L(asy) (3.4)

se fait habituellement en annulant les dérivées premieres:
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oL (asy)
oa

Une telle démarche ne doit pas étre abordée sans prudence. Il importe, en effet, de bien

=0 (3.5)

vérifier 1) que les points ainsi obtenus appartiennent a I’espace paramétrique, et 2) que les

*L(a)

dérivées secondes en ces points
dooa'

<0 forment une matrice définie-négative. Si la

condition B € R”ne pose aucune difficulté, par contre I’espace paramétrique I' de y doit étre

soigneusement précisé en fonction du modele adopté. La restriction minimale découle de la
condition V >0 (définie-positive) mais, dans la plupart des cas, la définition de I’espace
paramétrique I' imposera des restrictions supplémentaires. Par exemple, dans un modéle

linéaire mixte unidimensionnel a K facteurs aléatoires indépendants plus une résiduelle tel
que V= ZkKZOZ,{Z'kG,f ,onaura I'= {0'3 >0; 0} 20, Vk= 1,...,K} :

La propriété de négativité de la matrice des dérivées secondes aux points annulant les
dérivées premieres conditionnent [’existence d’un maximum mais qui n’est pas
nécessairement global. Il est peut étre difficile -du moins fastidieux- de répertorier tous les
maxima locaux et d’évaluer la vraisemblance en ces points ainsi qu’en bordure de 1’espace
paramétrique. Cela nécessite alors le recours a des techniques de maximisation sous
contraintes (cf annexe I). Les choses se simplifient beaucoup lorsque L est une fonction
concave du parametre (ou d’un transformé bijectif) puisque alors les conditions de premier
ordre garantissent I’existence d’un maximum global.

Les dérivées premiéres s’écrivent:

82L) i

o - X V-XB). (3:6)
020 OV gy Y -, (3.7)
o7, 07, 07,

Or, d’apres des résultats généraux (cf par exemple Searle, 1982, pages 335-337 ; Harville
(1997, pages 305-308)

In|V
8n_|| = tr(V“ G_V] (3.9)
0y, 0y,

-1
Ny Ny, (3.9)
oy, 0y,

d’ou
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d(-2L) _ tr(v_l 8_Vj_(y xpy v Y vy -xp). (3.10)
a}/k a]/k 8]/1{

L’annulation des dérivées premicres en (3.6) et (3.7) conduit au systéme suivant:

X'VIXp=X'V'ly, (3.11a)
tr[Vl a_vj —(y—xﬁ)'\?*la—v Viy-Xp)=0. (3.11b)
87/k V=V Yk V=V

ou ﬁ et V solutions de ce systéme (quand elles existent) désignent les estimations du
maximum de vraisemblance (ML).

Quelques simplifications sont possibles. Tout d’abord, on élimine ﬁ de (11b) en reportant son
expression ﬁ= (X'V*IX)i X'\Af*ly de (3.11a) dans (3.11b) et en remarquant que:
V'l(y—Xﬁ):V_l(I—Q)y:l:’y ol P représente la notation abrégée de la valeur de la

matrice

P=V'(I-Q)=V'-XX'V'X) X'V, (3.12)

(Searle,1979) évaluée au point V = V, Q=XX'V'X) X'V représentant le projecteur des

moindres carrés généralisés.

122. Cas général

Le systeme en (3.11ab) ainsi obtenu n’est pas soluble plus avant et I’on a recours a un

algorithme du second ordre tel que 1’algorithme de Newton-Raphson ou celui des scores de

Fisher qui implique le calcul respectivement du hessien L(o;y) =8 L(a;y)/fada’' et de la

matrice d’information J(a) =E,, [—L(u;y)] (cf annexe II), soit , pour cette dernicre

X'V'X 0
J(a):{ 0 F/Z} . (3.13)
ou
(F), = tr(V‘l Ny a_vj : (3.14)
. 91
En ce qui concerne vy, on résout itérativement le systéme suivant:
Iy AT =Ly (3.15)

ou
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AV = oyt T (y) = 0 L(esy)/ Oy,

L(,\{[n]) — {_%tr[v—l a_Vj+lva8_VBy}

¢ ) (3.16)
07, 2 0y

y=y"

Iy =1/2F (y'"). (3.17)
L’estimation ¥ étant obtenue, on en déduit ﬁ par résolution de (3.11a) qui est alors linéaire en
B.Si V est connu, I’estimateur des moindres carrés généralisés (dite GLS en anglais) est
solution du systtme X'V 'XP=X'V'y. On retrouve ici pour le ML de B une forme

A

similaire dans laquelle V est remplacé par son estimation ML, V .

123. Cas du modéle mixte.

Alors 'V ZZion% , OV/0y, =V, ou V, est une matrice (NxN) connue, par exemple:
V, =Z,Z, (cf1.29) et I’équation (3.11b) devient

tr(V7'V, ) -y PV, Py =0. (3.18)
Du fait de la linéarité de V, on peut expliciter le terme de gauche de (3.18) en

tr(V'V) =2 te(VIVVV, .

Le systéme en (3.18) s’écrit alors

K A ~ N VB B
> tr(V VYV, =y BV, Ry|, (k=0,1,...,K) (3.19a)

soit encore, sous forme matricielle :

A

Py =

: (3.19b)

<S>

ou Fest une matrice (K +1)x(K +1) symétrique et g un vecteur (K +1) définis par

F={f,}={e(V'V,V'V)}, (3.20a)

g={g,}={y'PV,Py}, (3.20b)

F et g correspondant a F et g évalués au point y=7.
Le systetme en (3.19ab) est un systéme non linéaire qui, en général, n’a pas de solution

analytique; on le résout numériquement par un algorithme itératif ayant la forme d’un systéme

linéaire en vy :

F(v" )y =g(v"). (3.21)
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. I . g, . \ . ,

ou y est la valeur courante du parametre a I’itération n a partir de laquelle on évalue la
matrice des coefficients F et le second membre g; puis on résout le sytéme ainsi obtenu en
v de fagon a obtenir la valeur du paramétre a I’itération suivante.

On montre aisément que le systeme (3.21) équivaut a celui des équations des scores de Fisher
(3.15) au coefficient 2 pres.

Lorsque V, =Z,Z, , le calcul des éléments de F et de g en (3.20ab) et (3.21) peut étre a son
tour grandement simplifié en tirant avantage du fait que la trace du produit d’une matrice et de
sa transposée est égale a la somme des carrés des élements de la matrice, ie tr(AA") = ZU a; .
Ainsi, f, =Y (2,V''Z, )2] et g, => (Z,Py).

13. Variantes

131. Vraisemblance profilée

L’idée a la base de la vraisemblance profilée est de maximiser la vraisemblance par

étapes successives. On va d’abord maximiser L(B,y;y) par rapport a B, puis la fonction

ainsi obtenue L, (y;y) = L(ﬁy,y;y) (du seul parametre vy ) dite vraisemblance profilée (Cox
et Reid, 1987) ou concentrée (Harville et Callanan, 1990) par rapport & v . En bref
Max,, L(B,y;y) = Max, [MaxI3 L(B,y;y)]
= Max, L(ﬁy,y;y) , (3.22)
- Max, L, (1:y)
ou ﬁy = (X'VY*IX)f X'V.ly est solution GLS de B.
Compte tenu de (3.7b), il vient immédiatement :
2L, (v;y)= Nln(27r)+ln‘Vy‘Jr(y—Xﬁy )'VY"1 (y —Xﬁy)

ou encore, en ignorant I’indicage par y dans V :

—2L,(y;y)=NIn(27)+1n|V|+y'Py|. (3.23)
oP oV s . , . .
Sachant que 3 = —I_’a—l_’ (cf annexe II), on en déduit facilement 1’expression du gradient
Vi Vi
ol 2L, (y;
L]y 2) g,
97, 07, 07,

qui coincide bien (au coefficient /2 pres) avec (3.11b).
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Deux remarques méritent d’étre faites a ce stade: 1) la vraisemblance profilée permet de
réduire la dimensionnalité du probléme en «concentrant» la fonction de logvraisemblance sur
le paramétre d’intérét aprés avoir €liminé le parametre parasite; 2) toutefois, la fonction ainsi
obtenue n’est pas a proprement parler —en dépit de son appellation- une fonction de
logvraisemblance méme si, a 1’occasion, elle conserve certaines de ses propriétés (Berger et

al, 1999).

132. Formulation de Hartley-Rao

Hartley et Rao (1967) se placent dans le cadre du mod¢le linéaire mixte gaussien usuel

décrit en (1.28) et (1.29).

Au lieu de paramétrer V en terme de variances ¢° = {a,f} , Hartley et Rao isolent la
variance résiduelle O'é et introduisent le vecteur mn, :{nk =c;/ aé} des rapports de
variance. Pour ce faire, ils posent V=Ho, ou H=1, +Z:f=1 Z,Z.7, est fonction du seul
vecteur 1. Comme |V| = |H|0'§N , la logvraisemblance s’écrit :

—ZL(B,O'g,n;y)=N1n(27r)+ln|H|+N1n0'§

. (3.25)
+(y—XB)'H‘] (y—XB)/O'g

On calcule ensuite les dérivées partielles de —2 L(B, oy, n;y) par rapport aux parametres soit :

a(;} b__oxm (y-Xp)/ o, (3.262)

0(2L) _ N _(y-Xp)'H(y-XB) (3.26b)
oo, o, o, ’

a=2h) _ tr[Hl a—Hj—(y—XB)'Hla—HHl(y—Xﬁ)/ag. (3.26¢)
on, on, on,

Par annulation de ces dérivées, on obtient immédiatement :

X'H'Xp=X'Hy, (3.27a)

& =(y-XB)'H'(y-XB)/ N, (3.27b)

tr(ICI"lHk ) —(y-Xp)'H'HH'(y-XB)/ 62 =0, (3.27¢)

oo H,=0H/on, =2, Z, .
On retrouve en (3.27a) le méme résultat que celui obtenu avec 1’estimateur GLS dont

I’expression ne dépend pas explicitement de la variance résiduelle. La formulation de Hartley-
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Rao permet 1’obtention directe d’un estimateur ML de cette variance dont Henderson (1973) a
donné un algorithme de calcul trés simple faisant intervenir les éléments des équations du

modele mixte. Comme précédemment (cf (26a)), on peut remplacer (34c) par une équation

plus accessible. Sachant que, H=1, + ZZK:] H,7 , ona:

tr(H"lHk)=zK tr(H"lHkH"lH,)nl+tr(H"2Hk), d’ou le systeme lin€aire itératif

=1
suivant :

Zf; tr(H“HkH“Hl )LGmm[nﬂ] _

) ) (3.28)
[(y ~XB)'H'H,H ' (y-XB)/ 62 —tr(H’sz)]

n=nl")
pour k=12,...K .
La méme remarque qu’en (3.21) s’applique ici quant a la simplification des calculs des
¢léments des traces intervenant en (3.28).

14. Aspects calculatoires

141. Algorithme d’Henderson

Henderson (1973) se place également dans le cadre du mode¢le linéaire mixte précédent
et considére la dérivée de —2L, par rapport a o; (cf(3.18)) qui s’écrit :
o(-2L,)/00; =tr(V'2,Z,)-y'PZ,Z,Py.
Or, le meilleur prédicteur linéaire sans biais (acronyme BLUP en anglais) 6, de u, s’écrit par
définition: &, =Cov(u,,y')V"' (y —Xﬁ), soit 1, =0, Z, Py d’ou une fagon d’exprimer la
forme quadratique y'PZ,Z,Py sous la forme équivalente: 4,4, /oy .

A -1 ' q, tr((_jkk)o-g |
De méme, Henderson montre que: tr(V Zka):—z—— ou, en posant

Oy o}
72=(2,.2,,..,2,,..2), C, :[(Z'Z+O'§G1 )1} est le bloc relatif au facteur k de taille
kk

K
(g, xg,)dans I'inverse de la partie relative aux effets aléatoires (ici G:@a,fl , ) de la
k=1

matrice des coefficients des équations dites du modele mixte. L’annulation de la dérivée

conduit a :

4,67 =i, +tr(C, )6, (3.29)
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Pour la variance résiduelle Gg , le raisonnement s’appuie sur la vraisemblance profilée
—2L,(mny)=-2 L[ﬁ (m).6; (n), n;y] relative a la formulation d’Hartley-Rao, soit

2L, (ny)=N(In2z+1)+In|H|+ NIn&; (n).
ou

6; (m)=[y—B(n) |'"H'[y-B(n)|/N
avec ﬁ(n) solution de X'H"Xﬁ(n) =X'H'y.
Sachant que le BLUP & de e=y—Xp—Zu s’écrit é = RPy, (ici R =10, ), on en déduit une
forme équivalente a cette derniére expression:

6 (n)=|y'y-B'(n)X'y-i'(n)Z'y |/ N (3.30)
Henderson propose alors d’utiliser les expressions (3.29) et (3.30) comme bases d’un

algorithme itératif de calcul des estimateurs ML de G,f , soit :

= [ ()i, (1) + € () o

(3.31a)

-

[y BNy 23 631

ou n'! = {G,f ) oy [”} est le vecteur (K xl) des rapports de variance des K facteurs aléatoires

a la variance résiduelle a I’itération ¢. Ainsi, dés 1973, Henderson anticipait un algorithme de
type EM permettant de calculer simplement les estimateurs ML des composantes de variance.

Une variante de cet algorithme qui mérite attention a été formulée par Harville (1977). L’idée
est de récrire (3.29) sous la forme suivante: ¢,6; =, + tr((i?kk )&,f /7, et de factoriser &; a

gauche d’ou la formule:

of =i, (n")a (n") ]/ g, ~ e[ € (n) ]/} (3:310)

qui est combinée pour la variance résiduelle avec (3.31b). Outre la simplicité de leur forme,
ces deux algorithmes garantissent la localisation des valeurs dans 1’espace paramétrique.
Enfin, dans de nombreux exemples, 1’algorithme d’Harville s’est avéré nettement plus rapide

que celui d’Henderson.

142. Calcul de —2 Lp

Reprenons I’expression (3.23) de la logvraisemblance profilée (multipliée par moins deux)

—2LP:N1n27z+ln|V|+y'By (3.32)
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On a montré, d’une part, que Py=V'(y— Xﬁ) , et d’autre part, que dans le cadre d’un

modéle linéaire mixte tel que V=ZGZ'+R, Py =R'¢, d’ou il découle que :
y'Py=y'R'y-0'T'Ry, (3.33)

ou 0= (ﬁ La ')'est solution des équations du mod¢le mixte d’Henderson.

Par ailleurs, si ’on utilise les régles du calcul du déterminant de matrices partitionnées (cf

annexe III ), on montre que :
V|=|R||G|[z'R"Z+G"|. (3.34)
On en déduit le résultat général suivant, applicable a tout modele linéaire gaussien de type

y~N (X, ZGZ'+R) :

2L, = NIn27+In|R|+In|G|+In|Z'R"'Z+G"'
A . (3.35)
+y'R'y-0'T'Ry

Cette formule permet de simplifier grandement le calcul de la logvraisemblance profilée et
donc aussi du maximum L, de la logvraisemblance
2L, =-2L,(G=G,,,R=R,,)

grace au recours aux ¢léments des équations du modele mixte d’Henderson. Par ailleurs, cette
formule va encore se simplifier dans maintes situations par la prise en compte des structures

particulicres de R etde G.

1421.V =Ho,

C’est la formulation d’Hartley-Rao, mais elle s’applique également a des modeles plus

. , . 2 \ \
complexes qui ne supposent pas nécessairement R =1,,0, comme par exemple les modeles a

structure d’erreurs autorégressives (Foulley, Jaffrézic et Robert-Grani¢, 2000). Dans ce cas:
y'R 6= [(y—xﬁ)'frl (v —xfsﬂ/c}g = NG2/6:=N
et,

~2L, =N(In27 +1)+In[R|+In|G|+ In|Z'R"Z+G|. (3.36)

En  (336), L,=L[B(n).6i(n).m]. R=R[6;(n).n]. de méme pour

G =G[67(n).n], n étant le vecteur des paramétres dont dépend H.

1422. R=1,0,
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Alors In|R|=N1Ino; et Z'R'Z+G ™' =(Z'Z+0,G ™)/ o7, d’oi

—2L,=N(In27+1)+(N-q)né, +1n|G|+ln‘Z'Z+&§G-‘

, (3.37)

ou ¢ représente le nombre de colonnes de Z.
K
1423. G=@G, et G, =A,0;
k=1

C’est la situation relative a K facteurs aléatoires indépendants, chacun ayant une
matrice de variance-covariance de la forme A,o; ou A, est une matrice définie-positive
connue (par ex A matrice des relations de parenté entre péres ou entre individus, ou a
Pextréme A, =1, , matrice identite).

K N K
2L, =N(n2z+1)+(N=3 q,)n6; + 31 g, Ino; +

(3.38)
z; 1n|Ak|+ In

Z'Z+g-]|(_)-lAkl(&§/a,f)

Cet inventaire n’a aucune prétention a 1’exhaustivité. Il faudrait également envisager les les
modeles multidimensionnels. Dans tous les cas, la formule générale (3.36) peut étre
appliquée.

15. Tests d’hypothéses

151. Loi asymptotique

Soit @, , I’estimateur ML de @ € A basé sur les observations y, d’un échantillon de

taille V. Sous des conditions de régularité précisées par ailleurs dans les ouvrages spécialisés
(espace paramétrique A compact; logvraisemblance continue et continlment dérivable a

I’ordre deux; existence de la matrice d’information et de son inverse), la suite

JN (& N —u) converge en loi vers une distribution normale centrée, de matrice de variance-
covariance Lim N [J N ((l):l_l quand N — oo (Sweeting, 1980 ; Mardia et Marshall, 1984)
soit, en bref:

N (i ~a) >N (0,Lim N[, (a)]"). (3.39)
ouJ,(a)=E [—62 L(e;y, )/ dada '] est la matrice d’information de Fisher relative a a..

Comme Lim N [J N (a)Ts’estime de facon convergente par N [J N (&)T, on peut alors

former le pivot asymptotique suivant (Leonard and Hsu, 1999, page 33-35):
I3 (6 —a) > N(0.1), (3.40)
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ou J "/*est la notation condensée relative a la décomposition de Cholesky suivante
3, (@)=d, =39,
La propriété en (3.39) se généralise a une fonction g(u)continﬁment dérivable (de R” dans

RY)

IN[g(iy)-g(0) ] >N [OaLimN ai((ﬁ)[h(a)}l aga'f:)j- (3.41)

152. Statistique de Wald

On va considérer le test de I’hypothése nulle: H;:k'B=m contre son alternative
contraire: H,:k'B#m ou k' est une matrice (rx p) avec r< p dont les r lignes sont

linéairement indépendantes et m un vecteur (rxl) de constantes, souvent nulles mais pas
nécessairement.

Nous avons vu précédemment (cf (3.13)) qu’asymptotiquement les lois de ﬁ et de ¥
(estimateurs ML) étaient indépendantes sachant que :

1J3,=X'V'X 0

J .
v(@) 0 3 =F/2

Dans ces conditions, on peut appliquer les résultats (3.40) et (3.41) a k'ﬁ, soit, sous

I’hypothese nulle,
W(k'ﬁ—m)?N(o,Lime'J;k), (3.42)
et, en posant jﬁ =X'V'X
.\ T/2 R
[(k J,k) } (k'B-m)->N(0.1,), (3.43)

d’ou, I’on déduit le Khi-deux asymptotique a » degrés de liberté:

(3.44)

-

(k'fs—m)'[k'(x'(fIX)1 kT (k'ﬁ—m)?}(f

qui est la statistique de Wald relative au test étudié. On obtient donc formellement la méme
chose que dans le cas ou V est connu, a la nuance prés qu’il s’agit ici d’une distribution
asymptotique. C’est pourquoi, 1’on voit souvent cette propriété présentée sous la forme

classique suivante :
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k'ﬁz/\/’[k'ﬂ, k'(X'VX) k} (3.45)

A proprement parler, la distribution asymptotique de k'ﬁ est dégénérée et cette notation est

donc un abus de langage qu’il faut interpréter avec prudence comme un raccourci
opérationnel, en gardant a ’esprit le cheminement rigoureux qui y conduit.

De nombreux logiciels proposent une option de Fisher-Snedecor pour ce test des effets fixes

par analogie avec le cas o V est connu a o, prés. En effet si V=Ho, et H est connu, en
~ - _1 ~

désignant par W la statistique (k'B —m)‘[k'(X'V"lX) k} (k'B—m) , on sait que, sous H,

[W(&g )]/r~F[r,N—r(X)] . Ici, on forme W /r ou W estla statistique (51) qu’on compare a

un F (r,d ) avec un nombre de degrés de liberté d qui est calculé selon une méthode

approchée (Satterthwaite par exemple). Mais ce procédé n’a pas de justification théorique.

153. Statistique du rapport de vraisemblance

Une alternative au test de Wald réside dans celui du rapport de vraisemblance de
Neyman-Pearson qu’on peut formuler ainsi (Mood et al, 1974, page 419 ; Cox et Hinkley,
1974, page 322, formule 50):

H,: {[3 eB, c R”}x{y eT} contre H, :{B € (B\BO)}X{’Y el'}. Par exemple, dans le
cas précédent, B correspond a R” et B, est un sous-espace réel de dimension p—r
correspondant & R” contraint par les 7 relations k'f=m.
Si I’on considére le maximum de la logvraisemblance L(B,y;y) =logp(y;B,y) selon les deux

modalités H, et H,UH,, et que I’on note respectivement:
L;= Ma’XBeBO,yeF L(B,y:;y)
Le =Maxy g, LB, 1Y),
on sait que la statistique A =-2L, +2L.suit asymptotiquement, sous H,, une loi de Khi-

deux dont le nombre de degrés de liberté est la différence de dimensions de B et de B, (Cox

and Hinkley, 1974, page 322) soit

A==2L,+ 2LC|HO 7Z§im(B)—dim(B0) (3.46)
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154. Statistique du score

Si I’on se place dans les mémes conditions que précédemment, le test du score proposé

par Rao (1973) s’appuie sur la statistique suivante :

U=S,J,S,, (3.47)

ot S, est la valeur de la fonction score S, =S, (B,y;y)=0L(B.v;y)/0B évaluée au point
des estimations ML, p=p et y=7 obtenues sous le modéle réduit et J 4> la valeur de la
matrice d’information de Fisher J, = —E[@z L(B,y;y)/ 6B8B'] relative a B, évaluée au
méme point soit jﬂ =J, (ﬁ,?) .

