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1. Rappels sur le modèle linéaire 

11. Modèle linéaire classique 

111. Ecriture du modèle 

Classiquement, on écrit: 

 = +y X eβ  (1.1) 

où 

( )x1)Ny : vecteur ( x1)N  des variables aléatoires dépendantes (observations); 

( ) ( )1 2x , ,..., ,...,k pN p =X X X X X : matrice d’incidence des variables explicatives 

(dites aussi variables «indépendantes» ou covariables ) qui peuvent être continues (régression) 

ou discrètes (ANOVA); 

( x1)pβ : vecteur des coefficients dits de régression (covariables continues) ou «effets 

fixes» (covariables discrètes); a priori pR∈β ;  

( )x1Ne : vecteur de variables aléatoires résiduelles 

112. Hypothèses 

Toutes ou partie des hypothèses suivantes peuvent être formulées ou requises selon les 

techniques statistiques employées:  

-spécification exacte de l’espérance E( )y ,  

et, vis-à-vis des variables aléatoires résiduelles: 

-indépendance  

-homoscédasticité  

-normalité. 

12. Estimation 

121. Moindres carrés simples (OLS) 

C’est une technique purement algébrique due à Legendre (1805) pour résoudre un système 

linéaire ayant plus d’équations que d’inconnues. 

Soit 2( )S = −y Xβ β  le carré de la distance euclidienne entre les observations et la 

partie explicative du modèle, considérée comme une fonction de β . La solution des moindres 

carrés en β  est obtenue par minimisation de ( )S β  
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ˆ arg min ( )S= ββ β  (1.2) 

Or  

( ) 2 '( )S∂
∂

= − −X y Xβ
β

β
, 

2 ( ) 2 '   (définie non négative)
'

S∂
∂ ∂

= X Xβ
β β

 

La condition de convexité de la fonction ( )S β  étant satisfaite, le minimum s’obtient par 

annulation des dérivées premières d’où le système dit des moindres carrés ou des équations 

normales: 

ˆ' '=X Xβ X y . (1.3) 

Si X  est de plein rang, β  est «estimable», 'X X  est inversible et la solution s’écrit 

( ) 1ˆ ' '−= X X X yβ ; sinon, il faut déterminer quelles sont les fonctions estimables 'k β . 

Rappelons que 'k β  est par définition une fonction estimable, si et seulement si, elle peut 

s’exprimer comme une combinaison linéaire de l’espérance des observations soit 

,  ' ' ( ),∃ = ∀t k β t E y β .  

L’estimation correspondante peut s’obtenir alors par l’utilisation d’une inverse 

généralisée:  

( )ˆ' ' ' '−=k k X X X yβ , (1.4) 

qui assure la propriété d’invariance suivante: ( )' ' ' '− =k X X X X k 1, cette formule pouvant 

être utilisée comme test d’estimabilité de toute combinaison linéaire 'λ β  (Searle, 1971, page 

185).  

On gagnera le plus souvent à formuler le modèle avec une paramétrisation de plein rang, soit 
dès le départ, soit après une manipulation adéquate (cf annexe I-B). On utilise fréquemment la 
décomposition:  

ˆ ˆ ( )= + = + −y Xβ e Py I P y  (1.5) 

où la matrice P  est donnée par  

( ' ) '−=P X X X X  (1.6) 

                                                 
1 Cette propriété découle de l’égalité ( ' ) '− =X X X X X X  quelle que soit l’inverse généralisée de 'X X  (cf  
annexe I-A) 
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La matrice P  est idempotente -tout comme ( )−I P -, et vérifie =PX X . En effet, le système 

(1.3) s’écrit aussi ( )' − =X I P y 0 , ∀y  d’où =PX X  et 2=P P . La matrice P  s’interprète 

ainsi comme le projecteur orthogonal de y  sur l’espace engendré par les colonnes de X . 