L’idée de ce test est tres simple : si I’on évaluait la fonction U (B,y) = S'ﬁJ #S; au point
des estimations ML ﬁzﬁ et y=17 obtenues sous le modele complet, alors U (fs,?)zo
puisque par définition, S ﬁ(ﬁ,?;y) =0. Evaluée en p=f et y=7, cette forme quadratique

s’interpréte comme une distance a sa valeur de référence nulle. Si elle est proche de zéro, on
aura tendance a accepter H, ; au contraire, plus sa valeur sera grande, plus on sera enclin a ne
pas accepter cette hypothése. Comme précédemment, sous 1’hypothése nulle, la statistique

U (B,?) tend asymptotiquement vers une loi de Khi-deux dont le nombre de degrés de liberté

est la différence entre le nombre de parameétres du modele complet et celui du modele réduit

U(ﬁ’?)‘HU 2 Ximiw)-ainisy) |- (3.48)

Un cas particuliérement intéressant est celui du test d’absence d’effets H,:p, =0
résultant de la comparaison du modéle réduit: y=Xpp +e et du modele complet
y=Xp+e=Xp, +X,B, +e ou, sous les deux modeles, e ~ N (0,V). Par ailleurs, X, et X,

sont supposés de plein rang pour simplifier. Dans ce cas, la fonction du score s’écrit

0

S, =X'V'(y—Xp) et sa valeur sous H, se réduita S =[ o ~ }01‘1 V=V(¥
g ( ) ' ! X,V l(y_lel) ( )

puisque, par définition, le score sous le modéle réduit est tel que X,V~'(y —Xlﬁ]) =0.1len

résulte que

U=(-XB) VX, (XVX)' | XV v-XB). (3.49)

Sil’onpose P, =V~ (I, -Q,) avec Q, =X, (X;V‘IX] )_] X, V™', (3.49) peut s’écrire aussi
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D 'D T 5 0 (=) I v' D
U=y'BX,(X:PX,) X.Py=|,(7)]'X.Ry, (3.50)
ot B, (7) est solution du systéme (X;l:’le )ﬁz (¥)=X,Py oucelle en B, du systéme général
(XVX)B(7)=X"Vy.

Il est intéressant de comparer cette statistique a celle de Wald appliquée au méme test

d’hypothéses. Par application de (3.44), il vient :

w=[B,(7) ] (X:BX,)B. (), (3.51)
ot B,(§) est solution du systéme (X;EXz)ﬁz (7)=X,Py et V=V(§) avec § estimation
ML sous le modele complet. I1 en résulte que

w=[B,(7)]'X:Ry. (3:52)

A I’examen de (3.50) et de (3.51), il s’avere que les statistiques de Wald et du score ont donc

la méme forme, la différence entre elles étant que la premiére est basée sur une estimation ML

de V soit V= V(ﬂ}) obtenue sous le modele complet alors que la seconde utilise 1’estimation

V= V(?) sous le modele réduit. Ces statistiques U et W peuvent se calculer aisément grace

a une formule développée par Harvey (1970, formule 3, p487).

155. Discussion

Les trois tests sont équivalents asymptotiquement (Rao, 1973 ; Gourieroux et Monfort,
1989). Le débat reste ouvert quant a leurs mérites respectifs a distance finie, avec toutefois
une préférence de certains spécialistes pour le test de Neyman-Pearson notamment si 1’on
replace la comparaison de modéles dans un cadre plus général tel que celui adopté par les
Bayésiens. S’agissant de conditions asymptotiques, il importe ¢également de s’assurer que la
structure particulieére des modeles étudiés autorise bien une application raisonnable de celles-
ci. Le nombre d’observations ou d’unités expérimentales (individus par ex) est-il suffisant?
D’une part, que se passe-t-il quand le nombre d’observations augmente? Est-ce que la

dimension p de P augmente corrélativement ou non? Si oui, comment varie N/ p ?
Le test du rapport de vraisemblance nécessite de contraster deux modeles: le modéle

complet (C) et le modele réduit (R) correspondant a H, alors que la statistique de Wald ne

requiert que la mise en ceuvre du modele complet. La statistique de Wald offre toutefois le

désavantage de ne pas étre invariante par transformation non linéaire des parametres. Enfin,
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avec les formules de calcul du maximum de la logvraisemblance présentées précédemment, la
différence en terme de difficulté et temps de calcul entre les deux n’est pas si grande.

Il est important de souligner que les deux mod¢les contrastés vis-a-vis des effets fixes p

comportent la méme structure de variance-covariance V(y). De la méme fagon, toute

comparaison de structures de V (y) se fera a structure d’espérance identique. Cette contrainte

technique inhérente a la procédure de test n’est pas sans poser des interrogations sur la
méthode de choix de ces deux structures dans les modeles linéaires mixtes. Pour contourner
cette circularité, on pourra étre amené a développer des tests robustes d’une des structures qui

soient peu sensibles a 1’autre.

Ainsi, dans le cas de données répétées y, = { yij} sur une méme unité expérimentale i, le

test robuste des effets fixes de Liang et Zeger (1986) permet de s’affranchir, dans une certaine
mesure, de I’incertitude qui existe sur la structure de variance covariance des observations. Il

se fonde sur I’estimateur « sandwich » de la variance d’échantillonnage de 1’estimateur

|§=( zl_lzlx;WX,. )_ z;lx;“’iyi des moindres carrés pondérés, soit

Var(k'B) = k'( 2] XWX, | (D XW VWX, )( X XWX, ) k

ou W, est une matrice de travail et la variance V, = var(y,) est remplacée par une estimation

1

convergente \7, = (yl. - X[ﬁ)(y[ - Xl.ﬁ)' .

Enfin, pour des raisons de concision, la discussion des tests relatifs aux structures de
dispersion est reportée a la suite de 1’exposé de la méthode REML ce qui n’exclut pas qu’on

puisse les envisager dans le cadre d’une estimation ML de tels paramétres.
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2. Méthode dite REML

21. Exemple simple

211. Estimateur

Pourquoi REML plutét que ML? Nous allons aborder cette question a travers un

exemple simple: celui de D’estimation de la variance a partir d’un échantillon de N

observations y,~. N (#,6°) supposées indépendantes et de méme loi normale d’espérance u

et de variance. o”. Du fait de ’indépendance des y,, la logvraisemblance se met sous la

forme suivante :
—2L(,u,02;y) = N(ln 27z+ln0'2)+ le(yl. —,u)2 /o”. (3.53)

On peut décomposer Zil( V.- ,u)2 en la somme

S (n—u) =N+ (7). (3.54)

ou y= (ZL yl.)/N est la moyenne des observations, et s = Zil(yl. —)7)2 / N, la variance

de I’échantillon, d’ou

2 — 2
+ —

2L(mo%y)=N 1n27r+ln0'2+s(o_y—2'u) , (3.55)
et les dérivées partielles par rapporta u et o’:

8(—2L/N)/8u=—2()7—,u)/0'2, (3.56a)

2 — 2
+ —_

0(-2L/N)/dc” =%—S(+”). (3.56b)
Par annulation de ces dérivées, on obtient:

a=y ., (3.57)
Et, pour N>2,

62, = +(7- ) =5, (3.58)
Or

E(6},)=(N-1)c*/N (3.59)

indiquant que I’estimateur s> du maximum de vraisemblance de o est biaisé par défaut, la

valeur du biais étant de —o°/N. C’est la constatation de ce biais qui est a I’origine du

développement du concept de vraisemblance restreinte (ou résiduelle).
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212. Correction du biais

. . . , 2 . yqe .
L’estimation de x interférant avec celle de o~, on va faire en sorte d’éliminer u . Pour

ce faire deux approches sont envisageables qui préfigurent les méthodes générales exposées
par la suite.
2121. Factorisation de la vraisemblance
Le principe est le suivant : on factorise la vraisemblance en deux parties et on ne retient

pour I’estimation de la variance que celle qui ne dépend pas de ££. A cet égard, on considére
la transformation biunivoque suivante :

Yooy = (21 9 Y 5 = (201:7)! (3.60)
ouz, = {zi =y, -yi=12,..,N— 1}, le vecteur des N —1 écarts ¢élémentaires a la moyenne.
S’agissant d’une transformation biunivoque, on peut donc relier les densités de y et de y*

par ’expression:
py (¥ 1.0%)=py (y* .07 )|J] 3.61)

oy

ou |J | est la valeur absolue du jacobien J = det (—j de la transformation.

s

Or, y et z, , sont indépendantes et la loi de z, , ne dépend pas de x d'ou la factorisation de
la densité de y * en:
Py (y¥1.67)=p, (2|07 )py (7| .07). (3.62)

Par ailleurs, eu égard a la définition de la transformation (3.60), la valeur du jacobien J ne

dépend pas des paramétres; on en déduit donc la décomposition suivante de la

logvraisemblance L(u,07;y)=Inp, (y|,u,0'2) :

L(u,0%y)=L,(0%;2, ) +L,(u,0°; ) +cste|, (3.63)

ou LI(O'Z;ZM):lnpz(zN71|0'2), Lz(y,az;)_/):lnp?()_/m,oj), la constante étant égale a
ln|J |
L’idée sous-jacente & REML consiste a n’utiliser que L,(c7;z, ) pour faire inférence sur

o’, d’ot le nom de (log)vraisemblance résiduelle ou restreinte (la restriction portant sur
I’espace d’échantillonnage) donné par Thompson (1989) a cette fonction ou de

(log)vraisemblance de «contrastes d’erreur» selon la terminologie d’Harville.
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Par spécification directe de la loi de z, ,~A(0,V,) avec V,=0c°(1, ,-J, ,/N), (par

définition J, =1,1,) ou indirectement, compte tenu de (3.63), on montre que :

—2L1(02;ZN_1):(N—l)(ln27z+ln0'2)—lnN+[zzl(yl.—)7)2}/02 (3.64)

Il s’en suit que :

o(-2L))

Py :[(N—l)a2 —st}/of‘,

et, par annulation :
6*=Ns*/(N-1); N>2 (3.65)

. . . . 2
qui est I’estimateur usuel, sans biais, de o~ .

2122. Remplacement de x par son espérance conditionnelle

Le point de départ du raisonnement réside dans la remarque suivante: si  était connu,

. . . . , A — 2
Iestimateur ML de o serait, comme indiqué en (3.58): 6° =s” +(¥ — ) dont la valeur est
toujours supérieure ou égale a I’estimateur 6° =s°; u est généralement inconnu, mais on

L. . . _ 2 . ,
peut prédire sa contribution au terme ( y - y) en remplagant ce dernier par son espérance

conditionnelle sachant les observations E[()_/— y)z y,azJ a D’instar de ce qui est fait avec

I’algorithme EM (Foulley, 1993).
YU

Jo? /N

statistique classique, comme )7|,u,02~./\f (1,07 / N) ou, en statistique fiduciaire (au sens de

L’écriture du pivot normal réduit ~N(0,1) peut s’interpréter a la fois, en

y,0°~N (7,67 / N) . Si’on admet cette derniére interprétation, on a

Fisher), comme u

EB?—#Y

et 1’équation a résoudre devient: 6> =s>+ 6>/ N qui a pour solution la méme expression que

y,azJ :Var(,u|)7,0'2):az/N,

celle obtenue en (3.67) par maximisation de la logvraisemblance résiduelle. Cette approche

illustre bien le fait que le biais de 1’estimateur de o tire son origine de la mauvaise prise en

compte par ML de I’incertitude liée a la fluctuation de g autour de son estimation y .
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22. Cas général

221. Concept de vraisemblance marginale

Ce concept a été formalisé en statistique classique par Kalbfleisch et Sprott (1970). En

résumé, le probléme revient a chercher une transformation biunivoque de y en (u',v')' telle

que les deux conditions suivantes portant sur [’expression de la densité conjointe

B,v)=1(v|B,y)g(u
a) f(v|B,y) =1f(v|7)

b) g(u

knowledge of B »

f(u,v

v,B,v) soient réalisées:

v,B,y) «contains no available information concerning y in the absence of

La densit¢ en a) permet ainsi de définir la vraisemblance «marginale» de 7. On dit
corrélativement que v est une statistique «ancillaire» de B, considéré ici comme paramétre
parasite, alors que 7y est le parameétre d’intérét.

Il faut bien admettre que la formulation de la condition b) reste quelque peu obscure
surtout en ’absence de critére rigoureux de vérification. Mc Cullagh et Nelder (1989)
reconnaitront eux-mémes la difficulté de justifier clairement 1’inutilité de cette information’
en ’appliquant au cas du modele mixte gaussien. Dans la discussion de cet article, un des

rapporteurs (Barnard) mit en avant le caractére indissociable des informations imputables a f
et y dans g(u|v,|3,y) («This information is inextricably mixed up with the nuisance

parameters»). Toujours est-il que c’est bien ce concept de vraisemblance marginale qui est a
I’origine de la théorie classique de REML comme en atteste bien 1’acronyme MMLE
(Marginal Maximum Likelihood Estimator) proposé par Rao pour désigner cet estimateur
(Rao, 1979).

222. Application au modéle linéaire mixte gaussien

Dans le cadre du modéle y~N (XB,V), Patterson et Thompson (1971) proposérent le
choix suivant pour la transformation y <> (u'v'):u=Hy et v=Sy=(I,-H)y, ou
H=X(X"'X) X" est le projecteur classique des moindres carrés «simples» qui est appelé

. .6 ., , . .
aussi «hat matrix»° dans la littérature anglo-saxonne. Par définition, la variable v est

> “In this example, there appears to be no loss of information on y by using R("v") in place of Y, though it is
difficult to give a totally satisfactory justification of this claim”

*Car Hy =y
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ancillaire de p puisque SX =0 et va donc servir a définir la vraisemblance «marginale» de

Y.
Deux remarques méritent 1’attention a ce stade:

1) En fait, peu importe le choix du projecteur pourvu que celui-ci ne dépende pas des
parametres. On aurait pu prendre aussi bien V= Sy = (I v —fI)y ot H=XX'WX) X'W,
(W étant une matrice symétrique connue définie-positive) puisque alors v =Sv.

2) v comporte N ¢éléments dont certains sont linéairement dépendants. Pour

¢liminer cette information redondante, Harville (1977) proposa de ne considérer dans la

vraisemblance marginale qu’un sous-vecteur not¢ K'y formé de N -—r(X) ¢éléments

linéairement indépendants appelés «contrastes d’erreur». Pour ce faire, il suffit comme 1’ont

montré Searle et al (1992, p251) de prendre K' sous la forme WS ou W est une matrice
[N —r(X)]XN de plein rang suivant les lignes. Un choix possible consiste (Searle, 1979) a
batir K avec les N —r(X) premiers vecteurs propres du projecteur S=1,, —H; soit A de
dimension N x[N —r(X)] cette matrice, elle satisfait alors A'A=1, et AA'=S et on

vérifie aisément que A' peut se mettre sous la forme WS indiquée ci-dessus.
Sur cette base, on peut exprimer la logvraisemblance résiduelle comme la

logvraisemblance de y basée sur K'y , soit :

—2L(1:K'y) =[J\J—r(X)]lnz;H1n|K'VK|+y'1<(K'VK)‘1 K'y. (3.66)
Cette expression va grandement se simplifier du fait des relations suivantes (Searle, 1979,
p2.14 2 2.17; Quaas, 1992 ; Rao et Kleffe, 1988, p247) :

K'VK|=|V||X'VX|)X'X| K 'K, (3.67a)

K(K'VK) 'K'=P (3.67b)
ou X est une matrice d’incidence correspondant a une paramétrisation de plein rang, (X
correspond a toute matrice formée par r(X) colonnes de X linéairement indépendantes si
bien que r(X)=p) et P=V"' (I, -Q) avec Q=X(X'V'X) X'V,

En insérant (3.67ab) dans (3.66), et en isolant la constante C, on obtient I’expression suivante

de la logvraisemblance :

2L(y:K'y) = C+In|V|+In|X"'V"'X|+y'Py (3.68a)

avee
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C =[N -r(X)]In27 -In|X'X|+In|K K] . (3.68b)
Dans certains ouvrages et articles, on trouve d’autres valeurs de constantes, telles que :

C'=[N-r(X)]In27-In|X"X|, (3.69a)

C"=[N-r(X)|In27. (3.69b)
La premiere (3.69a) (Welham et Thompson, 1997) est liée au choix particulier de K=A
propos¢ par Searle (1979) et tel que A'A =1, . La valeur C" résulte de I'interprétation
bayésienne de la vraisemblance marginale et sera développée dans le paragraphe suivant.

Si I’on dérive maintenant (3.68a) par rapport a ¥, , il vient :

_ K onX'V'X
o[ -2L(y:K'y)] =aln|V|+ n\_ _\+y, oP y (3.70)
a]/k 8}/k ah ayk

Par manipulation algébrique, on montre que :

oln|v| olnX'V'X
nV], X _‘:tr(l_’a—vj. 3.71)
07, 07, 07,
De méme, a partir de P=V"' (I N Q) , il vient (cf démonstration en annexe II)
RV,
07, 07,
d’ou
o| 2L(y;K'
2Ly yﬂ:tr(l:a—vj—y'lza—vlzy (3.72)
07, 07, 07,

Si V a une structure linéaire, soit V:ZZKZOVJ/, avec 0V/0y, =V,, et sachant que

PVP=P,alors tr(PV,)= Zio tr(PV,PV,)y, et le systéme des équations REML s’écrit:

> o tr(BV,BV,J7, =y BV, Py|. (3.73)
En posant

F={/,}={tr(BV,PV,)} (3.74a)

g={g,}={y'PV,Py}. (3.74b)

Le systeéme en (3.73) peut étre résolu numériquement par un algorithme itératif ayant la forme

d’un systéme linéaire en vy :

F(’Ym )y[wl] _ g(y[n] )

(3.75)

-
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La remarque faite a propos de ML s’applique également ici quant au calcul des éléments de
F qui se simplifie en tirant avantage de la forme que prend la trace du produit d’une matrice

et de sa transposée. Ainsi, f,, =Y. {Z A l_’Z,} :

2

i i
Au vu de ces équations, tout se passe de ML a REML comme si la matrice P était
substituée a V' dans la matrice des coefficients du systéme (82), ces deux matrices
partageant la propriété d’avoir V comme inverse (respectivement généralisée et classique).
Mais, cette substitution a son importance sur les propriétés de ML et de REML. Ainsi,
o[L(r:K'y)]

I’espérance du score
07,

:%[y'lzvkl_’y—tr(l_’Vk)] des équations REML est par

définition nulle, alors que celle du score relatif a la vraisemblance profilée

a[%;(;y)]=%[y'l_’V,{I_’y—tr(V"le )] ne peut D’étre. Cette différence de propriété est
k

mise en avant par Cressie et Lahiri (1993) pour expliquer le meilleur comportement de REML
par rapport 8 ML en terme de non biais.

Enfin, le systéme (3.75) appliqué une seule fois est formellement identique a celui des
équations du MINQUE (Rao, 1971ab, LaMotte, 1970, 1973). Il montre en outre que
I’estimateur REML peut s’interpréter aussi comme un estimateur dit MINQUE itéré pour
lequel les estimations premiéres servent de poids a priori pour des estimations ultérieures et
ainsi de suite (Searle, 1979, p6.7 ; Rao et Kleffe, 1988, p236).

Dans le cas général, on procédera comme pour ML, en utilisant le hessien de la

logvraisemblance ou la matrice d’information de Fisher dans un algorithme de Newton-

Raphson ou des scores de Fisher. Ces matrices ont pour expression (cf annexe II) :

2 2
0y 0y, 2 07,97, 2 oy, ~ 0y,

) s (3.76)
_Ly,B[ oV _26_Vl_)a_le_,y
2 07,07, oy, ~ 0y,
2
E(— oL letr(l_’a—vl_)a—v) (3.77)
07,07, 2 oy, ~ 0y,

Comme pour ML, on montre aisément que le systétme des équations des scores de Fisher

équivaut dans le cas linéaire au systéme (3.75) au coefficient 2 pres.
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La complémentarit¢ des formules (3.76) et (3.77) a incité Gilmour et al (1995) a proposer
pour les modeles linéaires mixtes, un algorithme de second d’ordre dit AI-REML basé sur la
moyenne de ces deux matrices d’information soit

Alkl:ly'Pa—VPa—VPy. (3.78)
Cet algorithme est d’ailleurs appliqué dans le logiciel ASREML qui a été développé par les
mémes auteurs.

223. Interprétation bayésienne

C’est a Harville (1974) que I’on doit I’interprétation bayésienne de REML. Celle-ci
repose sur le concept de vraisemblance marginale, cette fois au sens bayésien du terme
(Dawid, 1980), comme outil d’élimination des parameétres parasites par intégration de ceux-ci.

Dans le cas qui nous concerne, la vraisemblance marginale de y se définit par:

p(y|v) = [ p(y.Bv)dB, (3.79)

ou dP est le symbole représentant d 5,d f,...d §,.

L’intégrale en (86) peut se décomposer aussi en

B.y)r(B|y)dB, (3.80)

p(y|) = [y

ou p(y|B,y) est la densité usuelle des observables sachant les paramétres et 7z(|3|y) est la

densité a priori de P € R” sachant v .

L’équivalence avec la vraisemblance résiduelle s’obtient en considérant une distribution

uniforme pour cette derniére densité comme prouvé ci-dessous.

Dans le cadre du modéle y~N (XB,V), la densité p(y

B,y) s’écrit:

-1/2

p(y

7N/2|

B.0)=(27) "|V| " exp[ -(y - XB)'V"' (y—XB)/2].

Or, (y—XB)'V™'(y—XB) peut se décomposer en (Gianola, Foulley et Fernando, 1986):
(y-XB)'V'(y-XB)=(y-XB) V"' (y-XB)+(B-B)X'V'X(B-B), (3.8
ou ﬁ correspond a I’estimateur GLS de .

Le premier terme de cette décomposition ne dépend pas de B et I’intégration de cette partie

par rapport & B est donc une constante qui se factorise, d’ou

-1/2

p(y|[n) =(27) |V exp[‘(y -XB)V7(y —Xﬁ)/ﬂ

Iexp[—(ﬁ—ﬁ)')_('v—l)_((ﬁ_ﬁ)/ZJdB (3.82)
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N[IA},()_('V"I)_()_IJ ce qui implique que:
(27) " [x VX[ IeXp[—(B—ﬁ)'X'V’I)_((B—ﬁ)QJdB:1.

L’intégrale en (3.82) est donc égale a (27) ‘X \'A IX‘ d’ou I’expression de la densité

marginale:

-1/2

p(y|v) =(272) "V X VY|

A A (3.83)
exp[—(y—XB)'V*(y—XB)/z}

-

dont moins deux fois le logarithme est bien identique a (3.68a) avec une constante égale a
(N-p)n27z .

On en déduit donc que le REML de v, s’il existe, est le mode de la densité marginale de y
(ou maximum de vraisemblance marginale de y ). On montrerait de la méme facon que c’est
aussi le mode de la densité marginale a posteriori 7[('Y| y) de y sous I’hypothése additionnelle

d’une densité uniforme de vy .

En résumé:
T renar, = argmax,, . Inp(y|y) (3.84a)
¥ v, = argmax, . Inz(y]y). (3.84b)

23. Aspects calculatoires

231. Algorithme «type-Henderson» et d’Harville

Sans entrer dans le détail des démonstrations, on montre que les algorithmes
d’Henderson et d’Harville (38abc) relatifs au calcul des estimations ML des composantes de

variance présentent des pendants REML de forme similaire soit:

o =i, (") i, (n") + [ €, (n) ]o7" /g, (3.85a)

o2l [y y—B'(n )X'y—ﬁ'(n[”)z'y]/[N—r(X)] (3.85b)
et, pour 1’algorithme d’Harville:

o <[5 oo ) - ) ) o35
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ou n'l = {O',f[’] / 0'5[’]} est, comme précédemment, le vecteur des rapports de variance des K

facteurs aléatoires a la variance résiduelle a I’itération n, u, (n[’]) est le BLUP de u,
conditionnellement a ces valeurs courantes des ratios de variance et C, est le bloc

X'X X'Z

1
o de la matrice des
7'X 7'7+0,G

correspondant au facteur k dans I’inverse C:{

coefficients des équations du modele mixte d’Henderson (Henderson, 1973, 1984) (apres
factorisation de 1/o; ). Hormis cette différence portant sur la définition de C,,, les formules
(3.85ac) restent inchangées. Il en est de méme pour la variance résiduelle a la nuance

importante pres que, pour REML, [N —r(X)] se substitue a N au dénominateur de (3.85b).

232. Calcul de 2RL

Reprenons ’expression (3.68ab) de la logvraisemblance résiduelle soit, en reprenant la

notation de Welham et Thompson:

—2RL =[N —r(X)]In27 + In|V|+In|X'V"'X|+ y'Py (3.86)
On a déja montré (cf (3.33)) que :

yPy=y'R'y-0'TR'Y,

ou 0 = (ﬁ',ﬁ')' est la solution des équations dites du modéle mixte (T'R’IT + 2’)6 =T'Ry

10 0
avec T=(X,Z) et X" = Nt
0 G

Par ailleurs, les regles de calcul du déterminant d’une matrice partitionnée permettent
d’établir que :
TR'T+Z=|ZR"Z+G7|[X'V'X]. (3.87)
On a aussi montré (41) que:
V|=|R[[G||zR"Z+G"|.
d’ou
V|[X'V'X|=[R||G|T'R'T+Z. (3.88)
On en déduit le résultat général suivant, applicable a tout modele linéaire gaussien de type

y~N (XB, ZGZ'+R):
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—2RL =[N —r(X)]In27 +In|R|+In |G|+ In|T'"R"T+X"
(3.89)

+y|R71y_évT|R71y

Comme pour la logvraisemblance profilée, cette formule permet de simplifier
grandement le calcul de la logvraisemblance résiduelle notamment de son maximum grace au
recours aux équations du modéle mixte d’Henderson. 11 suffit, pour calculer cet extremum, de

remplacer dans (3.89), R et G par leurs estimations REML soit :

—2RL, =—2RL(G=G,,,,R=R,,,,).
Cette formule peut aussi se simplifier dans maintes situations par la prise en compte des
structures particulieres de R et de G. Le seul terme susceptible de poser quelques difficultés

de calcul est 1H‘T'R_1T+Z_‘. Celles-ci se résorbent en partie en ayant recours a une

transformation de Cholesky EE'=T'R™'T+X" de la matrice des coefficients, si bien que

sont les termes diagonaux de E .

InT'R'T + Z" = 2Z;i(lE)ln e, olles e,

24. Vraisemblance résiduelle et tests

241. Approximation de Kenward et Roger

Dans le cas ou V dépend de paramétres inconnus 7y, la précision de ﬁ est obtenue
comme I’inverse de la matrice d’information de Fisher évaluée a la valeur estimée ¥ . Cette
approche ignore I’incidence du bruit généré par les fluctuations d’échantillonnage de 7y si

bien que la valeur de la précision qui en découle est surestimée (erreur-standard sous-
estimée). En conséquence, les propriétés du test de Wald sont aussi affectées pour les petits
échantillons. Comme les variances d’échantillonnage sont sous-estimées, les statistiques du
test sont surévaluées et on a donc tendance a rejeter trop souvent 1’hypothése nulle (niveau
effectif supérieur au niveau nominal ou P-value trop petite).

Kenward et Roger (1997) ont proposé récemment des ajustements de 1’estimation de la
précision et de la construction des tests relatifs aux effets fixes visant a améliorer leurs
propriétés pour des petits échantillons. Pour ce faire, ils se placent délibérément dans le cadre

d’un estimateur de B de type GLS ou 7y est remplacé par son estimation ¥, -

Soit ®(7) = {X'[V(?)Tl X}i , l'estimateur GLS de P basé sur REML s’écrit:

B(1)=@(®)X[V(1)] v (3.90)

et sa variance d’échantillonnage :
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A

var[ﬁ(?)]=var[fs(y)]+E{[fsw)—ﬁ(y)}[m)—ﬁ(y)]} (3.91)
Cette formule montre clairement que 1’estimateur usuel (I> I:X V X] pose

probléme puisqu’a la fois ®(§) différe du premier terme Var[[i(y)} =®(y)(la différence
(I)(?) — d)(y) ¢tant une matrice négative-définie) et que le second terme est ignoré.

Partant de I’expression ajustée, notée en bref @ , (y) = (I)(y) + A(y) , Kenward et Roger
construisent un estimateur ®, de @, (y) a partir de I’estimateur usuel ®(§) et d’un
estimateur A de la correction A . Comme E[d)(?)] #®(y), il faut faire également un
ajustement pour le biais B = E[(I)(?)]—(I)(y). Pour ce faire, Kenward et Roger procedent

comme Kackar et Harville (1984) en formant un développement limité de (i):(l)(?) au

second ordre au voisinage de la valeur vraie du paramétre soit

(D(?)zq)(Y)—}_sz:l(];k_ k 8 _zk 1211 7/1)@

07,07,
. 1 «—« K ( )
conduisant a B~ —
2 Zk:lZl:l Kl a7ka7l
ou W, est1’élément k/ de W = Var(y) et,
O’®(y)
- - (D(qu)Pz + qu)Pk - le - sz + sz)q) (3-92)
07,97,
oV oV’ v VOV (Y) o
avec P, =X' X, Q, =X \Y% XetR,=X'V' ———2VX.
0y, 0y, 0y, 07,07,

On peut procéder d’une fagon similaire vis-a-vis de A en faisant un développement limité au

premier ordre de B(§) autour de § =1, soit ﬁ(«}) ~ ﬁ(y)+zllj=1(7?k ~7, ﬁﬁ(y)/@yk.

N -1
al3(’Y) — (X'V71X)7 X' ov
07 07,

Comme (y—Xﬁ) et Var(y—Xﬁ):V—X(X'V’IX)7X', on en

déduit, a I’instar de Kackar et Harville (1984), que:

A=~ ‘I’[Zkl ACTE PCI)P)J(D (3.93)

Avec une structure linéaire de V telle que V = z; V.7, ,les termes R,, sont nuls et il vient

A

B=-A cequiimplique ®=®(§)-B ; comme ®, =P+ A, on aboutit en définitive a :
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D, =D (7)+24[. (3.94)

Rappelons que W peut étre approché par I'inverse J™'(y)de la matrice d’information de

Fisher soit avec REML: J(y)=1/2F(y)={1/2tr(PV,PV,)}. Mais on peut également utiliser

la matrice d’information observée (3.76) ou d’information moyenne (3.78). Des
approximations similaires ont été développées par Monod (2000) dans le cadre de dispositifs
«bloc-traitementy équilibrés de petite taille.

Soit a tester ’hypotheése H, :k'B =0 de rang r contre son alternative contraire H,,
Kenward et Roger proposent de batir une statistique de test de la forme

(3.95)
ou

-F est la statistique classique basée sur un pivot de Wald (F=W/r avec
W= ﬁ'k(k'(i)Ak)i1 k'ﬁ) et qui prend en compte I’ajustement de la variance
d’échantillonnage;

- A un facteur d’échelle (0 < A<1) de la forme A=m/(m+r—1)ou m joue le role

d’un nombre de degrés de liberté du dénominateur d’un F de Fisher-Snedecor.

Kenward et Roger déterminent m tel que F~ soit distribué approximativement sous
I’hypothese nulle comme un F(r,m); ils s’imposent de surcroit que ce soit une distribution
exacte F(r,m) dans le cas ou W estun T2 d’Hotelling ou dans d’autres situations d’anova
en dispositif équilibré.

Une situation typique relevant d’une statistique de Hotelling découle du test de
I’hypothése H,:k'm=0 sous le modéle multidimensionnel Y,~, N, (nX); i=12,..,N,

(Rao, 1973, p564-565). La statistique de Hotelling s’écrit alors:

7% =min, (Y-p)'(S/N) " (Y-n), (3.96)
ou Y=Y\ 1 )/N et S=(N-1)" 2" (Y,=¥)(Y,~¥)' sont les estimateurs usuels de
et de X. Alors F =AT’/r avec A=(N-r)/(N-1) et I'on peut montrer qu’ici
72 =W =i'k[K'V()k] K od f=Y et V(i)=S/N

Kenward et Roger donnent les valeurs suivantes de m et de A a utiliser:
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medr L g (3.97)

rp—1 E (m—2)
ou p=V"/2E" (3.98a)
avee E'=(1-4,/r)"; v =2 1%aB (3.98b)

r(1-¢,B)’ (1-¢,B)

o =g/[3r+2(1-g)]ic, = (r-g)/[3r+2(1-g)]

¢y =(r+2-g)/[3r+2(1-g)] (3.980)
pour g =[(r+1)4 —(r+4)4,|/[(r+2)4,]. (3.98d)
B=(A4+64,)/2r (3.98¢)
4=30"3"" Wy tr(ODP®)tr(ODP®) (3.981)
4 =37 3" W, tr(ODP,OODPD) (3.98¢)

sachant que
O=k(k'®k) k'. (3.98h)

Dans le cas d’un seul contraste a tester (» =1), 4 vaut 1 et ’approximation de Kenward
et Roger se raméne au carré d’un T de Student dont le nombre de degrés de liberté se calcule
comme une variante de la méthode de Satterthwaite. Quoiqu’il en soit, I’approximation
proposée conduit a une meilleure adéquation entre le niveau nominal et le niveau effectif que
celle observée avec les tests de Wald et de type F non ajusté qui, appliqués a de petits
¢chantillons, rejettent trop souvent 1’hypothése nulle (tests trop libéraux). Il est a remarquer
que cette méthode est maintenant disponible dans la procédure Proc-mixed de SAS (version

8).

142. Approche de Welham et Thompson

Dans le cas de ML, le test des effets fixes dit du rapport de vraisemblance est basé sur la
variation de —-2L, entre un modele réduit et un modele complet correspondant
respectivement a I’hypothése nulle H, et a la réunion H,uUH, de celle-ci et de son
alternative. Malheureusement, la transposition immédiate de cette technique a la
logvraisemblance résiduelle —2R L,, n’a guere de sens puisque cela revient a contraster deux

types d’ajustement des mémes effets aléatoires mais qui utilisent des informations différentes:
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Sy pour le modéle réduit E (y)=X,B, et Sy pour le modele complet
Ec(y) = XB = XBy + X, 0u S, =1, - X,(X,X,)'X, et S=1, -X(X'X)"'X.

Pour rendre le procédé cohérent, Welham et Thompson (1997) proposent de contraster
les deux modéles sur la base d’une méme projection en I’occurrence S,y (ou K,y en écriture

de plein rang) soit:

2L (B, 7:K,¥) =(N = p, ) In 27+ In [K VK, | + (Kjy - K'OXOBO)‘[Var(K'oy)]_l (Kyy - K,X,B,)

et

“2L(B.v:Kyy) = (N - p, ) In27 + In[K, VK, | + (K,y —K'o)q})'[Var(K'oy)]1 (K,y-K,XB)
ou p, =1(X,).

Comme K X, =0, la premiére expression est celle classique d’une vraisemblance résiduelle

(cf 3.68ab) qu’on peut écrire sous la forme:

2L(1:Ky) = C(X) + In|V]+In[X, VX [+ (y - X, | V7 (y =X, ), (3.99)
ou C(X,) est une constante fonction de la matrice X, telle que définie en (75b) et ﬁo
I’estimateur GLS de B, .
En ce qui concerne la seconde expression, on remarque que K, Xp=K XpB, et
K, (K,VK,) K, =P, ou B, =V'(I-Q,), d’ol
“2L(B.7:K,y) = C(X) +In|V]+In|X,V'X,|+(y - XB,) B, (y-X8,) . (3.100)
Par ailleurs, maXB,YL(B,y;K'Oy) = maxYL[B(y),y;K'Oy] ou L[ﬁ(y),y;K'oy} est la
vraisemblance profilée L, (V;K'Oy) de y basée sur K,y et définie par:
2L B(7). 1Ky | = C(X,) +In|V]+ In|[X,V7'X, [+ min, (y-X,B,)'P, (y-X,B,)
Or, on peut montrer par manipulation matricielle que:
min, (y—X,,)'P, (y—X,B,)=min, (y—XB)'V"' (y—XB)=(y-XB)'V"' (y-XB), (3.101)
ol B est une solution du systeme GLS : )_('V’l)_(f}(y) =X'V'y. En définitive:
“2L[B(7).7: Koy | = C(X) + In|[V|+In|X, VX, [+ (y - XB)' V"' (y - XB). (3.102)

Welham et Thompson proposent la statistique 4 du logarithme du rapport de

vraisemblance qui, mesure comme dans le cas classique, la variation de moins deux fois la
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logvraisemblance maximum quand on passe du modele réduit au modeéle complet a partir, non

plus de I’information sur y, mais de celle sur Sy, soit:

A=-2max,L(y;K,y)+2max, L[ B(v).7:Kyy |. (3.103a)
ou, encore
A=-2L(§:Kyy)+2L[B(7).%: Ky |, (3.103b)

ou ¥ =arg maXyL[ﬁ(y),y;K'Oy] .
Si, a 'instar de Welham et Thompson, on introduit la notation suivante :

—2RL[y,X B.7.8(X,) |= C(X,)+In|X,V"'X [+ In|V|+(y - X B) V" (y- X B) (3.104)
qui est celle d’une vraisemblance obtenue en ajustant le modele E(y)=X B, corrigee

forfaitairement en fonction de I’information procurée par le projecteur S(X,), la statistique 4

s’écrit comme

A=-2RL]y,XB,(¥)7,8(X,) |+ 2RL] y, XB(¥).7,8(X,) | (3.105)

A la lumicre de cette expression, on peut considérer la formule homologue obtenue en

ajustant le modele complet XB a partir du projecteur correspondant S(X) soit
~2RL[y,XB,,8(X)] = C(X)+In|X'V"'X|+ In|V|+(y - XB)' V"' (y - XB)

puis, en passant au modele réduit sur la base de 1’expression (3.104) correspondante:
~2RL[y, X,B,.7.8(X)] = C(X)+ In|X'V"'X|+ In|V]+ (y - X,B,)' V"' (y - X,B,)

conduisant a la statistique

(3.106)

-

D=-2RL| v, X, (7).7.5(%) |+ 2RL[y. XB(1).7.8(X)

ol  §=argmax, RL [y, XB(v).7, S()_()] avec  B(y) solution du  systéme
)_('V‘l)_(ﬁ(y) =X'Vy et, de facon similaire, 1:( = argmax, RL[y,)_(()[:}O (y),y,S()_()} avec
X;V71X0ﬁo (7) =X,V'y.

I1 est important de noter que, dans le cas de la statistique D, RL [y, )_(0[:30 (?),?, S()_()} n’a

plus d’interprétation en terme de maximum d’une fonction classique de logvraisemblance

obtenue en ajustant le modele X B aux observations K'y utilisant le projecteur S(X).

Contrairement a ce qui advenait avec A, cette statistique n’est donc pas le logarithme d’un
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rapport de vraisemblances maximisé€es, mais seulement celui d’un rapport de vraisemblances
profilées ajustées. Toutefois, au vu de résultats de simulation effectués sur des petits
échantillons, Welham et Thompson concluent a de meilleures performances du test basé sur
D par rapport a celles utilisant A et la statistique de Wald, et cela en terme d’approximation
de ces statistiques a une loi Khi deux sous I’hypothése nulle.

243. Tests des effets aléatoires

Le test de I’existence de certains effets aléatoires doit retenir I’attention car il pose des
problémes particuliers dans la théorie des tests de rapport de vraisemblance du fait que les
paramétres spécifiés dans I’hypothése nulle se trouvent a la frontiére de 1’espace paramétrique
général. Cette question a été abordée d’un point de vue théorique par Self et Liang (1987) et
son application au modele linéaire mixte d’analyse de données longitudinales par Stram et
Lee (1994, 1995). Un condensé des principaux résultats théoriques figure en annexe 1.

Nous nous placons dans le cadre du modele linéaire mixte gaussien
y~ N (XB,ZZ'af +1 Nof) et considérons le test: H,:0. =0 vs H,:0. >0. La statistique
du test du rapport de vraisemblance s’écrit alors: A=-2L,+2L. ou
Ly=Max , | RL(c. =0,02;y) et L. = Max . ., RL(c.,02;y) si I’on utilise la fonction
de vraisemblance résiduelle RL . L’utilisation de celle-ci se justifie parfaitement eu égard a la

propriété de normalité asymptotique de 1’estimateur REML qui a été formellement établie par

Cressie et Lahiri (1993). Une statistique homologue basée sur la vraisemblance classique

2 2 4 : A . . N . .
L(B;o,,0.;y) est également envisageable méme si celle-ci s’avére en pratique moins

efficace (Morell, 1998).

L’utilisation usuelle de ce test se réfere alors a une distribution asymptotique de A sous

H, qui est une loi de Khi-deux a 1 degré de liberté. Cette assertion est inexacte et cela pour la
simple raison de bon sens suivante. En effet, il est fort possible que sous le modele complet
(C: 0. >0,0;>0), I'estimateur REML de o soit nul (&, =0) si bien que L.=1L, et
A=0.Sous H,, un tel événement survient asymptotiquement une fois sur deux du fait de la
propriété de normalité asymptotique de I’estimateur non contraint de o autour de sa valeur
centrale nulle. La distribution asymptotique correcte a laquelle il faut se référer sous H, est
donc celle d’un mélange en proportions égales, d’une loi de Dirac en zéro (D, notée aussi

quelquefois . ) et d’une loi de Khi-deux a un degré de liberté ( };) soit en abrégé:
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A—1/2D,+1/27|. (3.107)

En conséquence, le test «naif» est trop conservateur et le seuil s du test correct au niveau «

correspond a:
Pr(yl =s)=2a (3.108)
puisque, sous H,, la décision de rejet est prise lorsque la statistique est positive (une fois sur

deux) et que celle-ci, alors de loi de Khi-deux a un degré de liberté, dépasse le seuil s. En
définitive, la procédure correcte revient a effectuer un test unilatéral au lieu d’un test bilatéral

en utilisant le rapport de vraisemblance.

. FVIRT o, 0 On Op
Ce résultat se généralise au test H,:X = vs H,:X= , cette
0 O 0, Oy

derniére  hypothése  correspondant au modele y=XB+Zu +Z,u,+e ou
Var(u; 2, )' =2 ®I, . Ce modele se rencontre dans I’analyse de données longitudinales (Laird

et Ware, 1982 ; Diggle et al, 1994).

Si’on contraint X sous H, a étre définie semi-positive, alors, (Stram et Lee , 1994)

A2yt 412 (3.109).

0
De la méme fagon, on généralise ensuite au cas du test H, :Z:[ ”;’x") OJ Vs

E11 E12

H CZ e = (Z jdéﬁnie semi-positive pour lequel
21

Oy

A2 41/2002,. (3.110)

Discussion-Conclusion|

La théorie de la vraisemblance qui, a la suite de Fisher, est devenue le paradigme central
de la statistique inférentielle paramétrique trouve dans le modele linéaire une de ses
applications les plus démonstratives. Il est apparu également que les techniques ML et REML
avaient des liens profonds avec la théorie du BLUP et les équations du modele mixte
d’Henderson (Henderson et al, 1959 ; Henderson, 1973, 1984 ; Goffinet, 1983), relations qui
s’explicitent clairement grace a la théorie EM (Dempster et al, 1977, McLachlan and
Krishnan, 1997). Ce relais permet de développer des algorithmes de calcul performants
applicables a des échantillons de grande taille et des dispositifs déséquilibrés et relativement

complexes.
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Développée au départ pour estimer les poids a affecter a I’information intra et inter blocs
dans I’analyse en blocs incomplets déséquilibrés, la méthode REML s’est avérée rapidement
comme un passage obligé et une référence dans I’inférence des composantes de la variance en
modele linéaire mixte au point qu’elle a supplanté en pratique les estimateurs quadratiques
d’Henderson (1953) et du MINQUE (Rao et Kleffe, 1988 ; LaMotte, 1970, 1973). Cette place
privilégiée de REML a ¢ét¢ d’autant mieux affirmée et acceptée que les interprétations qu’on
pouvait en faire (vraisemblance de contrastes d’erreur, inférence conditionnelle,
vraisemblance marginalisée par rapport aux effets fixes, MINQUE itéré) se révélaient
diverses et complémentaires enrichissant ainsi la compréhension de la méthode. A la lumicre
des travaux récents de Kenward et Roger (1997) ainsi que de Welham et Thompson (1997),
on peut gager que la place qu’occupe REML va dépasser le cadre strict de 1’estimation des

composantes de la variance pour intervenir également dans I’inférence des effets fixes.

L’offre logicielle est relativement abondante (SAS Proc-Mixed, ASREML, Splus) et
permet de traiter un grand éventail de structures de variances covariances avec acces aussi
bien a ML qu’a REML. Ces logiciels généralistes s’appuient sur des algorithmes de second
ordre (Newton Raphson, Fisher ou information moyenne) de convergence rapide. Toutefois,
comme le notait récemment Thompson (2002) lui-méme lors d’une comparaison de ces
différents algorithmes, les techniques EM se montrent en constant progres ; elles s’averent
aussi plus fiables et quasi incontournables dans certaines situations ou avec certains modeles

(van Dyk, 2000 ; Delmas et al, 2002).