122. Propriétés 

Sous l’hypothèse E( ) =y Xβ  (modèle correctement spécifié pour la partie systématique), 

l’estimateur des moindres carrés d’une fonction estimable est sans biais:  

ˆE( ' ) '=k β k β . (1.7) 

Démonstration: c’est la même que celle du critère d’estimabilité. 'k β  étant une fonction 

estimable: ,  ' '∃ =t k t X , son estimateur des moindres carrés ˆ'k β  peut se mettre alors sous la 

forme ˆ' '=k β t Py . Alors ( ' ) '=E t Py t PXβ ; or =PX X  d’où ˆE( ' ) ' '= =k β t Xβ k β , QED.  

A noter que cette propriété ne nécessite aucune hypothèse sur la structure de variance 

covariance V  des résidus. 

Sous l’hypothèse additionnelle 2
Nσ=V I  (indépendance et homoscédasticité), on 

montre que ˆ'k β  est le meilleur estimateur linéaire sans biais (BLUE) de 'k β , et que 

( )2ˆVar( ' ) ' 'σ −=k β k X X k .  (1.8) 

Comme précédemment, on part de la forme: ˆ' '=k β t Py  et ( ) 2ˆVar ' ' σ=k β t PPt . En utilisant 

la propriété d’idempotence de P  et en remplaçant P  par son expression en (1.6), il vient 

( ) 2ˆVar ' ' ( ' ) ' σ−=k β t X X X X t  soit le résultat en (1.8) puisque  

Enfin, sous l’hypothèse de normalité des résidus, la distribution de l’estimateur est elle 

aussi normale: ( )2ˆ' ~ ' ' 'σ − 
 k β k β k X X k,N .  

Soit 
2ˆSSE = −y Xβ , SSE peut s’écrire comme la forme quadratique suivante: 

SSE '( )= −y I P y , ( )−I P  étant idempotente; on en déduit tout d’abord un mode de calcul 

simple de SSE, soit 

ˆSSE ' ' ' ' R( )= − = −y y X y y yβ β ,  (1.9) 
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où R( )β  désigne selon la notation de Searle (1971), la part de variation «expliquée» par le 

modèle qualifiée aussi de réduction due au modèle β .  

Par ailleurs 2E(SSE) ' '( ) tr( )σ= − + −β X I P Xβ I P . Le premier terme s’annule puisque 

=PX X . De plus ( )−I P  étant idempotente, sa trace est égale à son rang soit r( )N − X  et 

[ ] 2E(SSE) r( )N σ= − X , d’où un estimateur sans biais de la variance résiduelle: 

[ ]2ˆ SSE/ r( )Nσ = − X .  (1.10) 

13. Tests d’hypothèses 

Soit à tester l’hypothèse nulle 0H : ' =k mβ  contre son alternative contraire, 1H : ' ≠k mβ . où 

'k  est une matrice ( x )r p  dont les r  lignes sont linéairement indépendantes. Pour ce faire, on 

va se placer sous l’hypothèse forte suivante: 2~ N( , )Nσe 0 I . Sous 0H :  

( ) ( )1 2
r( )

ˆ ˆ ˆ' ' Var( ' ) ' ~ χ
−

 − −  kk m k k mβ β β . (1.11) 

Or ( )2ˆVar( ' ) ' 'σ −=k k X X kβ  (c.f. formule 1.8), la statistique définie par 

( ) ( ) ( )1ˆ ˆQ ' ' ' ' '
−− = − − k m k X X k k mβ β  est donc proportionnelle à un Khi-deux soit 

2 2Q ~ rσ χ  (1.12) 

De même,  
2 2

r( )
ˆSSE ' ' ' ~ Nσ χ −= − Xy y X yβ . (1.13) 

Comme Q  et SSE  sont indépendants, on peut donc former la statistique 

[ ]
2

0 2

/F(H )
/ r( )

Q r
SSE N

σ
σ

=
− X

 du rapport de deux variables Khi-deux divisée chacune par son 

nombre de degrés de liberté , et qui est une variable de Fisher-Snedecor. La variance inconnue 

σ 2  se simplifiant, on a donc:  

[ ] [ ]0
/F(H ) ~ ; r( )

/ r( )
Q r F r N

SSE N
= −

−
X

X
. (1.14) 