La disponibilité des logiciels explique pour une grande part le succés grandissant du
modele mixte et des méthodes du maximum de vraisemblance aupres des utilisateurs et 1’on
ne saurait que s’en féliciter. Celui-ci d’ailleurs ne pourra aller que grandissant eu égard a
I’ampleur du domaine d’application du modéle mixte; ses extensions au modele linéaire
généralisé (Mc Cullagh et Nelder, 1989) et au mod¢le non linéaire (Davidian et Giltinian,
1995) le prouvent a I’évidence. On a pu aussi montrer que maintes techniques particulieres
pouvaient faire 1’objet d’une interprétation en terme de modele mixte; on peut citer par
exemple le krigeage, le filtre de Kalman (Robinson, 1991) I’ajustement par splines (Verbyla
et al, 1999) et I’hétérogénéité de variance (Foulley et Quaas, 1995 ; San Cristobal, Robert-
Grani¢ et Foulley, 2002) ; cette vision unificatrice ne peut qu’enrichir I’ensemble et stimuler

I’esprit de tous.
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ANNEXE I 1

1) Optimisation avec contraintes
De manitre générale supposons que a est un minimum local de —2L(a; ) sur un espace paramétricue

T" contraint par un ensemble d’égalités et d'inégalités:
I'={acR": g{a) <0;h(a)=0} (1)

avec g 1 B" — RP el h : B" — 9. Supposons que g, h et L sont suffisamment régulitres el que les
contraintes ne sont pas redondantes.
Alors il existe des nombres A; > Opour i =14 p et des gy €Rpour j =1 4 ¢ tels que:

P q
V(=2L{ay) + > NVala)+ ) i Vhi{a) =0
=1 a=1 (2:]

Nipi{@)=0vi=1ap
Cle sont les conditions de Karush, Kithn, Tucker qui des conditions nécessaires doptimalité qu’il convient
de résoudre pour obtenir le minimum local & lorsqu’il existe.
2) Test du rapport de vraisemblance

On suppose que I est convexe fermé et que différentes valeurs de o correspondent 3 différentes lois
de probabilité. On s'intéresse au test du rapport de vraisemblance de Ihypothése nulle o € Ty contre
Thypothese alternative o € T\ Tp olt Ty st un sous ensemble de T. On note aq la vraie valeur du
paramétre sous Ihypothése nulle et I{ag) la matrice d'information de Fisher supposée définie positive.
Om suppose que ag st sur la frontidre de T Om rappelle qu'un eome de sommet ag, ¢, est Vensemble des
points tels que si & € (' alors a(x — an) + ag € €' oft @ > 0. On suppose que T et T'p sont suffisamment
réguliers pour étre approchés par des cénes de sommet aq, Cr et Cr, respectivement. Clest-3-dire que

(cf. Chernoff (1954) et Self et Liang (1987)):
inf Jlo =yl = ellly—aoll) Yy €T
aeCr

inf [|o —y|| = oi] | — acl|) ¥z € Cr
yel’
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ANNEXE I 2

Omn obtient des conditions analogues pour g, Sous des conditions faibles de régularité de Liasy) (cf.
Self et Liang (1987)), on peut montrer que la loi asymptotique de la statistique de test du rapport de

vraisemblance 2(L{a) — L{da)) est la méme que:

sup  [~(Z—a) Ha)(Z—a)]—  sup  [(Z —a) I{aa)(Z —al] (3)
a€(Cr—aa) €[ Crg—oa)

oft 7 suit une loi normale multivariée de mayenne 0 et de variance [~ (ag) et Cp—aq désigne la translation

du céne Cp de sommet aq de sorte qu’il soit de sommet 0. Ce qui s& rederit £galement:
nf |17 =all” = inf 17 -o” (1)

ol

C={a:a=AY""Pla,VaeCr—ap}

Co={a:a=A"PTa Yo e Cr,—ag}
el 7 suit une loi normale multivariée centrée de variance identité. PAPT est la décomposition spectrale
de I{ag).
3) Application au modéle mixte

On se place dams le cadre du modile mixte & deux effets aléatoires
Y =X+ 7Z1u+ Zoun+ ¢ (5)

ot X, 7 el 75 sont des matrices d'incidence connues; 7 est le vecteur des effets fixes inconnu; iy et g
sont les deux vecteurs des effels aléatoires inconnus &t e est le vectenr des erreurs résiduelles. On suppose
que (-ul,ug)T st un vecteur gaussien centré de varianece

2 3
Uy Cl']_lf O']_er 1y T12
var] || R ] Ru=2R1, )

Uz Tialy o5, Fi1z O
On suppase que e est gaussien centré de variance o2 [y et indépendant de (i, UQ}T. On s'intéresse alors
o 0 . i o
an test de 'hypothése nulle Ho, © = contre hypothése alternative My, ¥ =
0 0 Lo G e

babs
2
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ANNEXE I 3

aver a0, — a2y 2 0 b 03 # 0. On pose a = [0y, F1n, 411,08, A1+ . Fp]T. Dlespace complet des
paramatres est comtraint par o, a3, — o, > 0. Sous Uhypothise nulle, o3, = 0 ¢t 15 = 0, la vraie
valeur du paramétre, o, est notée [0,0,0%, 4, a2 5 Fa,- -, Fpolt . On suppose que o3, el oF  sont

strictement positives. ag se trouve alors en bordure de espace paramétricue.

Aun point. arg, Tespace complet, des paramétres peut Etre approché par le cone ' de sommet aqg tel que
' — g = [0, 4+00[ x5, L'espace réduit des paramdires peut &ire approché au point ag par le cone
Chy de sommet aqg tel que Ch — ag = {0} x {0} x B2 On se trouve alors dans le cas § de article de
Self et Liang (1987) <qui nous dit que la loi asymptotioqne de la statisticque de test est £x7 + $x5. Cecl
sobtient aisément & partir des déments donmés dans les sections 1 el 2 précédentes. En effet 11 suffit de
remarquer cquil ’agil dans 1m premier eas de minimiser || 7 — o||® sans contrainte et dans un second eas

de minimiser ||Z — a||% sous la contrainte a; > 0. On obtient alors:
inf ||Z —a|*— inf ||Z —a|®*= 220 ., + 75 T
it 12 olf' = inf |12 —of = 21,0+ 5 )

i suit une loi $x7 + $x3. Ce résultat se généralise au test de ¢ contre ¢+ 1 «ffets aléatoires pour lequel
la loi asymptotique de la statistique de test est %Xg + %XSH sous I'hypothése que les ¢ premiers effets

aléatoires sont linéairement indépendants sous 1"hypothese nulle.
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ANNEXE II

Matrices d’information

1. Estimation ML
Le point de départ est I’expression de la logvraisemblance sous la forme

I(B,y)=NIn(27)+In|[V|+(y-XB)'V"' (y - XB) (IL.1)

ou Z(BaY) = _ZL(B97;y) =-2 lan (y|Ba7) .
Nous avons vu que les dérivées premiéres s’écrivent :

ol (B,
(By) _ X'V (y=XB), (I1.2)
op
aABv) _ tr(V" a_v] —(y-Xp)'V" a—VV“(y -Xp) . (11.3)
07, 07, 07,
On en déduit I’expression des dérivées partielles secondes
0’1
TUBY) _pxoyix (I1.4)
OPop’
o’1(P,
M:2X'V’16—VV’1(y—XB), (IL5)
ooy, 97,
2 2
O’1B,Y) _ tr[v_l oV j_t{v_l OV oV j
07,07, 07,07, 2 07 97, (IL6)
Sy-XpV! ( IV My a—VjV%y—Xm
07,07, 07, 97,
En divisant par deux, ces formules fournissent les termes qui permettent de calculer la matrice
O’ L(a;
d’information dite observée I(a;y)= —# ou a=(B'y')'" qui interviennent par
ado 5
a=q

exemple, dans I’algorithme de Newton-Raphson.
En prenant I’espérance de I(a;y), on obtient les termes de la matrice d’information de Fisher

J(a)=E[I(a;y)] soit :

J,=X'V'X, (IL.7)

J, =0, (IL.8)

(J,) v Ny 2V (11.9)
h2 o 01

Deux remarques importantes méritent d’étre formulées a ce stade. Premiérement, les
estimations ML de B et de y sont asymptotiquement non corrélées. Deuxieémement, les

formules (7-8-9) s’appliquent aussi bien aux modeles linéaires qu’aux modeles non linéaires
en V ce quin’est pas le cas pour I(a;y).

2. Estimation REML
La logvraisemblance résiduelle s’écrit

r(v)=[N-r(X)]In27+In|[V|+In|X'V'X|+y Py [11.10]
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ou r(y)=-2L(1;K'y).
En différenciant par rapport a y, , on obtient :

ots)_owly] RV o

y [IL11]
07, 07, 07, 07
Or,
0ln|V
07, 07
oln|X'V'X _ _
Q _ —tr[()_('v—‘)_() X'V~ a—Vv—ly_c} = —t{V")_(()_('V"])_() X'V N :
07, 07, 07
ce qui permet de faire apparaitre et de factoriser la matrice P, soit
olnlv|] olnX'V'X
M, 3t Ltr(ga_Vj 1.12)
07, o 07,
Il reste a expliciter ;—B Par définition, VP =(I-Q)avec Q= )_(()_('V"l)_()_ X'V, Par
Vi
dérivation de cette expression, on a :
a—VI_’+V8—1—):—6—Q. [11.13]
07, 07, 07
Or, la dérivée de I’expression explicite de Q conduit a :
Q_ G,
07, 07
d’ou, en remplagant dans [I1.13], P _ -V (I- Q)a—VI_’ , c’est-a-dire
07, 07
P __pNp. [11.14]
07 07,
I1 s’en suit I’expression suivante du score :
M:tr[l_)a—vj—y'l_)a—Vl_)y. [1I.15].
07, 07 07,

On vérifie bien au passage que 1’espérance du score est nulle puisque

07 07, 7
Or, E(yy)=Xpp'X'+V. Comme PX=0 et PVP=P, le deuxieme terme est égal au
premier, QED.

En dérivant a nouveau terme a terme [II.15], on obtient I’expression du hessien qui peut
s’écrire sous une forme similaire a celle présentée en [I1.6] avec ML, soit :

r(r:y) =tr(P—62V j—tr[Pa—VPa—Vj
07,07, ~ 07,97, T Oy, 0y

2

—y'l:( o —28—VI:8—Vj13y
07,07, oy, ~ 0y,

La matrice d’information de Fisher s’en déduit immédiatement

[11.16]
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ANNEXE 111
Calcul de |V|

On considere la partition suivante:

A A, A,| | RT R'Z
A, A,| |ZR'" ZR'Z+G"'|

alors on sait que: (cf par ex Searle, 1982, Ch 10, page 257-271
|A| = |A11”A22 - AZIAI_IIAIZ

Ici,

Al=R7||Z’R"'Z+G" -Z'R"RR"'Z|=1/|R|G].
De méme, par symétrie

A|=[z'R"Z+G||R"-R'Z(Z'R"Z+G) Z'R"

ZR"Z+G7|/]V]

d’ott [[V|=|R||G||Z'R"Z+G|
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Introductio

Le mod¢le linéaire mixte est un domaine de prédilection pour 1’application de 1’algorithme
EM. Un développement particulier lui était déja consacré dans le chapitre « Exemples » de
I’article séminal de Dempster, Laird et Rubin (§4.4, pages 17-18) et la tendance s’est
poursuivie par la suite (Laird, 1982 ; Laird et Ware, 1982 ; Laird, Lange et Stram, 1987 ;
Meng et van Dyk, 1998 ; van Dyk, 2000). Une mention particuliére est a attribuer au monde
de la statistique appliquée qui a trés largement contribué par le nombre de ses publications a
la vulgarisation et au succes de I’algorithme EM (Meng et van Dyk, 1997).

En fait, Henderson anticipait EM dés 1973 en proposant un algorithme de calcul des
estimations du maximum de vraisemblance des composantes de variance d’un modele linéaire
mixte qui s’avérera ultérieurement trés proche de la solution EM standard.

Mais [D’algorithme EM a une portée beaucoup plus générale. C’est effectivement un
algorithme qui permet d’obtenir les estimations du maximum de vraisemblance dans les
modeles ou apparaissent des données manquantes ou qui peuvent étre formalisés comme tels.
Dans I’algorithme EM, le concept de données manquantes dépasse son acception classique
(observations initialement planifiées mais qui ne sont pas effectuées) pour englober le cas de
variables (ou processus) aléatoires de tout modele théorique sous jacent aux observations
réelles (Meng, 2000).

De fait, EM tient naturellement sa réputation et son succes, en tant qu’algorithme, de ses
qualités intrinseques de généralité, stabilité et simplicité, mais il dépasse ce cadre strictement
numérique pour faire partie intégrante du mode de pensée statistique comme 1’illustrent ses
liens avec les techniques dites d’augmentation de données (Tanner and Wong, 1987; Van Dyk
and Meng, 2001), avec le concept de variables cachées (ou auxiliaires ou latentes) et les
méthodes de simulation de Monte Carlo par chaines de Markov (Robert et Casella , 1999).
Dans ce contexte, il nous est paru utile de consacrer un développement spécifique au domaine
du calcul des estimations ML et REML des composantes de la variance. Cela dit, un tel
développement nécessite des connaissances élémentaires sur 1’algorithme en général. C’est la
raison pour laquelle nous avons fait précéder 1’application au modéle mixte d’une
présentation théorique générale de 1’algorithme, de ses propriétés et de ses principales
variantes. Ces rappels de théorie devraient également permettre d’aborder d’autres secteurs
d’application de 1’algorithme tels que, par exemple, celui des mélanges ou celui des modeles

de Markov cachés.
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Avant de définir formellement D’algorithme et ses deux étapes E «Expectation» et M
«Maximisation», nous allons tout d’abord montrer, a travers un exemple simple, comment on
peut appréhender empiriquement les principes de base de ’EM, puis nous établirons, a partir
des régles du calcul différentiel, un résultat théorique ¢lémentaire dont la lecture conduit

immédiatement a la formulation de 1’algorithme.
1.1. Exemple

Celui-ci a trait a ’estimation des fréquences alléliques au locus de groupe sanguin humain
ABO qui est un probléme classique de génétique statistique (Rao, 1973; Weir, 1996). 1l s’agit
d’un locus autosomal a 3 alléles A, B et O, ce dernier étant récessif par rapport aux deux
premiers qui sont codominants entre eux: on observe donc les phénotypes [A] (génotypes AA
et AO), [B] (génotypes BB et BO), [AB] (génotype AB) et [O] (génotype OO). Sous
I’hypothése d’une population panmictique de grande taille en équilibre de Hardy-Weinberg,

les fréquences des génotypes AA, AO, BB, BO, AB et OO sont respectivement de p°, 2pr,
q°, 2qr, 2pq et r* sil’on désigne respectivement par p, g et r les fréquences des alléles

A,B et O. L’estimation par maximum de vraisemblance de ces fréquences peut étre abordée
classiquement en exprimant la logvraisemblance des données et les dérivées premicres et

secondes de celle-ci par rapport aux parametres.

Soit L(¢;y)=Inp(y|¢) la logvraisemblance oit y=(y,, Vs, V4.Y0)' est le vecteur des

nombres observés des différents phénotypes, Il = (7, 7,,7 ,,7,)" celui homologue de leurs

' '

probabilités et ¢=(p,q,7)' celui des paramétres qui se réduit & ¢p=(p,q)' puisque
p+q+r=1.Comme il s’agit d’un échantillonnage multinomial typique, L ((I); y) s’écrit
4
L=Z,-:ly,- Inz; +Cste, (1)
ot 7, est le j¥Me ¢lément de M = (7,75, 7 5.7, )" -

On en tire les expressions des scores S ={s, = 0L/ 04, |

Sk :ZFI”_]_ 6¢/: i 2)
J

et des éléments de la matrice d’information de Fisher I={/,} =E (—_aj ;:I)'J
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1 O, Orx,
Li=NY —— 3)
T ¢ 09,

N 4
ou N = z‘,’:lyj )
Comme les 7, ne sont pas des fonctions ¢lémentaires des paramétres p et g, les expressions

des s, et /,, ne sont pas immédiates et leur obtention s’aveére quelque peu fastidieuse.

A Tlinverse, les choses deviennent beaucoup plus simples si 1’on suppose que tous les

génotypes sont observés. En désignant par x, le nombre d’individus de génotype k, les
estimateurs du maximum de vraisemblance (ML) de p et g s’obtiennent classiquement par
les fréquences des geénes A et B dans 1’échantillon soit:

P'=(2x+x,,+x,0)/2N ;5 q'=(2xg + X5 +X,,) /2N, 4)
aveciCl X,z =y 5.
I1 est naturel de remplacer dans ces expressions les observations manquantes x,,, x,, €t X, ,

Xz, par des prédictions de celles-ci compte-tenu des observations faites (y) et du modele

2

.. . . 2
adopté (équilibre de Hardy-Weinberg) soit x, :zp— y, et x, :2i ¥, ou apres
p +2pr p +2pr
simplification:
2r
x' = _P_ ;X = . 5
A4 p+2l’yA 40 p+2I’yA (5)

On procede de méme par symétrie pour x,, et x,,. En reportant ces quantités dans (4), on
obtient les estimations suivantes:
p"= (2xf1A T Vs +xjo)/2N ;"= (2x§B TVt xzo)/zN (0)

Les prédictions en (5) dépendant des valeurs des parameétres, le procédé va donc étre appliqué
de fagon itérative : on va utiliser les valeurs actualisées des paramétres en (6) pour remettre a
jour les prédictions des observations «manquantes» en (5), et celles-ci obtenues, on les reporte
en (6) pour obtenir de nouvelles estimations des parametres et ainsi de suite. On a, de cette
facon, construit un algorithme itératif qui comporte deux étapes:

-1) prédiction des données manquantes en fonction des valeurs courantes des parameétres
et des observations;

-2) estimation des parameétres en fonction des prédictions actualisées et des observations,
et qui préfigurent a la lettre respectivement les étapes E et M de I’algorithme de Dempster,

Laird et Rubin.
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On peut appliquer ce raisonnement a 1’échantillon suivant: y, =179, y, =35, y,,=6 et
Y, =202. Les estimations du maximum de vraisemblance obtenues directement sont
p=0.251560, ¢=0.050012 et 7=0.698428. Les résultats de 1’algorithme EM figurent au

tableau 1. La convergence s’effectue en quelques itérations y compris pour des valeurs de

départ tres éloignées de la solution.

Tableau 1. Exemple de séquences EM dans le calcul des estimations ML des fréquences

géniques p,q et r des alléles A,B et O

[tération p q r
Valeurs initiales égales
0 0.33333333 0.33333333 0.33333333
1 0.28988942 0.06240126 0.64770932
2 0.25797623 0.05048400 0.69153977
3 0.25253442 0.05003857 0.69742702
4 0.25170567 0.05001433 0.69827999
5 0.25158173 0.05001197 0.69840630
6 0.25156326 0.05001165 0.69842509
7 0.25156051 0.05001161 0.69842788
8 0.25156010 0.05001160 0.69842830
9 0.25156004 0.05001160 0.69842836
Valeurs initiales quelconques
0 0.92000000 0.07000000 0.01000000
1 0.42676717 0.08083202 0.49240082
2 0.28331520 0.05172378 0.66496102
3 0.25644053 0.05002489 0.69768439
5 0.25166896 0.05001344 0.69831761
6 0.25157625 0.05001187 0.69841188
7 0.25156244 0.05001164 0.69842592
8 0.25156039 0.05001160 0.69842801
9 0.25156009 0.05001160 0.69842832
10 0.25156004 0.05001160 0.69842837

1.2. Résultat préliminaire

Soit y une variable aléatoire (N x1) dont la densité notée g(y|¢) dépend du vecteur de
parametres ¢ € D et z un vecteur de variables aléatoires auxiliaires, qualifiées de données
manquantes’, et ayant avec y une densité conjointe notée f (y,z| ¢) dépendant elle aussi de

¢ . Dans ces conditions trés générales, on peut établir le résultat suivant, connu sous le nom

d’identité de Fisher (1925), cité par Efron (1977), (cf annexe A):

7 ou variables latentes, supplémentaires ou cachées selon les circonstances et les auteurs
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; (7)

dlng(yl ¢) _E olnf(y,z| ¢)
o0 ‘ G

formule qui traduit simplement le fait que la dérivée de la logvraisemblance

L(d;y) = lng(y| (I)) de ¢ basée sur y par rapport au parametre est I’espérance conditionnelle
de la dérivée de la logvraisemblance L(¢;x)=Inf (x| ¢) des données dites augmentées
(x=(y',z')'). Cette espérance, notée E. (), est prise par rapport a la distribution
conditionnelle des données supplémentaires z sachant les données observées y et le

parametre ¢ .

Ce résultat étant acquis, admettons qu’on veuille résoudre par un procédé itératif I’équation:

oL@y) _
0o

ainsi qu’on est conduit classiquement a le faire en vue de I’obtention des estimations du

; (8)

maximum de vraisemblance.
On dispose donc & Iitération [t] d’une valeur courante ¢! du paramétre; si 1’on fait appel au

résultat précédent en (7), on va s’intéresser a [’espérance conditionnelle de

olnf (y,z| ¢)} .

8[lnf(y,z|¢)] /0¢ par rapport a la densité de z|y,¢=¢" qu’on note E[Ct][ %

Cette espérance s’écrit:

a| Onf(y,z | Olnf (y,z | ¢ ;
[ -

ol Z désigne I’espace d’échantillonnage de z et h(z|y,¢=¢m) est la densité de la loi

conditionnelle des données manquantes z sachant y et ¢ =¢". Cette précision sera omise

par la suite pour simplifier la notation, le domaine d’intégration étant implicitement spécifié

par le symbole différentiel correspondant sous le signe somme, ici dz.

Comme h(z| y,d= (I)[’]) ne dépend pas de ¢, on peut sortir I’opérateur de dérivation d’ou

g Olnf(y,z|¢ 0 (nr
EL) [%} - %{E[g [Inf(y.z9)])|- )

La résolution itérative de (8) peut donc se ramener a celle de I’équation

a%{E[g] [Inf(y.z|$)]}=0. (10)
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qu’avaient mentionnée Foulley et al. (1987) et Foulley (1993) a propos de I’estimation du
maximum de vraisemblance des composantes de la variance dans un mode¢le linéaire mixte.
En fait, la simple lecture de cette équation préfigure la description de I’algorithme EM et de

ses deux étapes.
Le terme Inf(y,z|¢) représente la logvraisemblance des données augmentées (dites aussi
«completesy dans la terminologie de Dempster, Laird et Rubin). Egl[lnf (y,z | (I))] désigne

I’espérance conditionnelle de cette logvraisemblance par rapport a la densité des données

supplémentaires z (ou «manquantes» ) sachant les données observées y (ou «incompletesy
selon Dempster, Laird et Rubin) et la valeur courante ¢! du paramétre. C’est donc une

fonction de y, ¢! et du paramétre ¢ que Dempster, Laird et Rubin notent Q(¢;¢!") et son

¢tablissement correspond précisément a I’étape E (dite «Expectation») de I’algorithme.

L’annulation de sa dérivée premiere %[Q(d);(])[’])] =0 correspond a la phase de recherche de

I’extremum: c’est I’étape dite M «Maximisation» de 1’algorithme.
1.3. Formulation de I’algorithme

Dans la présentation de Dempster, Laird et Rubin, on oppose les données dites incompletes
représentées par la variable aléatoire y de densité g(y|¢) aux données dites completes

1

X:(y',z') formées de la concaténation des données incomplétes y et des données
manquantes z et de densit¢ f(x|¢). Aux variables aléatoires x et y correspondent
respectivement les espaces d’échantillonnage X et ¥ qui sont liés entre eux par une
application de X' dans ¥ . Comme 1’on n’observe pas x € X', mais seulement y =y(x) ey,

on peut spécifier de facon générale la relation entre les deux types de variables (complétes et

incomplétes) par :
ay19) =], fix|p)dx. (1)

ou X, est un sous-espace observable de X défini par I’équation y=y (x) (espace dit
antécédent de YY), soit

X, ={xeXiy=y(x)jcX. (12)
Pour illustrer cette notion un peu abstraite, on peut prendre 1’exemple du modéle dit «animaly»

des généticiens quantitatifs le plus simple: y=ul+a+e ou a= {al.} ~ (0, Aaj) est le vecteur
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des effets génétiques additifs des individus indicés par i (A étant la matrice de parenté) et

e= {ei} ~ (0, Iof) est celui des effets génétiques non additifs et des effets environnementaux.
Dans ce cas, on pourra définir les données complétes directement par x :(a',e')' et on a
g(y|pu,0,00)= J.X f(a,e|u,0,,07)dade avec X, ={X;a+e=y—1u}. On peut aussi,

plus classiquement, définir les données complétes sous la forme x =(y',a')' ou x=(y',e")".
Dans son acception générale, I’algorithme EM se définit par les deux phases suivantes.

1) Phase E dite «Expectation» (ou Espérance)
Sachant la valeur courante du paramétre ¢! a I’itération [t], la phase E consiste en la

détermination de la fonction

Q(¢;9") =E¢' [L(s )] (13)

Avec x=(y',z')', Q(¢;9"") est I’espérance conditionnelle de la logvraisemblance des

données complétes par rapport a la distribution des données manquantes z sachant les

données incomplétes y et la valeur courante ¢! du paramétre soit

QH) = [ Ligsy,2)h(z]y,0=9")dz. (14a)
Avec une spécification générale des données completes, cette fonction s’écrit

Q44" = [ Ligs )k (x|y,0=¢"")dx, (14b)
ou

k(x|y.¢)=f(x|9)/g(y14). (15)

2) Phase M dite «Maximisation»
On actualise la valeur courante du paramétre en maximisant la fonction obtenue a la phase E

par rapport a ¢, soit

¢"*" = arg max, Q(¢;9")|. (16)

Il existe une version généralisée de 1’algorithme dite GEM dans laquelle la valeur actualisée

ne maximise pas nécessairement Q mais 1’augmente simplement c’est-a-dire satisfait

Q") = Q(o; ¢), v
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1.4. Cas d’un mélange gaussien

Un exemple particulierement illustratif des potentialités de 1’algorithme EM réside dans son
application au cas d’un mélange de distributions (Dempster et al., 1977 ; Titterington et
al.,1985 ; Celeux et Diebolt, 1985 ; McLachlan et Basford, 1985 ; McLachlan et Peel, 2000).

Pour simplifier, nous considérerons le cas d’un mélange d’ un nombre fixé de lois gaussiennes

. .y 2 9 r . 2 .
univariées N (#,,07) d’espérance y; et de variance o; en proportion p, pour chacune des
composantes j=1,...,J du mélange.

Soit y, , = { yl.} le vecteur des N observations y, supposées indépendantes et de densité

J
8)=22,p,/(1:0,) a7)
ou p,,, = {pj}, 0, = (,uj,O'Jz.)‘ , ¢= (p',O'l,...,Gji,...,O'J)' représentent les parametres et
S ( ;0 j) est la densité de la loi NV (4, O'f) relative a la composante j du mélange.

Compte tenu de (17) et de I’indépendance des observations, la logvraisemblance des données

observées s’écrit :

L@y)=2" [ 37 pf, (50, . ()

expression qui ne se préte pas aisément a la maximisation.
Une fagon de contourner cette difficulté est d’avoir recours a 1’algorithme EM. On introduit

alors des variables z, non observables indiquant I’appartenance de I’observation i a une

certaine composante j du mélange et donc telle que Pr(z, = j)= p,. Par définition, cette

appartenance étant exclusive, la densité g(x,;¢) du couple x, =(y,,z)" peut alors s’écrire

J . i
=[T.[eWmz=70)] . (19a)
(a; désignant I’indicatrice a,; = I ) soit encore, en décomposant la loi conjointe de y, et

z;,

g(x:0) =TT .[p.s (5:0,)] - (19b)

Les couples x, <¢étant indépendants entre eux, la densité des données complétes

l

X = (xl,...,x[,...,x v )' est le produit des densités €lementaires soit

o) =TT1LIT [ 7./ (v:0,)]" (20)

On en déduit immédiatement 1’expression de la logvraisemblance correspondante
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X) :Zilz;aij [lnpj +lnfj(yl.;0j)].

En prenant I’espérance de L(d);x) par rapport a la distribution des données manquantes a,
sachant les données observées et les parameétres pris a leurs valeurs courantes, on obtient

I’expresion de la fonction Q ((I); (I)['] ) a la phase E

N J K
Q(¢:0)=>"" 3" [ inp,+Inf,(vs0,)], (21)
ou a (ay |y, o= ¢ ) s’interpréte comme la probabilité conditionnelle d’appartenance
de I’observation i a la composante j du mélange, soit
[1] [
P fi\yi:8;
af! =Pr(z,= j|y.0) =<7 :0)) (22)

> 2 (o)

Il ne reste plus maintenant (phase M) qu’a maximiser la fonction Q(¢; ¢[t])par rapport & ¢,

ou plus précisément Q" (¢; ¢[’]) =Q (¢; ¢! ) -2 (Zj:l p;- 1) pour prendre en compte, grace au

multiplicateur de Lagrange A, la relation d’exhaustivit¢ qui lie les probabilités

d’appartenance. Les dérivées partielles s’écrivent :
t]

8Q#
Z ) " o, =Zjilag](yi_luj)/o-]2' ;
J

apj

0Q’ N 1 (y‘_,u‘)z
—53) dl| — - 2

2 i=1 Y 2 4
do; g; o,

Par annulation, on obtient les solutions a savoir

A= )N, (23a)
A= (20 el )1, (23b)
o = el (=) (). (230)

Si ’on avait fait I’hypothése de variances homogenes, (ajz. = GZ,Vj), la formule (23c) se

serait écrite

S |:Zi]\112j_1 ag]( EM]) } SN
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Les résultats précédents se généralisent sans probléeme a la situation multivariée

y,~N (n;,X;). Ici on s’est placé dans la situation ou les observations y, étaient

indépendantes, mais cette hypothése peut étre levée. Grimaud et al. (2002) ont ainsi traité un
mode¢le de mélange de deux modéeles mixtes gaussiens.

En définitive, le traitement d’un mélange par 1’algorithme EM rentre dans un cadre trés
général qui est mis a profit dans mainte application. Citons a titre d’exemple la recherche et la
localisation de loci a effets quantitatifs (dits QTL en anglais) utilisant des marqueurs
moléculaires dans des dispositifs de croisement (backcross par ex). Dans ce cas, les
composantes du mélange sont les génotypes possibles au QTL putatif et les probabilités
d’appartenance a priori sont données par les régles de ségrégation sachant 1’ascendance et
I’information procurée par les marqueurs moléculaires (Wu et al., 2002). Dans ce genre de
probléme, 1’algorithme EM a permis de substituer a 1’expression classique de la
vraisemblance (18) une forme plus aisée @ maximiser (21) par le biais de la prise en compte
d’informations cachées. Le traitement des distributions de mélange par ’algorithme EM est
¢galement a la base de certaines techniques de classification, cf par exemple ’algorithme

CEM (C pour classification) (Celeux et Govaert, 1992).
1.5. Cas particuliers
1.5.1. Famille exponentielle réguliere

On considere ici le cas ou la distribution des données complétes appartient a la famille
exponentielle réguliére qu’on peut mettre sous la forme générale suivante :

f(x|d)=b(x)exp[¢p't(x)]/a(d), (24)
ou ¢ est le vecteur (kx1) des paramétres dits canoniques, t(x) le vecteur (kx1)de la
statistique exhaustive correspondante, et a(¢) et b(x) des fonctions scalaires.

La statistique exhaustive t(x) du paramétre canonique ¢ se caractérise par

E[t(x)|¢]=0In[a(d)]/0¢, (25a)

Var[t(x)|¢]=0"In[a($) ]/ 660" (25b)
Eu égard  la forme de la densité en (24), la phase E conduit a la fonction Q suivante

Q") = ¢'EX'[t(x)] - In[a() |+ cste. (26)

Par annulation de la dérivée de Q, on obtient a la phase M 1’équation suivante
E[t(x)]=EY[t(x)],

que I’on peut écrire aussi, a I’instar de Dempster, Laird et Rubin, sous la forme
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E[t) 6" |=E[t(x)]y,0=¢" ] 27)

-

qui apparait comme 1’équation clé de ’algorithme EM dans la famille exponentielle.

Si cette équation a une solution dans I’espace des parametres @, elle est unique, puisque,
dans la famille exponentielle réguliére, moins deux fois la logvraisemblance est une fonction
convexe.

L’exemple précédent de I’estimation de la fréquence allélique au locus de groupe sanguin
humain ABO fournit une trés bonne illustration de cette propriété. Une statistique exhaustive

des fréquences alléliques de p et g consiste, a effectif total N =y, fixé, en les nombres

d’alleles respectifs soit £, =2x,, +x,, +x,, €t t, =2X,, + X, +X,,. A la phase M, on résout

I’équation (27) E(tA | p[””,q[”']) = E(tA |y,p[”,q[”) soit

2Np[t+1] = 2E('XAA 'y, p[t],q[t])+ Yap t E(XAO |y, p[t]aq[l] ) 5 (28)

avece

(1
1 1\___P
E(x,ly.0".q )_myAﬂ (29)

puisque, conditionnellement & y,, x,, a une distribution binomiale de parameétres y, et

t+1

p/ ( p+ 2r). On fait de méme pour ¢""*'"’. On retrouve ainsi les expressions (5) et (6) établies

empiriquement au début.
Une autre illustration consiste en 1’estimation des composantes de la variance dans le modéle

linéaire mixte gaussien comme nous le verrons dans la deuxiéme partie de ce chapitre.
1.5.2. Mode a posteriori

L’algorithme EM peut étre également utilisé dans un cadre bayésien en vue de I’obtention du

mode de la distribution a posteriori p(¢|y). Il existe pour la logdensité a posteriori

I’homologue de la formule (7) pour la logvraisemblance,

olnp(¢ly) _ |9lnp(dly.2)
) ¢ )

: (30)

ou E. () indique comme précédemment une espérance conditionnelle prise par rapport a

z|y.¢.
Sur cette base on déduit immédiatement les deux phases de I’algorithme EM correspondant au

calcul du mode a posteriori de ¢ .
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Sachant la valeur courante du paramétre ¢! a I’itération [t], la phase E consiste en la

spécification de la fonction

Q (¢:9")=E¢[Inp(¢l y.2)]. 31)
qui, du fait du théoréme de Bayes p(¢| y,z) < p(y.z| $)p(¢9), se réduit &
Q (¢;0') = Q(¢;¢") +Inp(0)+Cste , (32)

ot Q(¢;0")) est défini comme précédemment: cf (13) et (14ab).
A la Phase M, on actualise la valeur courante de ¢ en recherchant ¢! qui maximise la
fonction Q’(¢;¢")) par rapport & ¢, soit¢!""" = argmax, Q (¢;¢'").
1.6. Quelques propriétés
1.6.1. Accroissement monotone de la vraisemblance

Soit une suite d’itérations EM: ¢, ¢!, ¢%,...,¢",¢"",..., on peut établir le théoréme

suivant:
Lo y) > L9 y), Vi

I’égalit¢ n’intervenant que, si et seulement si, a partir d’un certain rang,

Q"3 ¢") = Qo' ¢") et h(z|y,¢"") =h(z|y.¢") ou k(x |y, ") =k(x|y,¢") .

C’est une propriét¢ fondamentale de I’algorithme qui garantit a I’utilisateur une bonne

(33)

-

évolution des valeurs de la logvraisemblance.
La démonstration est intéressante pour éclairer la compréhension des mécanismes sous-
jacents a EM. Elle se décline comme suit.

Par définition de la densité conjointe, on a: f(y,z|¢)=g(y|d)h(z|y,d) et, en passant aux

logarithmes, Ing(y|¢)=Inf(y,z|¢)—Inh(z|y,$) . Si 'on intégre les deux membres par
rapport a la densité de z | y,(I)M , il vient:

L(3y) = Q(¢;9") —H(¢;9""), (34)

ou
H($;¢") = [In[h(z| y,$)]h(z]y,0=¢"")dz. (35)

Exprimons maintenant la variation de la logvraisemblance L(¢""";y)—L(¢"';y) quand on

passe d’une itération EM a la suivante. Compte tenu de (34), cette variation s’écrit:
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L@y - L@ y) =[ Q@54 - Q¢ |
~[H@"59) - H@"59") |

Par définition de la phase M de 1’algorithme, la quantité Q(!"';¢")) — Q(¢!"); ") est positive

(36)

ou nulle qu’il s’agisse d’un EM classique ou généralisé. Quant au deuxiéme terme,
considérons la quantité H(¢;0"")—H(¢"';¢"') comme une fonction de ¢ ; elle s’écrit, au vu
de la définition donnée en (35):

h(z|y,9)
z|y,p=9"

Le logarithme étant une fonction concave, on peut majorer cette quantité par application de

H(g;¢") - H(M5¢) = | lnL( )}h(zy,¢=¢['])dz. (37)

I’inégalité de Jensen®.

Iln[h(h(ZI)’ad)) )]h(zl y’¢=¢[t])dzﬁlnjh(h(z|y’¢) )h(zl y,¢=¢[’])dz:0,

z|y,¢=o¢" z|y,¢=o¢"
’égalité ne se produisant que si h(z|y,¢):h(z| y,¢=¢[’]),v¢ (cf Rao, 1973, page 59,
formule 1e6.6) d’ou

H(p;¢") - H(9";0") <0,v¢, (38)
ce qui établit le théoréme de départ (33).

Remarquons que ’on aurait pu faire la méme démonstration en partant de la relation

In[g(y|9)]=In[f(x]$)]-In[k(x|y.$)] (cf. 15), H étant définie alors par

H(;¢') = [In[k (x| y,0) k(x| .6 =¢")dz. (39)

1.6.2. Cohérence interne

Si ¢* est un point stationnaire de L(¢;y), il annule aussi la dérivée de Q(¢;¢") par rapport a

¢ et réciproquement :

OLBY)|  _g o 0Q&e) (40)

N lg=gr B lp=gr
Ce théoreme découle d’un corollaire de (7) et (9). En effet, par définition

Q(¢;4,) =E¢. [L(¢; x)] ou E;. () indique une espérance conditionnelle prise par rapport a la

¥Si X est une variable aléatoire d’espérance £ etsi f(x) est une fonction concave, alors

E[f(0]< f(u)
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distribution de z| y,¢=¢,, et Q4 %) :i{Eg [L(¢; x)]}. Du fait de I’égalité (9), on peut

gy ¢
intervertir les opérateurs de dérivation et d’espérance si bien que aQ(ad;;%) =E; {814(21)); X)}
et en évaluant ces deux fonctions de ¢ au point ¢, il vient compte tenu de (7)
9Q(9; ) oL(%;y)

Y)‘ . (41)
A

Le théoréme (40) en découle par application de (41) a ¢, =¢" point stationnaire de L(¢;y) .

Cette propriété de cohérence interne, dite de «self-consistency» dans le monde anglo-saxon,
remonterait a Fisher et aurait fait ’objet de nombreuses redécouvertes depuis les années 1930.
Remarquons que, du fait de (34), la propriété (41) implique
—é’H(ad;);%) ) =0. (42)
o=
McLachlan et Krishnan (1997, page 85) établissent tout d’abord (42) a partir de (38) et en
déduisent (41) et (40). Quoiqu’il en soit, ce résultat est fondamental pour établir les propriétés

de convergence des itérations EM vers un point stationnaire de L(¢;y).

1.6.3. Convergence vers un point stationnaire
La question de la convergence de I’algorithme fait I’objet de plusieurs théorémes
correspondant aux différentes conditions qui sous-tendent cette propriété. Nous ne rentrerons
pas dans tous ces développements, certes importants, mais d’acces difficile. Le lecteur est
renvoyé a 1’ouvrage de McLachlan and Krishan (1997) ainsi que, pour plus de détails, a

I’article de Wu (1983). Nous nous restreindrons aux deux résultats suivants.

On note £(L,)={¢pe®;L(¢;y)=L,} le sous-ensemble de @ dont les éléments ont pour
logvraisemblance L(¢;y)une valeur donnée L.
Théoréme. Soit une suite d’itérations EM ou GEM : ¢, o™, ¥, ... ¢", 6", ..., qui vérifie la

. hl] .
condition 0Q@:¢7) =0. Lorsque la fonction 2Q%:¥) ng)’ ¥)

¢=¢[ t+1]

est continue en ¢ et ¥, alors

¢! > ¢* quand t — +oo ou ¢* est un point stationnaire (il vérifie L'(¢p*;y)=0) qui est tel

que L(¢*;y)=L*=Lim L(¢[t]; y) si I’une ou I’autre des conditions suivantes est remplie:

a) £(L*) est un singleton ou £(L,) = {(I) ed:L(¢;y)= LO} ;
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b) £(L*) n’est pas un singleton mais est fini et H(I)[”” — !

— 0, quand t > +x.

La démonstration dans le cas b) repose sur le raisonnement suivant. Eu égard aux conditions

de régularité, L(¢'’;y) converge vers une valeur L*, le point limite ¢* (du fait de

‘ ¢[r+11 _ ¢[r]

— 0) correspondant dans £(L *) va vérifier

L@y)|  _0Quse)
o o=0* oo

_Lim,__ | 2Q:¢") _o.
e o d=gli+1]

Ce théoréme ne garantit donc pas la convergence vers un maximum global de la

logvraisemblance L(¢;y). Si L(d);y) a plusieurs points stationnaires, la convergence d’une

suite d’itérations EM vers 1'un d’entre eux (maximum local ou global ou point selle) va
dépendre de la valeur de départ. Quand le point stationnaire est un point selle, une trés petite
perturbation de cette valeur va détourner la suite des itérations EM du point selle.

Il est a remarquer que la convergence de L(¢;y) vers L* n’implique pas automatiquement
celle de ¢! vers ¢*; il faut certaines conditions a cet effet comme la condition de continuité
de la fonction [8 Q((I);‘I’)]/ 0¢ . Ainsi, Boyles (1983) décrit un exemple de convergence d’un

GEM non pas vers un seul point mais vers les points d’un cercle.

Corollaire. Il a trait au cas ou la fonction L(¢;y) est unimodale avec un seul point

stationnaire ¢* a I’intérieur de @ . On est donc dans le cas a) d’un singleton et, si la fonction

0Q(¢;'¥)

6—4) est continue en ¢ et en W, toute suite d’itérations EM quelle que soit la valeur de

départ converge vers I’unique maximum global de L(¢;y) .
164. Partition de |’information

On a montré que f(x[¢)=g(y|¢)k(x|y,0)(cf. 15). En passant au logarithme et en dérivant

deux fois par rapport a ¢, il vient

000" gel ¥ ool

Le deuxiéme membre fait intervenir les données manquantes. Pour évaluer sa contribution

_82 Ing(y|d) _82 1nf(x|<1>)+82 lnk(x|y,¢)'

réelle, nous en prendrons ’espérance par rapport a la distribution conditionnelle de ces

données z sachant y et ¢, notée comme précédemment E . () ,d’ou
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_PLGY) o | CL($Y) | [0 Ink(x]y.¢) “3)
0909’ L obod’ L oaae |

Cette formule peut s’écrire symboliquement sous la forme
[(d;5)=Z. (¢:x)-Z, (3¥)

qui s’interpréte comme une partition de 1’information en ses composantes.

(44)

-

Le premier terme correspond a la matrice d’information (moins deux fois le hessien de la

logvraisemblance) relative a ¢ procurée par les données observées y,

0" L(¢;y
I(¢;y)=—;,)- (45)
g2y
Le second terme représente la matrice d’information des données complétes x moyennée par
rapport a la distribution conditionnelle des données manquantes z sachant les données

observées y et le paramétre ¢, soit

o _r | CL(%x)
Ic(cb,x)— EC{ 3000 } (46)
Le terme noté
Im(¢;y)=—Ec{%§¢'7“ﬂ, (47)

s’identifie, eu égard a (44), a la perte d’information Z, (¢;x)—1I(¢;y) consécutive au fait
d’observer y et non x d’ou son appellation d’information manquante.

Comme I’a montré initialement Louis (1982), on peut évaluer ce terme assez facilement. Soit

oL(¢; OL(¢;
% et S((I);x) = %X) les fonctions de score relatives respectivement aux

S(¢sy)=
données observées et aux données complétes, on montre (cf. annexe A) que
Z, (¢sy) = Varc [S(¢;x)] (48)

c’est-a-dire que I’information manquante est la variance du score des données complétes,

variance prise par rapport a la distribution conditionnelle de z sachant y et ¢.