14. Interprétation géométrique 

Considérons le sous espace vectoriel ( ){ }C( )= : ; ;  p
NxpR= ∈X X Xµ µ β β  engendré par les 

colonnes de X , le principe des moindres carrés revient à chercher un vecteur de C( )X  qui 

minimise le carré de la norme euclidienne 2−y µ . Géométriquement, il s’agit de la 

projection orthogonale de y  sur C( )X . Cette projection est telle que −y Xβ  soit orthogonal à 
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tout vecteur colonne de X , soit , 0,  =1,2,...,j j p< − >= ∀y X Xβ , 1 2=( , ,..., ,..., )j pX X X X X ce 

qui s’écrit encore 

( )
( )

( )

( )

'
1

'
2

'

'

0

0

0

0

j

p

− =

− =

− =

− =

X y X

X y X

X y X

X y X

β

β

β

β

( )' 0 ' '⇔ − = ⇔ =X y X X X X yβ β  (1.15) 

Une illustration est fournie dans le plan Π  pour 1 2=( , )X X X . On a donc par exemple: 
2, ' 'OM OA OA< >= ⇔ =y Py y PPy  

( )2 2 2 ' ' 'OM OA AM= + ⇔ = + −y y y Py y I P y , 

avec 2 2R( );OA AM SSE= =β , et qui traduit notamment l’orthogonalité de OA ( Py ) et de 

AM ( ( )−I P y ).  

De même, le test de l’hypothèse nulle 0H : ' =k mβ  s’interprète comme la recherche 

d’une solution (vecteur OB) dans un sous-espace de C( )X  de dimension r p<  telle que OB 

soit la projection orthogonale de OM sur ce sous-espace. Le triangle OBA est rectangle en B 

selon le théorème dit des «trois perpendiculaires», ce qui, formulé autrement, traduit le fait 

que cette solution est également la projection orthogonale sur ce sous-espace de la solution 

des moindres carrés du modèle complet.  

Dans le cas de la partition ' '
1 2( , ) '=β β β  avec 0 2H : = 0β , on peut écrire: 

2 2 2
1 2 1 2 1R( , ) R( ) R( | )OA OB BA= + ⇔ = +β β β β β  et le test de 0H  utilisera le fait que la 

statistique basée sur 2BA , ( [ ]2 1 1R( | ) / r( ) r( )−X Xβ β  au numérateur du F) est indépendante 

de celle basée sur 2AM  ([ ] [ ]1 2' R( , ) / r( )N− −y y Xβ β  au dénominateur) eu égard à 

l’orthogonalité des vecteurs BA  et AM .  
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15. Généralisation 

On considère le même modèle qu’en (1): = +y Xβ ε , mais cette fois avec un vecteur de 

variables aléatoires résiduelles ayant une structure quelconque V  de variance covariance 

~ ( , )0 Vε . 

V  étant par définition une matrice définie positive, on peut lui appliquer une 

décomposition de Cholesky '=V UU  où U  est une matrice triangulaire inférieure de plein 

rang. Si l’on considère la transformation 1* −=y U y , le modèle correspondant à *y  s’écrit: 

* * *= +y X β ε  (1.16) 
1* −=X U X   (1.17) 

1* −= Uε ε . (1.18) 
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On se ramène ainsi au cas précédent d’un modèle linéaire classique avec des résidus 

indépendants et homoscédastiques puisque * ~ (0, )NIε . On peut donc écrire le système sous 

la forme ˆ* ' * *'=X X β X y  qui équivaut avec les notations d’origine à:  

1 1ˆ' '− −=X V Xβ X V y . (1.19) 

En fait, il suffit de connaître V  à une constante près ainsi qu’on l’observe dans la forme 
2σ=V H  où H  est une matrice définie positive connue et σ 2  un scalaire positif inconnu.  

La décomposition selon les moindres carrés (1.5) conduit à: 

* * * ( *) *= + −y P y I P y  (1.20) 

où * *( *' *) * '−=P X X X X . 

Revenant à y  par la transformation inverse *=y Uy , il vient 
1 1* * ( * )− −= = + −y Uy UP U y I UP U y et, si l’on pose 1* −=Q UP U , c’est-à-dire 

1 1( ' ) '− −=Q X X V X X V ,  (1.21) 

et, on a 

ˆ ˆ ( )= + = + −y X Qy I Q yβ ε .  (1.22) 

Q  est le projecteur orthogonal de y  sur C( )X  selon la métrique 1−V  appelé aussi projecteur 

1−V  orthogonal; on le note quelquefois 1, −= X VQ P ; de même −I Q  est le projecteur de y  sur 

l’espace orthogonal à C( )X . Q  est aussi idempotent et vérifie donc ( )− =Q I Q 0  

(orthogonalité de ˆXβ  et de ε̂ ).  