Ce résultat découle directement du lemme suivant (cf. annexe A)

PL)_ [PL0], v, [2L000)

600" 000" o

qui peut s’écrire aussi —1(¢;y) = —Z, (¢;x) + Var. [ S(¢;x) | QED.
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Comme E_ [S((I);x)] =S(¢;y) (cf. 7), Pexpression se simplifie en
Z, (%) =E.[S(¢:%)S"(:%) |-S(:¥)S'(¢5¥). (492)
et, localement au point d’estimation ML ¢ = ¢ tel que S((i);y) =0,0na
Z,(v)=Ec[S(4:x)8' ()], (49b)
d’ou, un moyen de calcul de I’information observée
1(éy)=Z.($x)-Z, (b:). (50)
165. Vitesse de convergence

L’algorithme EM suppose implicitement [’existence d’une application M de 1’espace

paramétrique @ sur lui-méme, puisque, par construction, on passe de fagon univoque de ¢!’

a """, On peut donc écrire:
ol = M(¢["]), (51)
ou M(9),, = [ M, (6), M, (0),..s M, (9) -, M, ()] et ¢, = {6}
En faisant un développement limité de M(d)[k]) au premier ordre au voisinage de ¢ = ¢!,
on obtient :
oI — ¢l & J(d)[k’”)(d)[k] _¢[k71])' (52)
Dans cette formule, J(¢) est la matrice jacobienne (7 x ) dont I’élément (i, j) s’&crit
J; (¢)=6Ml./6¢j,
ou M, est le iéme €lément de M et ¢, le jeme €élément du vecteur . Si o — ¢* alors,
sous les conditions de continuité habituelles, J (d)““”) —J (¢* ) si bien qu’a partir d’un certain
rang, on pourra écrire ¢! -t ~ J((I)* )(¢["] — i ) .
La vitesse de convergence
A [ o
est alors gouvernée par la plus grande valeur propre de J ((I)*), v=max,., A, une valeur

¢levée de cette valeur propre impliquant une convergence lente.

Dans le cas de la famille exponentielle, Dempster, Laird et Rubin ont montré que

J(¢*) = {Var [t(x) | (I)*]}il Var[t(x) | ¢*,y] , (54)
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ou t(x) est le vecteur des statistiques exhaustives de ¢ basées sur les données complétes x.
De fagon générale, ces mémes auteurs ont établi que

3(0") =2 (¢%x)Z, (97 (55)
quantité qui mesure la fraction de 1’information compléte qui est perdue du fait de la non
observation de z en susde y. Silaperte d’information due a [Dexistence de données

incomplétes est faible, la convergence sera rapide, cette perte d’information pouvant d’ailleurs
varier selon les composantes de ¢ .
Comme Z, (¢;y)=Z,(¢;x)—1(¢;y), la formule (55) peut s’écrire aussi

I(¢7) =L -Z.'(¢"x)1(¢"y). (56)
Pour étre en conformit¢ avec la littérature numérique, c’est la matrice
I-J (¢*) =7 ((])';X)I(d)*;y) dont la valeur propre la plus petite définit les performances de
Ialgorithme qui, certaines fois, est qualifiée de matrice de vitesse de convergence.
L’expression (56) conduit aussi a exprimer la matrice d’information des données observées

sous la forme
1(¢7y)=Z.(¢7x)[L-3(¢") ], (57)

et, pour I’inverse:
O (@5y)=[1-3(¢)] 7 (¢7x)
([ -a()] (9|2 (#59)

F(@0y) =0 (¢0)+ [, -3 (97) | 3(07)Z (¢:x) (58)

Cette formule est la base d’un algorithme dit «Supplemented EM» (Meng and Rubin, 1991)
permettant de calculer la précision asymptotique des estimations ML obtenues via

I’algorithme EM.
Au voisinage de ¢, on peut écrire, par un développement limité de ¢! :M((I)[k]) au
premier ordre

OU—¢" = I (97) (01 -9"). (59)
formule qui indique le caractere linéaire de la convergence des itérations EM. Un algorithme

ayant ce type de convergence peut étre accéléré notamment par la version multivariée de la

méthode d’accélération d’Aitken. On a

99



¢‘ _ ¢[k—1] _ (¢[k] _ ¢[k—1]) " (¢[k+1] _ ¢[k])+ (¢[k+2] _ ¢[k+1]) - (¢[k+h—1] _ ¢[k+h])+ -
Or, du fait de I’expression (52),
¢[k+h+1] _ ¢[k+h] _ Jh (¢*)(¢[k] . ¢[k—l]) ’

et, en reportant dans 1’expression précédente, il vient
* _ a[k-1] ® yh [ gx [k] [k-1]
O =+ 3,0 (47) (6 -0,

. oqe .y r r . r r . ©
soit encore, en utilisant la propriété de convergence de la série géométrique ZHJ ¢ (¢*) vers

-1
[Ir -J (d)* )] lorsque ses valeurs propres sont comprises entre 0 et 1

o ="+ (1 -3 (¢)] (6% 4" ). (60)

Laird et al. (1987) ont proposé une approximation numérique de J (¢*) a partir de I’historique
des itérations EM et qu’ils appliquent au calcul des estimations REML des composantes de la
variance pour des modeles linéaires mixtes d’analyse de données répétées. Ainsi, de
’itération &, on va pouvoir se projeter, si tout va bien, au voisinage de ¢*, donc réduire les

calculs et gagner du temps.
1.7. Variantes

A partir de la théorie de base telle qu’elle fut formulée par Dempster, Laird et Rubin se sont
développées maintes variantes qui répondent au besoin d’adapter celle-ci aux difficultés qui
peuvent se rencontrer, soit dans la mise en ceuvre des phases E et M, soit dans 1’obtention de
résultats supplémentaires ou de meilleures performances. Sans avoir la prétention d’étre

exhaustif, nous répertorierons les principales d’entre elles.
171. « Gradient-EM »

On fait appel a cette technique lorsqu’il n’y a pas de solution analytique a la phase M. Dans la

version décrite par Lange (1995), celle-ci est réalisée par la méthode de Newton-Raphson.

Sachant la valeur courante des paramétres ¢!, on va initier une série d’itérations internes

¢!"“utilisant les expressions du gradient et du hessien de la fonction Q(¢;¢"!) soit
— Qs (7 = 01) = Qs ¢ (61)
ol Q(¢;0")=0Q(h:;¢1")/ap et Q(d;¢")=0"Q(¢;¢1")/0p3¢". 11 peut étre avantageux

numériquement de ne pas aller jusqu’a la convergence en réduisant le nombre d’itérations

¢=¢[f;k] 4
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internes jusqu’a une seule ¢ =" comme I’envisage Lange. Dans ce cas, il importe
toutefois de bien vérifier qu’on augmente la fonction Q(¢;0") et qu’on reste ainsi dans le
cadre d’un EM dit généralisé.

Dans certaines situations, 1’expression de E[Q((I);d)[’])] prise par rapport a la

distribution de y est beaucoup plus simple que celle de Q(¢;¢"") et I’on aura alors recours a

un algorithme de Fisher (Titterington, 1984 ; Foulley et al., 2000).
1.7.2. ECM et ECME

La technique dite ECM (« Expectation Conditional Maximisation ») a été introduite par Meng

et Rubin (1993) en vue de simplifier la phase de maximisation quand celle-ci fait intervenir

différents types de parametres. On partitionne alors le vecteur des parameétres ¢ = (y',ﬂ')'en
sous vecteurs (par exemple y et ), puis on maximise la fonction Q(¢;¢"!) successivement
par rapport a v, 0 étant fixé, puis par rapport 0, y étant fixé, soit

v = argmax Q(y,0";9"). (62a)

0" = argmax Q(y"*",0;¢) . (62b)
Dans la version dite ECME (« Expectation Conditional Maximisation Either») due a Liu et

Rubin (1994), une des étapes de maximisation conditionnelle précédentes est réalisée par

maximisation directe de la vraisemblance L(¢;y) des données observées, soit, par exemple,
0" = argmax L(y""",0;y). (63)
1.7.3. EM stochastique

Cette méthode fut introduite par Celeux et Diebolt (1985) en vue de I’estimation ML des
paramétres d’une loi de mélange. Le principe de cette méthode dite en abrégé SEM

(« Stochastic EM») réside dans la maximisation de la logvraisemblance
L(d);x) = ln[f (x | d))] des données complétes a partir, non pas de son expression analytique,
mais grace a une €valuation numérique de celle-ci via le calcul de ln[f (y,z[’] |¢)J ou z est

un échantillon simulé de données manquantes tiré dans la distribution conditionnelle de
celles-ci de densité h(z[t] ly, 0= ¢[t]). Outre la simplicité du procédé, celui-ci offre I’avantage

d’éviter le blocage de I’algorithme en des points stationnaires stables mais indésirables

(Celeux et al., 1996).
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Wei et Tanner (1990) reprennent cette idée pour calculer la fonction Q(¢; ¢[t]) de la phase E

quand celle-ci n’est plus possible analytiquement par le biais d’une approximation de Monte-
Carlo classique d’une espérance (Robert et Casella, 1999 ; formule 5.3.4 page 208).
Concretement, on procede comme suit :

a) tirage de m échantillons de z soit z,...,Z,...,z, extraits de la loi de densité

h(zly.0=¢");

b) approximation de Q((I); (I)[t]) par

Q(¢;0") = %Z’;’_] Inf (y,z, |$). (64)

On remarque de suite que pour m=1, MCEM se ramene exactement a SEM, et que
pourm — oo, MCEM ¢équivaut a EM. On gagnera donc a moduler les valeurs de m au cours
du processus itératif (Tanner, 1996 ; Booth and Hobert, 1999); en partant par exemple de

m, =1 et, en accroissant continiment et indéfiniment m selon une progression adéquate, on

mime ainsi un algorithme de recuit simulé ou I’inverse de m joue le réle de la température
(Celeux et al., 1995). D’un point de vue théorique, les propriétés de SEM notamment les
résultats asymptotiques ont été établis par Nielsen (2000).

Il y a des variantes autour de ces algorithmes de base. Mentionnons par exemple 1’algorithme

dit « SAEM » (Stochastic Approximative EM »). Dans la version de Celeux et Diebolt (1992),

’actualisation du paramétre courant ¢[’] par SAEM s’effectue par combinaison des valeurs

actualisées ¢£§) de SEM et ¢£;}1] de EM selon la formule suivante :

0 =i+ (=7 ) (65)
ou les y, forment une suite de nombres réels décroissant de y, =1 a y, =0 avec les deux
conditions suivantes : Lim(;/t/ Vm)=1 et zt y, > quand ¢ — . Ces deux conditions

assurent la convergence presque stre de la suite des itérations SAEM vers un maximum local
de la vraisemblance.

Ce faisant, on réalise a chaque étape un dosage entre une actualisation purement EM et une
actualisation purement stochastique, cette derniére composante étant dominante au départ
pour s’amenuiser au cours des itérations au profit de la composante EM.

Dans la version de Delyon et al. (1999), cette combinaison se fait a la phase E sur la base de

la fonction Q précédente notée ici (_Q(d); ¢[’]) et de la partie simulée en (64) selon la formule
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J=1
t+1

Q(es0") =7, L% >t (y,2,, |¢)} +(1=7.)Q(0:0"). (66)

De la méme fagon, la composante purement simulée dominante au départ ira en s’amenuisant
au fil des itérations. L’avantage par rapport a MCEM réside dans la prise en compte de toutes

les valeurs simulées depuis le départ alors que seules les m, simulées a I’étape ¢ sont prises

en compte dans I’algorithme MCEM. Les conditions de convergence de cet algorithme ont été
discutées par Delyon et al. (1999) et par Kuhn et Lavielle (2002) quand le processus de

simulation des données manquantes s’effectue via MCMC.
1.7.4. EM supplémenté

Cet algorithme dit « EM supplémenté » (SEM en abrégé) fut introduit par Meng et Rubin

(1991) pour compléter I’EM classique, en vue d’obtenir la précision des estimations ML de ¢

sous la forme de la matrice de variance covariance asymptotique de ¢ .

Le point de départ de cet algorithme est la formule donnant 1’expression de 1’inverse de la

matrice d’information de Fisher relative a ¢ vue précédemment (cf. 58),
. . R .
I (q);y) =7 (d);x) + [Ir - J(d))} J((I)) T ((]);x) ,
en fonction de l’inverse Z_' (&);x) de la matrice d’information des données completes x

moyennée par rapport a la distribution conditionnelle des données manquantes et de la matrice
jacobienne J(¢) dont I’élément ij se définit par 7, = M, /04, .
Dans la famille exponentielle, il n’y a pas de difficulté particuliére a I’obtention de Z' ((i), x).
L’apport crucial de Meng et Rubin (1991) est d’avoir montré comment on pouvait évaluer
numériquement la matrice J ($) a partir de la mise en ceuvre de I’EM classique. Posons, a
l’instar de McLachlan et Krishnan (1997) : d)([jt]) = (¢31,¢?2,...,qgj_l,(zﬁj[t],...,(/;,)', r, peut s’écrire
comme suit :
[1)_ 4
Mi ( j)) - ¢z

ry =Lim,_,, — = (67)

4=,
En fait, 1’algorithme EM réalise I’application M (cf. 51) lors du passage d’une itération a

I’autre. En pratique, partant de ¢([;]) comme valeur courante, I’itération suivante de EM

relative a la composante ¢5i['“] procure donc la valeur de M, (d)([j])) d’ou I’on déduit la valeur
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de r; a partir de la formule (67). Ce calcul est réalis¢ pour différentes valeurs de ¢ de fagon a

ne retenir in fine que les valeurs stables de 7. McLachlan et Krishnan (1997) notent que les
caractéristiques de la matrice I, —J (&)) ainsi obtenues sont de bons outils de diagnostic de la

solution ¢ obtenue. Ainsi, lorsque cette matrice n’est pas positive définie, on peut en inférer

que ’algorithme a convergé vers un point selle indétectable par la procédure classique. Il
conviendra alors de réamorcer une séquence EM a partir de ces valeurs affectées d’une

perturbation adéquate.

Une autre fagon d’obtenir la précision de I’estimation (i) est de repartir de la formule générale

I(&);y):Z;(&);y)—Zm(J);y) et d’utiliser la formule de Louis vue en (49ab) soit

m

7 ((i);y) =E, [S((1);)()8'((1);)()]4)=43 qu’on peut évaluer par simulation en prenant la moyenne

sur m échantillons du produit du score S(d); y,zj) par son transposé (Tanner, 1996). On peut
aussi avoir recours a des techniques de boostrap classique ou paramétrique.

1.7.5. PX-EM

L’algorithme EM fait partie des standards de calcul des estimations de maximum de
vraisemblance. Il doit son succes a sa simplicité de formulation, a sa stabilit¢é numérique et a
la diversité de son champ d’application. Toutefois, sa vitesse de convergence peut s’avérer
lente dans certains types de probléme d’ou des tentatives pour y remédier. Dans le cas du
modele mixte, plusieurs auteurs ont proposé des procédures de « normalisation » des effets
aléatoires (Foulley et Quaas, 1995 ; Lindstrom et Bates, 1988 ; Meng et van Dyk, 1998 ;
Wolfinger et Tobias, 1998). Ce principe a été repris par Meng et van Dyk (1997) puis
généralis¢ par Liu et al. (1998) dans le cadre d’une nouvelle version de 1’algorithme qualifi¢e
de « Parameter Expanded EM » (PX-EM en abrégé).

Cette théorie repose sur le concept d’extension paramétrique a un espace plus large ¢ que

I’espace d’origine par adjonction d’un vecteur de parametres de travail a tel que @ = ((I);, u')'
ou ¢. joue le méme role dans la densité des données complétes p, I:x\(p = (d)k,a)] du mod¢le

étendu (noté¢ X) que ¢ dans celle p(x|¢) du mod¢le d’origine (noté O). Cette extension doit

satisfaire les deux conditions suivantes :

1) retour a I’espace d’origine sans ambiguité par la fonction ¢ = R ((p) ;
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2) préservation du modele des données compléetes pour a pris a sa valeur de référence

a, c’est-a-dire que pour a=a,, la loi de x se réduit a celle définie sous le modele O soit

po(X10)=p, (x 1" =d,a= ao) . Autrement dit, si ’on pose ¢" =¢" (@) alors ¢"(a,)=¢.

La premicre condition se traduit par le fait que la logvraisemblance reste inchangée
L(y;y)ZL(y*,u;y) quelle que soit la valeur de a choisie. La deuxiéme condition est mise a
profit & la phase E en prenant 1’espérance de la logvraisemblance des données complétes par

rapport a la densité h(z ly, o= (p[’]) des données manquantes ou ol est ¢galé a sa valeur de

référence o, simplifiant ainsi grandement la mise en ceuvre de cette étape qui devient

identique a celle d’un algorithme classique sous le modéle d’origine O (dit EMO).
L’exemple de Liu et al. (1998) permet d’illustrer ces principes. Il s’agit d’un mode¢le linéaire

aléatoire trés simple généré par 1’approche hiérarchique suivante a deux niveaux :

D y|lz~N (z,l) ou y désigne la variable observée et z la variable manquante ;

2) z|0,6° ~ N (0, 02)01‘1 I’espérance € de la loi de z est le parametre inconnu et la
variance o est supposée connue.
Remarquons que cela équivaut a écrire: 1) y=z+e e~N(01), et 2)
z=0+u; u~N (O, 0'2) soit encore, marginalement y =6+u+e, et ’on reconnait la une

structure de mode¢le linéaire aléatoire. Dans 1’algorithme classique (dit EMO puisqu’il y
s’appuie sur le modele d’origine O) on proceéde comme suit.

Phase E: z ¢étant une statistique exhaustive de &, on remplace z par son espérance

conditionnelle 31 = E (z | o o2, y). Du fait de I’hypothése de normalité des distributions,
cette espérance s’écrit comme 1’équation de régression de y en z,
sl = E(z 16", 52 ) +Cov (y,z)(var y)f1 [y —~ E(y 161, & )J , soit compte tenu de 1) et 2),

2

(y B g[x]) _ o + o’y . (68)

1+o0° 1+0°

Phase M: On résout I’équation E(ZIH[HI],GZ):E(z|y,<9[’],az) qui a pour solution

ol o + o? v

=————, d’ou I’expression de I’écart entre cette itération EMO et I’estimateur

1+o

vrai (y)
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[e+1] 9[1‘] — y
HEM - ‘9ML =

, 69
1+0o7 (©9)

formule qui indique que la convergence va étre d’autant plus lente que o sera petit.

Liu et al. (1998) formulent le mod¢le reparamétré (dit X) en y incluant un décentrage o : 1)
yiz~N(z+a,l) et 2) z| 0.,0° ~N (49*,0'2 ) . Pour détailler le raisonnement, on peut
expliciter la logvraisemblance des données complétes:

_2L(t9*,a,az;y,z) = [(2—9*)2/02J+(y—z—a)2 +Ino?. (70)
On retrouve alors la propriété selon laquelle z est une statistique exhaustive de 6,. La phase

E reste inchangée puisque la loi de z | 6., =0,0",y est identique a la loide z|6,0°,y. A la

[7] 2
phase M, on résout E(z | 49*[”]],0'2) =z soit "1 = %. Quant & «, on a, eu égard a
+o
[] 2
expression (70), o™=y -3" soit, compte tenu de (68), o=y —% et
+o

1 ére

O = " 4 gl est-a-dire 8" =y si bien que la convergence s’obtient dés la
itération. On peut expliciter la relation entre les deux algorithmes sous la forme de 1’équation

suivante :
[r+1] [£+1] +1
Opy =010 + (a[‘ - ao),
que Liu et al. (1998) mettent en avant pour montrer que la phase M de I’algorithme PX est a

méme d’exploiter par régression 1’information apportée par la différence (a[m] —ao)pour

ajuster 6’,;;0 Liu et Wu (1999) ont repris ce méme exemple sous une forme légerement
différente :1) y|60,a,w~N (0—a+w,1) et 2) w|¢9,a,0'2~N(a,0'2) dans laquelle le

décentrage porte sur la variable aléatoire manquante w initialement centrée.
Des extensions de I’algorithme PX ont été¢ également proposées par Liu et Wu (1999) et van

Dyk et Meng (2001) a des fins d’inférence bayésienne sur la loi a posteriori ¢|y dans le

cadre de I’algorithme dit « Data augmentation » de Tanner et Wong (1987).
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\2. Application au mod¢le linéaire mixte

2.1. Rappels
2.1.1. Modéle mixte

Nous allons considérer maintenant quelques applications de I’algorithme au modéle linéaire
mixte. Il y a une double justification a cela. En premier lieu, le modéle linéaire mixte offre
une illustration typique du concept ¢élargi de données manquantes par le biais des effets
aléatoires qui interviennent dans ce modele. En second lieu, ce type de modele suscite
actuellement un vif intérét de la part des praticiens de la statistique car c’est 1’outil de base
pour I’analyse paramétrique des données corrélées. En effet, un modéle linéaire mixte est un

modele linéaire du type y=XP+¢& dans lequel la matrice de variance covariance des
observations V = var(g) est structurée linéairement V = Zm v,,V,, en fonction de paramétres
Y,, grace a une décomposition de la résiduelle € en une combinaison linéaire € = Zio Znu,
de variables aléatoires structurales u, (Rao et Kleffe, 1988).

Sous la forme la plus générale, le modele linéaire mixte s’écrit: y = Xp+Zu+e, ou y est le

vecteur (N xl) des observations ; X est la matrice (N X p) des variables explicatives

(continues ou discretes) de la partie systématique du modele auquel correspond, le vecteur

B e R”des coefficients dits aussi «effets fixes»; u est le vecteur (qx 1) des variables
aléatoires « structurales » ou effets aléatoires de matrice d’incidence Z de dimension (N X q)

et e est le vecteur (N X 1) des variables aléatoires dites résiduelles.

Ce modele linéaire est caractérisé notamment par son espérance et sa variance qui s’écrivent :

E(y)=p=Xp, Var(y) =V =ZGZ'+R ot u~(0,G), e~(0,R) et Cov(u,e')=0.
2.1.2. Maximum de vraisemblance

L’estimation des paramétres de position P et de dispersion y = {ym} (intervenant dans la

matrice de variance covariance V) s’effectue naturellement dans le cadre gaussien

y~N (XB,V) par la méthode du maximum de vraisemblance (Hartley et Rao, 1967)

soit(ﬁ',?')' =argmax, L(B,v;y), ou

L(B,v;y)= —%[Nln(27z) +1n|V|+(y-XB)'V ' (y —XB)].
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Afin de corriger le biais d’estimation de y 1i¢ au maximum de vraisemblance classique (ML),
Patterson et Thompson (1971) considérent une vraisemblance de résidus v=Sy ou
S=I, -X(X'X) X' qui, par construction, ne dépend pas des effets fixes B. Par

maximisation de cette fonction par rapport aux parameétres, on obtient un maximum de
vraisemblance restreinte ou mieux résiduelle (REML en anglais). Harville (1977) propose de

ne prendre que N —r(X) éléments linéairement indépendants de v (notés K'y ) qu’il appelle
«contrastes d’erreur». En définitive, on montre que moins deux fois la logvraisemblance de y

basée sur K'y peut se mettre sous la forme (Foulley et al.,2002),
—2L(y;K'y)=C+In|V|+In|X'V"'X|+y'Py,

ou C est une constante égale dans sa forme la plus simple a [N - r(X)]ln 27, X correspond
a toute matrice formée par 1(X) colonnes de X linéairement indépendantes et
P=V7'[I,-Q] oot Q=XX'V'X)'X'V" est le projecteur des moindres carrés
généralisés.

En outre, il importe de souligner que REML peut s’interpréter et se justifier trés simplement

dans le cadre Dbayésien comme un maximum de vraisemblance marginale

v)dP apres intégration des effets fixes selon un a priori uniforme (Harville,

p(y|Y) = [p(y.B

1974).

2.2. Modé¢le a un facteur aléatoire
2.2.1. EM-REML

Nous nous placerons au départ pour simplifier dans le cadre du mode¢le linéaire a un facteur

aléatoire y=Xp+Zu+e avec E(y)=Xp, u,., ~N@O,G), ey, ~N(OR),

gx1

Cov(u,e')=0 avecici G=0o;I,, R=0yl, et V=Var(y)=0/ZZ+0;l,.

Les données observables (ou données incomplétes dans la terminologie EM) sont constituées

'

du vecteur y. Le vecteur des données manquantes z= (B',u') est choisi comme la
concaténation de P et de u. Ici, a ’instar de Dempster et al. (1977) et Searle et al. (1992,
page 303), P n’est pas considéré comme un parametre, mais comme une variable aléatoire

parasite dont la variance tend vers une valeur limite infinie. Cette fagon de procéder renvoie a
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I’interprétation bayésienne de la vraisemblance résiduelle. Ce faisant, p sera éliminé par

intégration d’ou I’obtention de REML. Cette interprétation a également I’avantage de
dépasser I’interprétation stricte de REML comme vraisemblance de contrastes d’erreur, ce qui

peut s’avérer tres utile dans le cas non linéaire notamment (Liao et Lipsitz, 2002).
Dans ces conditions, ¢ = (0'12,0'3)' et Xx= (y',B',u')'si bien que la densité¢ de x se factorise
en
p(x|¢)ocp (y |B,u,o; )p (u | 012) . Dans le cas gaussien, on obtient immédiatement :
lnp(y |B,u,0'§) = lnp(e | 0'5) = —1/2(N1n27z+N1n0'§ +e'e/0'§) , (71a)
lnp(u|012)=—‘/2(q1n27z+qln0'12+u'u/0'12). (71b)
En désignant par L, (oﬁ;e) = lnp(y B, u,O'OZ), la logvraisemblance de o, basée sur e, et par
L, (0'12 ;u) = lnp(u |0} ) , celle de o7 basée sur u, la logvraisemblance de ¢ basée sur x se

partitionne ainsi en deux composantes qui ne font intervenir chacune qu’un des deux

parameétres :
L(q);x)=L0 (ag;e)+Ll(0']2;u)+cste. (72)
Cette propriété de séparabilité de la logvraisemblance va pouvoir étre mise a profit a la phase

E lors de I’explicitation de la fonction Q(q); ¢[’]): EB][L((I);X)] qui , eu égard a (72), se

décompose de fagon analogue en :

Q(#:¢) = Q, (0530") +Q (a739"), (73)
ou

Qo (02:4!) = B[ Ly (07:¢) | = =2 NIn27z+ Ninog + El (e'e) /o5 |, (74a)

Q, (af;q)[’]) =g [Ll (af;u)} = —%[qln27z +glno? +E! (u'u)/af] , (74b)

EEt] () désignant comme précédemment une espérance prise par rapport a la loi conditionnelle

de z|y,p=¢!".

La phase M consiste en la maximisation de Q((I); (I)[t]) par rapport a ¢, soit , compte tenu de
(73), en la maximisation de Q, (ag ;d)[’]) par rapport a o, et en celle de Q, (012 ;d)[’]) par

rapport & o} . Les derivées premicéres de ces fonctions s’écrivent :
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8(-2Q,) EX__E?(e%)

= -7 75a

oo, oI o (752)
a(-2 El (u'

( ?1) :iz_ c (‘: “)_ (75b)
oo, o, o,

Leur annulation conduit immédiatement a :
aj[”'] _ E[Ct] (e'e)/N , (76a)
alz[”l] _ EEf] (u'u)/q, (76b).

Ce développement a ¢été effectué de fagon complete, étape par étape, pour des raisons
pédagogiques. En fait, ces résultats extrémement simples auraient pu étre obtenus directement
en se référant :

1) a une autre définition des données completes n’incluant pas explicitement les données

observées mais x = (B',u',e')' (cf. §1.3 « formulation de I’algorithme);
2) aux statistiques exhaustives e'e de o et u'u de o/, puis en égalant les espérances

de celles-ci a leurs espérances conditionnelles respectives soit E(e'e | o-g[’”]) = EE’] (e'e) et
E(u'u | 012[”1]) =E"(u'u).

Sur la base des formules (76ab), on note dés a présent que les itérations EM qui font
intervenir I’espérance de formes quadratiques définies positives, resteront donc a I’intérieur

de I’espace paramétrique et c’est 1a une propriété importante de ’algorithme EM. Il reste
(1]

c

maintenant a expliciter E!’(e'e) et E!!(u'u). Commengons donc par cette derniére forme

qui est la plus simple. Par définition

E[;](u'u) = E(u|y,¢=¢[t])'E(u|y,¢=¢['])+tr[var(u|y,¢=¢[t])] (77)
Or,

E@u%¢=&ﬂ=ﬁm (78)
est le BLUP® de u basé sur ¢!! = (aém,af [’])' . Par définition, le BLUP a pour expression
u= Cov(u,y')[Var(y)]_l(y—Xﬁ) ou ﬁ est I’estimateur des moindres carrés généralisés. On

peut aussi ’obtenir indirectement (et avantageusement) par résolution du systéme des

équations du modele mixte suivant (Henderson, 1973, 1984)

® Abréviation de « Best Linear Unbiased Prediction »
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X'X  X'Z 97 [xvy
' ' [1] = ' ? (79)
zX 2'zZ+2AM, ||q| |2y

1 _ 2l ) 2

\ 2]
ou A =0,"/0

De méme,

Var<u ly, o= (I)[t]) = Var<ﬁ[t] - u) =l (80)

u

ou C est le bloc relatif aux effets aléatoires dans I’inverse de la matrice des coefficients des

uu

¢quations d’Henderson soit

1l , VARNE
cl | |zx z'z+",

uu

En reportant (78) et (80) dans (77) puis dans (76b), il vient :

o =[ a4 ()il /g (82)
Le méme raisonnement s’applique a I’expression de E!(e'e), soit

B (e'e)=E(ely.0=¢"") E(e|y,0= ")+ tr| var(e|y.0=9") .

Posons T=(X,Z) et =(p',u')’', les moments de la distribution conditionnelle de e

s’écrivent :
E(ely.¢=¢")=y-TE(0]y,0=0")=y-T0", (832)
var(e ly, b= ¢”) = Tvar(e ly, b= ¢[’])T' =TT 21, (83b)

ou 6= (ﬁ[t] ' gl ')'est solution du systéme (79) et C'! une inverse généralisée (81) de la
matrice des coefficients.
On montre par manipulation matricielle (cf. annexe B) que :

y-T6") (y-T8")=y'y-6"T"y - 2"a"al, a
( TB[]) (y Té[]) ol 2§ gl (84a)

tr (CWT ' T) = rang(X) + ¢ — A tr (c“ ) . (84b)

uu

d’ou I’on déduit I’expression de o™,

Gg[“'] - {y y =0Ty — ATl 4 [rang(X) +q-A"tr (C[t] )} 0'02[4 } /N. (85)

uu

On note au passage que cette expression différe de celle de I’algorithme d’Henderson (1973)

qui s’écrit simplement Jg[wl]:(y'y—é[’]vT'y)/ [N—r(X)], alors que les formules sont
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identiques pour 0'12 . En fait, les formules d’Henderson peuvent s’interpréter dans le cadre

EM comme une variante dérivée d’une forme ECME (Foulley et van Dyk, 2000).

Ces expressions se généralisent immédiatement au cas de plusieurs facteurs aléatoires

u, ~N(0,0;1,) ; (k=12,.,K) non corrélés tels que y~/\/’(X|3,zlileZ'ka,f+IN0§).

On a alors :
o=l + ()0 [1g, |, (86)
et
o =tyy-0TTy -3 Alaltal
+ [rang(X) + Z;il q; — Z; ﬂ,[t] tr (CE:,J )J aj[’]} /N| &7

Une des difficultés d’application de cet algorithme réside dans la nécessité de calculer le

terme tr(C[’]) a chaque itération [¢]. En fait on peut écrire C,, sous la forme :

-1

C. :(Z'SZ+/11q) ou S=I,-X(X'X) X' est le projecteur classique sur I’espace
orthogonal a celui engendré par les colonnes de X . Désignons par 5i(B) la iéme valeur
propre de la matrice B, on sait que

tr(Cuu) = Zi 5! (Z'SZ + A1 q) et que la iéme valeur propre de Z'SZ + A1, s’obtient par une

simple translation de celle correspondante de Z'SZ soit o, (Z'SZ+ Al q) =6,(2'SZ)+ 2,

dou tr(C,, )= 21[51 (Z'SZ)+&T. Le calcul des valeurs propres de Z'SZ peut donc étre

uu

réalisé une fois pour toutes en ayant recours a une diagonalisation ou une tridiagonalisation

(Smith et Graser, 1986).
2.2.2. EM-ML

Si ’on veut obtenir des estimations ML des composantes de la variance, il va falloir

considérer B comme un parameétre et non plus comme une variable aléatoire. On définit ainsi

\ 2 2 . J
le vecteur des parametres par ¢ = (O'M , O, ,B')' et celui z des données manquantes par z=1u.

On décompose la densité¢ des données complétes x = (y',z') comme précédemment de sorte

que
L(q);x):Lo(ag,ﬂ;e)+Ll(of;u)+cste, (88)

avee
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~2L,(o;.B:e) = NIn27 + Nino; +(y - Xp—Zu)'(y - Xp-Zu)/o; ,
et
—2L1(012;u): qIn27 +glno! +u'u/o!.

L’expression de Ql(af;d)[t])reste formellement inchangée si bien que, comme

précédemment, o = Bl (u'u)/g. En ce qui concerne Q, (0'5, B;d)[t]) , son expression
s’explicite sous la forme suivante :
-2Q, (03,[3;(])[4) =NIn27z+Nlno;, +
|y-XB-ZE(u|y.¢') || y-XB-ZE(u|y.¢") |/} (89)
+tr[Zvar(u | y,(I)[t])Z'}/oﬁ
En dérivant par rapport a p, on obtient :
0(-2Q,)/8p=—2X [y~ XB-ZE(uly.¢' |/ o;. (90)
Par annulation, 1’équation obtenue ne dépend pas de &, et on peut résoudre en B :
X' X" =X'y-X'ZE(u|y, ). 1)
En fait, E(u| y,¢[t]) correspond dans ce cas a ce qu’on appelle le meilleur prédicteur linéaire
(BLP selon la terminologie d’Henderson) soit E(u |y,$) = Cov (u,y')[Var(y)]" (y — XB) ou
encore, dans nos notations (cf. paragraphe 2.2.1), E(u|y,$) = GZ'V'(y — XB). Comme
GZ'V' = (Z'R‘IZWLG‘I)f1 Z'R™' (Henderson, 1984), E(u|y,¢!") peut s’obtenir
simplement a partir du systéme suivant du type « équations du modéle mixte »
E(uly.¢)=(2'z+2, )71 z'(y-xp"). (92)

On peut aussi pour simplifier les calculs résoudre ces deux équations simultanément a partir

des équations du modele mixte d’Henderson soit
X'X X'Z gl] X'
[1 o By ) (93)
Z'X Z'Z+2A"1 | gl 7'y
ou @ = E(u|y,ol”, ! gy et A = o1/ o1

Notons que cela revient a actualiser la phase E sur la base de ¢ = (ag 1 o2 gl ')' avant

d’avoir terminé la phase M ; il s’agit 1a d’une variante qui est décrite par Meng et Rubin

(1993) a propos de 1’algorithme ECM.
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On termine ensuite la phase M, tout d’abord en explicitant :
Glz[m] E (u u ‘ v, [t] Gz[z] l3[z+1] )/(] (94)

e

. .. N 1 . . .
Comme on raisonne conditionnellement a f = B[” } , I’expression de la variance de la loi

conditionnelle de u se réduit a

Var<u ly, o, g2 gl ) (Z'Z + ﬂ[t]lq )_1 o, (95)
et, en reportant dans oy =E_(u'u)/g,ona:

ol = [ e 1 e tr(Z Z+ A ) 2[t]}/q (96)
Par dérivation de (89) par rapport & o, , et en annulant, il vient :

.
aﬂ””:{é[”‘] [’+1]+tr[Z<Z'Z+/1[t]Iq) Z':lag[’]}/N

ol é[t+1] —y-— Xﬁ [+1] E(ll | y, O_l O_g[t ,B[Hl ) y— TO[HI}
Cette expression se simplifie a nouveau compte tenu de la relation (84a) et de ce que

tr[(Z'Z+ ) Z'Z} =g tr[(Z'ZMMIq )1} :

d’ou

-1
0] _ gy gy 210l gl (q_;t[z] tr[(Z.ZJri[t]Iq) }aj[’])}/N L 97)

La différence entre ML et REML apparait donc nettement au niveau de 1’algorithme EM ; les

calculs seront moins pénibles a réaliser avec ML puisqu’il ne faut plus disposer de 1’inverse

complete des équations du modéle mixte mais simplement de la partie aléatoire. Enfin, en ce

qui concerne ML, d’autres variantes de type ECME ont été décrites par Liu et Rubin (1994).

2.2.3. « Scaled » EM

L’idée de base réside dans la standardisation des effets aléatoires. Dans le cas d’un seul

facteur, cela revient a écrire le modéle sous la forme: y = XB+o,Zu” +e ou u ~ A (0,1 ) le
reste étant inchangé. Si on définit les données complétes par x = (y',B',u*')' , on a
p(x|¢)xp(e|d) puisque la densité p(B, u*) est non informative vis-a-vis des paramétres. A
la phase E, la fonction Q (d); d)[’]) s’écrit donc :

2Q(¢:4")= N2z + Nlno? + B (e'e) /7. o)
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A la phase M, il vient par dérivation :

o(-2Q) _N E[L,’](e'e)

2 2 4
oo, o, o,

2

0(-2Q) 1 9Bl (e'e)  2EY(e'Zu’)

2
0o, o, Oo, o,
. . . 2 .
Rien ne change donc formellement pour ’actualisation de o, . Par contre en ce qui concerne

o, , ’annulation de la dérivée conduit a I’expression suivante :

v EU[(y-XB)'Zu’]
' E(uz )

(99)

dont la forme s’apparente a celle d’un coefficient de régression.
Comme précédemment, le numérateur et le dénominateur de (99) peuvent s’exprimer a partir
des ingrédients des équations du modele mixte d’Henderson soit, en ignorant 1’indice ¢ pour

alléger les notations :
EY[(y-Xp)'Zu' |= (y —Xﬁ)'Zﬁ* ~tr(X'2C,, )0y, (100a)
EV(w'z'zn")=0""2'2& +r(2'2C,, ) oy, (100b)

ou B et i sont solutions du systéme :

X'X X'Zo, B X'y
Z'Xo, L'Lo}+10; ||a'| |oZ'y]|

. |C,, C X'X X'Zo, |
C=| o | '
C, C.| |Z'Xo, Z'Zoi+10;
On peut aussi résoudre les équations du modele mixte sous leur forme habituelle (cf. 77) puis
/o, et C,=C, o},

calculer &' =i/o,, C,, =C

Bu Bu
Cet algorithme a effets normalisés se distingue également de I’algorithme classique de forme
quadratique par ses performances (Thompson, 2002). Cette comparaison a ¢té effectuée par
Foulley et Quaas (1995) dans le cas d’un modele d’analyse de variance équilibré a un facteur
aléatoire (ici la famille de demi-fréres). Alors que 1’algorithme classique est tres lent pour des

valeurs faibles du rapport R*=n/(n+a) (a désignant ici le ratio o, /o; ) , par exemple

R*=1/4 (n=5; a=15) et beaucoup plus rapide pour des valeurs élévées, par exemple
R*=095 n=285,a=15 n=1881, a=99) , la tendance est opposée en ce qui concerne

I’EM normalisé (cf. Fig. 1).
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Figl. Vitesse de convergence (nombre d’itérations) pour les algorithmes EM classique (croix) et « Scaled »

(ronds) dans un dispositif de 100 familles de demi-freres de méme taille (n) en fonction du rapport

R =n/ (n +a ) ou o= O'g / (712 est le ratio de la variance résiduelle a la variance entre familles.

Ces auteurs ont montré également que, tout comme avec I’EM classique, les itérations restent
dans I’espace paramétrique. Cette idée de la standardisation des effets aléatoires qui figure
déja dans Anderson et Aitkin (1985), a été reprise puis généralisée par Meng et van Dyk
(1998) au cas ou la matrice de variance covariance des effets aléatoires n’est plus diagonale :
cf. aussi Wolfinger et Tobias (1998). Enfin, 1’algorithme précédent peut étre adapté

facilement au cas d’une estimation ML (Foulley, 1997).
2.2.4. Variances hétérogenes

Pour le modele mixte, on fait généralement I’hypothése d’homogénéité des composantes de
variance G et R, mais celle-ci n’est pas indispensable et s’avere d’ailleurs souvent démentie

par les faits expérimentaux. Ainsi, dans une analyse génétique familiale, la variance entre

familles (0'12) tout comme la variance intra-familles (oﬁ) dépend fréquemment des

conditions de milieu dans lesquelles sont ¢élevés les individus. Il en est de méme dans une
analyse longitudinale avec un modele a coefficients aléatoires ou les éléments de la matrice
G (g, : variance de I’intercept aléatoire; g,, : variance de la pente ; g,, : covariance entre la
pente et ’intercept) vont différer selon certaines caractéristiques des individus (par ex. sexe,

traitement, type d’activité, etc...).
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Ce phénomene dit d’hétéroscédasticité peut tre pris en compte dans le modéle mixte grace a

une formalisation du type suivant :

y, =Xp+ Gl,iZiu* te, (101)
ou vy, ={yﬁ}est le vecteur (nl.xl) des observations dans la strate i =1,2,....,7 ; P est le

vecteur (px1) des effets fixes associé a la matrice (n,x p) de covariables X;. Comme dans

la formulation de ’EM normalisé, la contribution des effets aléatoires est exprimée sous la

forme O'UZl.u* ot u est un vecteur d’effets aléatoires standardisés, Z, la matrice (n,xq)
d’incidence correspondante et o, est la racine carrée de la composante u de la variance dont
la valeur dépend de la strate i de la population. On fait par ailleurs les hypothéses classiques
sur les distributions a savoir : u" ~ A/(0,I ,) (les généticiens remplacent la matrice identité I,
par une matrice de parenté A), e, ~N(0,0,,1,) et E(u'e,)=0, Vi.

Quand la stratification est simple (un seul facteur par exemple), le modele (101) peut Etre
abordé tel que. En fait, dés I’instant ou plusieurs facteurs se trouvent mis en cause dans

I’hétéroscédasticité, il devient souhaitable de modéliser I'influence de ceux-ci sur les

composantes de variance (O'(f i,afi). Une des fagons les plus simples de procéder est d’avoir

recours & un modele structural de type linéaire généralisé impliquant la fonction de lien
logarithmique (Leonard, 1975 ; Aitkin, 1987 ; Nair et Pregibon, 1988 ; Foulley et al., 1992 ;
San Cristobal et al, 2002). Comme 1’a bien montré Robert (1996) dans 1’étude des mélanges,
il peut étre intéressant pour des raisons numériques, de substituer, a une paramétrisation des

deux variances, une paramétrisation impliquant ’'une d’entre elles, la plus facile a estimer (ici

0,5, ) et le rapport de autre & celle-ci (ici on prend le rapport des écarts types 7, = 0,,/0,).

On écrit alors, a I’instar de Foulley (1997),
In oﬁi =pJd, (102a)

Inz, =hA, (102b)
ol & est le vecteur (rx1)des coefficients réels des r variables explicatives p, influencant le
logarithme de la variance résiduelle relative a la strate i ; idem pour le vecteur & (sx1) des
coefficients des variables explicatives h, du logarithme du ratio 7, des écarts types.

Sil’on pose ¢ = (6',%')' et x = (B',u* ')' , la phase E conduit comme précédemment a :

—2Q(¢; ¢W) =NIn2z+Y nlol,+y. Eee) ol (103)
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ou
e, =y, - Xp-10,Z, u'.
En I’absence d’expression explicite des maxima, on a recours a une version « gradient-EM »

de I’algorithme via, par exemple, la formule de Newton-Raphson (cf. 61)

=~ QU] (0747 = 0") = Q34"

¢=¢[l:/<J ¢=¢[l:kJ :
Ayant calculé les dérivées partielles premiere et seconde par rapport aux parameétres (cf.

annexe C), le systetme des équations a résoudre peut se mettre sous la forme itérative

suivante :
|:P'W(5(5P P'WJZH:| {A‘ST’M] B [P'Va‘:| (104)
H'W,,P H'W_H ] AL H'v, ¢¢[’“,

ou
A6[x,lm—l] _ 5[t,lc+l] _S[t,k] : A;\’[t,kﬂ] _ ;\’[t,k-#l] _ )\‘[t,k] ’
P’ (rx1) (pl’pz’ ’pi""’pl) > H'(sxl) :(hlﬂhza""hiamahl) :
Les éléments de v, v, s’écrivent, en ignorant les indices [t,k] pour alléger les notations:
Von = (Vs = (00 B[ (v, - X.B) e, ], (105a)
Vi = {m =70, E, (u"'Zge, )} : (105b)
Les matrices de pondération Wi, W, =W . et W,, sont des matrices diagonales

(IxI)dont les éléments s’explicitent en
Wys i = Va0 {E [(v,-XB)' (v, - XB)]-7.00, E.[ (v, - XI.B)'Zl.u*]/2} , (106a)
Wy = 27,00 Ec| (v, - X ,8)' Za" ], (106b)
Wos =T, {2@ E (u'ZZu')-0, E[(y,- XiB)'Zl.u*]} . (106¢)

Tous les éléments décrits en (105ab) et (106abc) peuvent s’obtenir aisément a partir des

ingrédients des équations du modele mixte d’Henderson soit, en posant

Si,gg = (yi - XiB)'(yi - XIB) > Si,gu = (Yi _XiB)'Ziu* et Si,uu =u 'Z;Ziu* >

Si,gg = Ec (Si,&s) = (Yi - Xz’ﬁ)'(yi - Xlﬁ) + tr(X;‘Xz’Cﬂﬂ) > (1073-)
S =E.(S0)=(v,- x,.ﬁ)'z,.ﬁ* +1r(ZX,C,), (107b)
Siw=E(S,,)=0"ZZi +t(ZZC,,). (107¢)

118



l
5

. , . \ . 5z . 1 _ ' _\A I _ '
Ici les équations du modéle mixte s’écrivent (ZH o TT +X )0 = Zi_l o, Ty, avec

T C, et C, sont les

T =(X Z 0—"'2’—00 1 C
l._( 2 Ti00; l.), —(B,u ), =lo A et les termes C,p,

blocs ainsi indicés dans ’inverse de la matrice des coefficients.

On peut également développer une version des scores de Fisher de cet algorithme en

exploitant le fait que EyI:E(S |y,¢)] = E(S ) dont I’expression est particulierement simple
dans les cas abordés ici, soit

Wy = 4+ 7 tr(AZZ,) 2],

Wy =7 tr(AZZ,)/2,

Wy =1, r(AZZ,).
Dans le cas d’un seul facteur aléatoire discret (matrice Z, formée de 0 et de 1), la matrice

Z.7. est diagonale et, A ayant des éléments diagonaux unité, tr(AZ;.Zl.) =n, si bien que tous

. . . — 1 2 e _ 2 — _ 2
ces poids se simplifient en wg; ,, = 'an, (1 +7; /2) s Wea=nt /2 etw, . =nt; .
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Une tache importante va consister a choisir les covariables P et H des mode¢les (107ab) des
logvariances via par exemple un test du rapport de vraisemblance. Les comparaisons mises en
ceuvre a cet égard doivent se faire a structure d’espérance XP fixée ; celle-ci en retour sera
sélectionnée a structure de variance covariance fixée, ou mieux a partir d’un procédé robuste
tel que par exemple celui de Liang et Zeger (1986) en situation de données répétées.

D’autres sous-modeles des variances peuvent tre envisagés et testés. En effet, il importe de
garder présent a I’esprit la difficulté d’estimer les variances avec précision, notamment les
composantes # si ’on ne dispose pas d’un dispositif adéquat et d’un échantillon
suffisamment grand, d’ou I’intérét voire la nécessité de modeles parcimonieux. On peut citer a

cet €égard un modele a ratio 7, =0,,/0,, constant (Foulley, 1997), voire un modéle a

composante u constante, ces deux mod¢les étant des variantes d’un modele plus général de la

forme o,,/0,, = cste (Foulley et al., 1998).
Par exemple le modele Ino;, =p,d et o, =cste conduit au systéme (Foulley et al., 1992) :
(P'W,P)AS=P'v,, (108)

ou
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Vo = {Vas =2 o0l E. ()= ]} (1092)
Wasi = V5001 B, (ele; ), (109b)
et

Wy = Von, (109¢)

Diverses applications de ces modeles mixtes hétéroscédastiques a la génétique animale sont
décrits dans Robert et al. (1997), Robert et al. (1999) ainsi que dans San Cristobal et al.
(2002).

2.3. Modg¢le a plusieurs facteurs corrélés
2.3.1. EM standard (EMO)

Le cas de plusieurs facteurs aléatoires non corrélés ne pose pas de difficulté particuliere et
découle d’une généralisation immédiate du cas d’un seul facteur (cf. §221). Le modele
considéré ici s’écrit :

y=Xp+Zu+e,
ou le vecteur u des effets aléatoires et la matrice d’incidence Z sont les concaténations
respectivement des vecteurs u, et des matrices d’incidence Z, relatifs aux K facteurs
¢lémentaires £k =1,2,...K :
:(u'l,u'z,...,u',{,...,u',()' 5 Ly =(Z2,.2,,...Z,,...Z;).

u(q+ Xl)

Comme a I’accoutumée, ce modéle est tel que E(y)=Xp, V=ZGZ'+R ou Var(u)=G,
Var(e)=R et Cov(u,e')=0.
On se restreint ici a la classe des modeles dont les u, présentent le méme nombre d’éléments

4, = q,Vk et dont la matrice de variance covariance G s’écrit, par exemple pour K =2 :

u o1, o,l o, O
G=Var( lj=( e B qJ=GO®Iq ou GO=[ ! lzj et, de fagcon générale,

u, opl, oyl o, Oy
G=G,®A avec G,={o,} pour k,/=12,.,K et A =I_ si les unités expérimentales
(i=12,...,q ; individus, familles) supports des g ¢léments de chacun des vecteurs u, sont

indépendantes.
Pour chacune d’entre elles, le modele s’écrit :

y,=XB+Zu +e,, (110)

120



ouy,= { yij}; J=L..,n; estle vecteur des n; observations y, faites sur I'unité expérimentale
i.

. _ '
Iei  wy,) = (T T % M Z,.x)

=(2,.Z,,...Z,,...,L,] si bien que
U, ~ NV (0.G,) et e, ={e;} ~ NV (0,R,)) avec R=BLR,.
Dans le cas le plus simple de résidus homogeénes et indépendants, R, = oﬁlni, mais d’autres

structures sont envisageables telle que, par exemple, pour des données longitudinales, une

structure autorégressive ou de processus temporel continu stationnaire de type exponentiel :

L —tj‘)

Si I’on pose g, = Vech(GO) 1 r le vecteur des paramétres intervenant dans R par exemple

R, =oyH, avec h, ;. = f(p,

r=a§ ou r=(a§,p)', ¢=(g0,r')'et x=(|3',u',e')', on a, comme dans le cas d’un seul

facteur aléatoire,

L(¢:x) =L, (rie)+ L, (go;u) +cste, (111)
et

Q(¢:0") = Q, (150")+ Q, (53 8") + este. (112)
Dans (112),

—2Q, (r; ¢[’]) = NIn2z +In|R|+ tr[R-‘ gl (ee')}, (113a)

-2Q,(g,;0") = gK In27 + In|G| + tr[(r1 El (uu')},
soit, compte tenu du fait que G=G,® A

~2Q,(2:;:9") = gK 27 + K In A + ¢ 1n|G, | + tr(G;'Q") (113b)
avec

O xar) = {@f) = E(w,A M, |y,y")}. (114)

A la phase M, on maximise (113a) et (113b) par rapport respectivement a r et g. Par

application d’un lemme d’Anderson (1984 ; page 62, 3.2.2) cela conduit a :

o= ell(erey v [ X B (ee) v, (113

G =all/q. (115b).

1% vech(X) est la notation de vectorisation d’une matrice, homoloque de vec(X), mais qui s’applique a une
matrice symétrique, seuls les éléments distinctifs étant pris en compte (Searle, 1982).
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On s’est limité ici au cas simple o R = oI, , mais on peut aussi traiter des structures plus

complexes comme par exemple celle de I’autorégression (Foulley et al., 2000).
Comme dans le cas monofactoriel, 1’espérance des formes quadratriques et bilinéaires
intervenant en (108ab) peut s’obtenir a partir des équations du modele mixte d’Henderson soit

ici, a titre d’exemple pour K =2 :

X'X X'Z, X'Z, Bl [X'y
72X Z7Z +c,0"A" ZZ,+o.0"A7 || 4, |=|Zy |, (116)
7,X Z,7,+0,0"'A"" Z,Z,+0,0”A" |4, | |Zy

ol o' o” 0, Op B
u = .
ot o2 G, Oy

2.3.2. PX-EM

Pour mettre en ceuvre cet algorithme, on introduit des parametres de travail sous la forme ici

d’une matrice @ ={q,} carrée (KxK) réelle inversible telle qu’au modéle d’origine en

(110) (dit modele O) se substitue le nouveau modele (dit modele X),
y,=Xp+Zau, +e,, (117)
o K
ou encore, avec une écriture par facteur, u, = zl:] a,u, .
~ N(0,G,.) ot Gy =a"'G,(a")', la loi des 1,

Par definition, les u, sont tels que u, .,

apparaissant en quelque sorte comme une extension paramétrique de celle des u,. En

particulier, pour la valeur de référence a, =1, la loi de 1, (a, ) se réduit a celle de u, .
Posons ¢ = [d);,(vec u)']’ avec ¢, = (g'()*,r;)' et "= [(q)*[’] = ¢[’])',(Veca = vec ao)'],
L’¢étape E consiste en ’explicitation de Q((p;(p[t’o]). Le fait de travailler conditionnellement

aux paramétres de la loi des @, (a,) offre I’avantage de ne rien changer a 1’étape E de 'EM
standard (EMO).

La maximisation de Q, (go*;q)[t’o] ) par rapport a g, revient a celle de g, sous EMO soit
G%t:l] -l /q, (118)

ou Q! est le méme qu’en (114).
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Ensuite, on maximise Q, (a,r*;(p[t’o]) dont les dérivées partielles par rapport aux éléments de
vec(a) s’écrivent :

& = 06225_1E|:u;;_az; (yi _XiB_Zi(”ﬁi) | Ya¢£t] = ¢[t]>a = (”0:| >

day oy
e e _ 2
ouict R, =0yl .
La résolution de ces K’ équations ne fait pas intervenir o, et se réduit, a une itération

donnée, a celle du systéme linéaire Fvec(a) = h, soit encore

Y Al = k=12, K (119)
ou

A =u| 2,2, E(u,u)y,0!"], (1202)

H) = {Z, [ (y - XB)u, ]| y,0"} (120b)

Soit T,=Z,Z,, and Vk(qxl)=Z'k(y—XB)'et E.(.) désignant I’espérance conditionnelle

sachant y, (p[”o], le membre de gauche qui est symétrique s’exprime par (exemple de K =2):

11 12 21 22
11 E.(u,'Tu,) E.(u,'T},u,) E.(u;'T,u) E.(u,'T,u,)
12 Ec(u,'T;uy) Ec(u, T)u) E.(u,'Tj,u,)
21 Ec(u;'Tyu,) Ec(u;'Tyuy)
et celui de droite:
11 12 21 22
E.(u,'v)) E, (u,'v)) E (u,'v,) E (u,'v,)

Les calculs correspondants peuvent étre effectués en utilisant les équations du modele mixte

décrites précédemment en (116), c’est-a-dire (en ignorant les indices supérieurs)
fum =t 2,2, (8,8, +5;C,, )], (1212)

hy = 02,y —tr| ZX (B, + 0,C,, )| (121b)
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ou Z,Z. est le bloc relatif aux effets u, et u, dans la matrice des coefficients ; Z,X est le

bloc correspondanta u, et p ; C,, et C, ;= C'ﬂu/ sont les blocs homologues dans I’inverse

g,

de la matrice des coefficients ; Z,y est le sous vecteur du second membre relatif a u, ; B et

u, sont les solutions de B et u, .

[+1]

La matrice des coefficients a" ' étant obtenue, on revient a G, par

G = o IGL (ol (122)

Enfin, quant & o, la maximisation de Q, (a, o |(|)[t’0]) conduit a:
o2l :E(e'e\y,(p[t’o])/N, (123)

la résiduelle e étant ajustée en fonction de a'*'" via y, — XB—Z,a"""i,. Un procédé rapide

consiste en une maximisation conditionnelle basée sur a =1, ce qui redonne la formule

classique de I’EMO.

Quoiqu’il en soit, le nombre d’itérations nécessaires a la convergence a une précision donnée
s’avere considérablement réduit par rapport a la version standard EMO de 1’algorithme.

Le nombre d’itérations est réduit d’un facteur de 1’ordre de 3 a 4 comme le montre la figure 2
relative a la variance de I’intercept dans I’analyse de données de croissance (Foulley et van

Dyk, 2000).

varianece de I intercept

o 10 20 30 40 50 &0 7O B0 20 100
nombre ditérations

Fig 2 : Séquences typiques d’itérations EMO et PX-EM

Par ailleurs, on a pu observer que cette version PX permet d’obtenir des estimations REML
d’une matrice de variance y compris en bordure de I’espace paramétrique alors que les autres

algorithmes ne convergent pas (Delmas et al., 2002).
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On peut également combiner la modélisation a plusieurs facteurs aléatoires corrélés et celle de
variances hétérogenes ; un exemple en est fourni par les modeles a coefficients aléatoires
hétéroscédastiques (Robert-Grani¢ et al., 2002). D’un point de vue algorithmique,
I’algorithme EM permet trés bien de réaliser cette synthése sur la base des techniques

présentées précédemment (Foulley et Quaas, 1995).

Conclusion|

L’algorithme EM trouve dans le calcul des estimateurs du maximum de vraisemblance des
composantes de la variance du modele linéaire mixte un terrain d’application privilégié. Il
permet d’obtenir aussi bien des estimations ML que REML avec dans les deux cas des
expressions trés simples. Un des avantages de I’algorithme - et non des moindres- est qu’il
assure le maintien des valeurs dans I’espace des parameétres. Sa flexibilité est telle qu’on
I’adapte facilement a des situations plus complexes telles que celles par exemple de variances
hétérogenes décrites par des modeles loglinéaires structuraux. On peut également améliorer
trés significativement ses performances par standardisation des effets aléatoires, et plus
généralement, grace a la technique d’extension paramétrique qui apparait trés prometteuse y
compris dans ses prolongements stochastiques. A cet égard, dans le cadre d’un mode¢le trés

proche de (110),

y,=XB+Zu, +e;u ~N(EG,),
van Dyk et Meng, (2002) proposent cette fois une transformation affine des effets aléatoires
i, =a'u,+n qu’ils introduisent dans un algorithme d’augmentation de données en
considérant des a priori gaussiens sur vec(a) et n. Cet algorithme comparé a la procédure

standard sur quelques exemples s’aveére trés performant pourvu que la matrice de
transformation a soit compléte et non pas triangulaire comme cela avait ét¢ déja remarqué
par van Dyk (2000) et Foulley et van Dyk (2000).

Enfin, il faut étre pleinement conscient que le champ d’application de 1’algorithme est
beaucoup plus vaste que celui abordé ici. Maintes modélisations font appel a des structures
cachées qui peuvent donner lieu a une inférence ML via I’algorithme EM. Un domaine
particulierement propice a cette approche réside dans les modéles de Markov cachés. Ceux-ci
sont par exemple utilisés dans I’analyse des séquences biologiques comme celles de I’ADN.
Dans ces modéles, la succession des états cachés représente 1’hétérogénéité de la séquence.
Les parameétres sont trop nombreux et le calcul de la vraisemblance trop complexe pour faire

I’objet d’une maximisation directe. Diverses approches sont possibles pour contourner ces
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difficultés, mais 1’algorithme EM s’avére encore la méthode a la fois la plus simple a mettre

en ceuvre et la plus efficace (Nicolas et al., 2002).
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ANNEXE A
Score et hessien : résultats de base
1. Dérivée premiere

Par définition de la dérivée logarithmique, il vient
olng(yl¢) _og(vlp) 1

. (A.1)
oo op  g(yle)
Or la densité marginale correspond a
g(v19)=[f(y.z|)dz,
d’ou sa dérivée
o8(v18) _[2f(v.zld), A2

o od
Le terme sous le signe somme peut de nouveau étre développé comme une dérivée
logarithmique en

8f(y,z|¢) _ 61nf(y,z|¢)f

Z10), A3

% o (v.z]9) (A.3)

en explicitant aussi la densité conjointe en fonction des densités marginale et conditionnelle,
f(y.z19)=g(yI$)h(z]y.¢). (A.4)

En reportant I’expression de (A.4) dans (A.3) puis celle-ci dans (A.2) et (A.1), il vient :

6lng(y|¢): 1 olnf(y,z|9) " q
% sal9 o SCIdnEvedz

soit apres simplification,
olng(y|9) =Ialnf(y,z |¢)h

gy o9

(z]y.¢)dz, (A.5)

ou €ncore,

: (A.6)

olng(y|9) _E olnf(y,z|¢)
o0 ‘ o0

I’espérance notée E . () ¢étant prise par rapport a la densité de z|y,¢.

2. Dérivée seconde
Dérivons a nouveau I’expression précédente (A.5), il vient :
O’lng(yl¢) 0’Inf(y.z|d
(' )=I ( ' )h(Z‘y,(I))dZ
g el g e
+J‘ alnf(y,z | <|)) ﬁlnh(z | y,¢) b
b g’
Or, par définition de h(z|y,9),

olnh(z|y,d) _ olnf(y,z|9) ~ olng(y|d)
o o o

(A.7)

(z|y.¢)dz
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En reportant dans (A.7), on obtient
821ng(y|¢):E o’ Inf(y,z|¢) T E Olnf(y,z|¢) || oInf(y,z|9)
g el ) ‘ g 2l ‘ oo op'

Olng(y|9) foInf(y.z[9)
5 I o h(z|y,$)dz

et eu égard a (A.5 et 6), on en déduit que :

821ng(y|¢)=E 821nf(y,z|¢) \ Var olnf(y.,z|9) (AS)
009" ¢ 909" ¢ oo . .
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ANNEXE B

\Eléments de I’expression de la variance résiduelle en EM\

1. Démonstration de (y—T@)'(y—Té) :y'y—é'T'y—/iﬁ'ﬁ , (B.1)

Partons des équations du modele mixte sous leur forme condensée

(T'T+A)0=T'y, (B.2)

0 0
od T=(X,Z), 8=(p',u) etA=(0 /HJ

En multipliant le systéme (B.2) a gauche par 0', il vient :
0'(T'T+A)0=0'T"y

En introduisant cette égalité dans (y - Té)'(y - Té) =y'y-— 26'T'y +0'T'TO, on obtient :
(y—Té)'(y—Tﬁ)=y'y—é'T'y—é'Aé

et cela, adjoint au fait que 0'AQ = Ad '@, établit la démonstration de (B.1).

2. Démonstration de |tr(CT'T) =rang(X)+¢—Atr(C,,) (B.3)

La matrice C vérifie par définition la relation suivante :

C(T'T+A)=1,, (B.4)

q

On suppose pour simplifier 1’écriture que Xy p) St de plein rang.

Dans ces conditions,
cr'rt=1, -CA

Cﬁ’/? Cﬁu
C 5

t, tC=
et, posan { C

upf uu

tr(CT'T) = p+g—Atr(C,,), QED
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ANNEXE C

Variances hétérogenes : dérivées intervenant a la phase M

La fonction Q a maximiser présente la forme suivante :

Q(b:4") =4[ Vn2z+ 3 mincr, + 3 E. (¢ /o5, ] €
avee

Ino?, =pi3, €2)

In7, =), (C.3)
et,

e=y,-Xp-r0,Zu . (C4)

1. Dérivée premiére par rapport a 6

L’application des dérivées de fonctions en chaine conduit a :

0Q _ z, 0Q Odlnoy,
00

= 0ln G(ii 0o
Or
0Q  , 0Q
2 O-O,i 2
dlnoy, o0,
Oln 002’1. _
06
soit
0Q :_l n; _Ec(e,e,)+ 1 aEC(e;ei)
ooy, 2|oi oy, o ooy |
OE.(ee,) o0, OE.(ee,) 1 e
aO'(ii ao-(il- 860 20—0»,- c 60'(” i
et,
Oe, =—T,.Ziu*
80‘0,,,
D’ou
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2Q

Soit vy, = 5
0,i

Vs, = 1 |:Ec (yi _XiB) € _nl} .

2
Oy,

2.. Dérivée premiére par rapport a A
En suivant la méme démarche que précédemment, on a :

a_Q_21 1 aEc (e;el) 62—1’ alnfl-
Ok “o,, 0r, Odlnr, oM

1

5

avece

% o oz
or, .
or,
Olnrt, P
et
Olnz, b
Oh "
D’ou
0Q ; |
a - Zizlvﬂ,ihz =H'v,,
avec
Vv,. = _’E u*'Z'le
A O'OJ ( ; l)
3. Dérivée seconde par rapport a &
Posons
Q< o
B 0000 - Zi:l WssilPiPi = P'W,P,
ou
avgi 2 8‘}51
ng g - : 0,i
Olnoy, oo,
Or

137

0 .
— 5 telque a—g = Z;l veP; =P'v,, le terme v, s’exprime par :

(C.5)

(C.6)



vy, 1 1 OE.[(y,—XB)'e]
9 _— __ E —XB)'e. ,
ao_(ii 2031 ¢ |:(Yz zB) e,]+ 20‘3’1, 60‘51

a[EC(Yi_XiB)'ei:IZ 1 Ec|:(yi_XiB)‘ aei :|:_ . EC[(yi_XiB)'qu*:"

80‘3’[ 20y, 00y, 204,
et
E [ (y;=XB)'e, 1 ' J 'Zu
I:( 2 ) :I =—E. |:(yi - XiB) (yi - XiB)] _LEU I:(y" B XIB) Zyu ]’
Oy, Oy, Oy,
d’ou

Wssii = ﬁ{Ec I:(yi - XiB)'(yi - X;B)} - %Ec I:(yi - XiB)'Ziu*:I} . (C-7)

4. Dérivée seconde par rapport a A

De la méme facon,

2
- 68)\.52' = ,—I=1 wi/l,iihih;’ =H'W,H
ou
_ avi,l aviz
i Olnrt, - or, ’
ov, _E (u*'Z;e,-)_'_ LE|uzZ Oe;
ot - Oy, Oy, ‘ i oz,
_ é{E [w'Z (y,-Xp)- 7.0, E. (wZZu')|-]- 2B (u' ZZ0)
d’ou
Wi =T {271' E, (U*'Z;ZiU*) _GLEC [U*'Z;‘ (Yi - XZB)]} . (C.8)
0,i

5. Dérivée seconde croisée 0 — A

. 0’Q I , .
SOlt - 668)\.' = Zi=1 W&,iipihi = P W&/IHa

ou

avé',i _ av&,i

W, . = —
oA,
g Olnt, ' ot

1

5
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(9 *
Comme —~=-0,.Z.u ,
a 0,
Ti
_ 1 , "
Weri = 5 X 252 x-0y, E, I:(yi ~-X,$)'Zu ]e
0.i

c’est-a-dire

Wanii = %EC [(Yi - XiB)'Ziu*:| .

0,i

On vérifie aisément la propriété de symétrie des dérivées, soit

0’ Q I , ' ' '
N orOS' = i=1 w/l«)‘,iihipi =H WM‘P = (P W&H) avece \V()‘/1 = WM‘

6. Espérances des dérivées secondes

Soit a expliciter : Wy, , = E(w&;’ﬁ) s Wesii = E(waﬁ,ﬁ) et W, = E(wm’”.).

Par définition
B, {E[(v,~XB)'e,]1y.0} =E[ (v, - XB)'e, ].
Comme u’ et e, ne sont pas corrélés,
E[(y,~XB)'e ]~ E(ce)=n o,
De méme,
E [(y,. -X.B)’ Z,.u*] =70, E(u'ZZu")=70,tr(ZZA).
Dans ces conditions, W, , se réduit &
Wy = 4+ 7 tr(Z,Z,A)12].

De méme : V¥, ,, = Y7 tr(ZZ,A) et Wy, , =7, tr(ZZA).

139

(C.9)