En fait, la manipulation qui vient d’être effectuée peut s’interpréter comme un 

changement de base * *
i i i ii i

y y= =∑ ∑Y e e  où les vecteurs de la nouvelle base (*) choisie 

orthonormale ( * *,i j ijδ< >=e e ), sont définis par la transformation *
i ik kk

u= ∑e e  d’où il résulte 

que  
*' * 1 1, '( ) ' '− −< >= = =Y Y y y y U U y y Wy .  (1.23) 

La transformation U  est choisie de façon que le jacobien J  où * 'det ∂
∂

=
yJ
y

 soit, 

comme dans la loi normale, la racine carrée du déterminant de la précision 1−V . Comme ici 
1 1/ 2(det ) (det )−= =J U W , on prend 1−=W V .  
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2. Modèles linéaires mixtes 

La théorie de l’analyse de variance en dispositif déséquilibré s’est développée principalement 
dans le cadre du modèle linéaire à effets fixes (Yates, 1934; Herr, 1986) sans qu’apparût de 
distinction nette entre effets fixes et aléatoires Il fallut attendre l’article d’Eisenhart (1947) 
pour que fussent clairement précisées les notions de modèles à effets fixes et de modèles à 
effets aléatoires. Il est donc nécessaire de bien définir ces concepts délicats à manipuler.  
 

21. Définition. 
211. Présentation de Rao et Kleffe 

Un modèle linéaire mixte est un modèle linéaire tel qu’en (1.16) , ~ ( , )= +y X 0 Vβ ε ε , dans 

lequel la variable aléatoire ε  est décomposée comme une combinaison linéaire des variables 

aléatoires structurales ;  0,1,2,...,k k K=u  non observables (Rao and Kleffe, 1988, pages 61-

63): 

0

K
k kk =

= =∑ Z u Zuε , (1.24) 

où ( ) ( )0 1 2x , , ,..., ,...,k KN q+
=Z Z Z Z Z Z  est une concaténation de matrices connues kZ  de 

dimension ( x )kN q  et ( ) ( )' ' ' ' '
0 1 21 , , ,..., ,..., 'k Kq x+

=u u u u u u  est le vecteur correspondant des 

variables structurales { };  =1,2,...,k kl ku l q=u  tel que  

~ ( , )uu 0 Σ , (1.25) 

Dans (1.25), Σ u  est une fonction linéaire de paramètres ; 1,2,..., m m Mθ = , les matrices mF  

étant des matrices données carrées d’ordre 
0

K
kk

q q+ =
= ∑ , soit 

1

M
u m mm

θ
=

= ∑ FΣ .  (1.26) 

On ne posera pas de contraintes spécifiques sur mθ  et Fm  dans le cas général hormis 

que ces paramètres et ces matrices doivent assurer la positivité de uΣ . Ce modèle étant posé, 

la matrice V  de variance covariance des va observables y  est une fonction linéaire en les 

paramètres ; 1,2,..., m m Mθ =  puisque par définition: 
1

' 'M
u m mm

θ
=

= = ∑V Z Z ZF ZΣ , soit, 

encore: 

1

M
m mm
θ

=
= ∑V V . (1.27) 

Cette propriété est une caractéristique de ce qu’on entend sous le vocable de «modèle 

linéaire mixte» qui est tel qu’à la fois, son espérance = Xβµ  et, sa variance 
1

M
m mm
θ

=
= ∑V V , 

sont des fonctions linéaires de paramètres.  
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Dans cette présentation, les effets aléatoires apparaissent en définitive comme un 

moyen de structurer la matrice de variance-covariance V  des observations.  

212. Exemples 

Un exemple classique réside dans le modèle linéaire mixte à K facteurs aléatoires 
indépendants qui s’écrit: 

1

K
k kk =

= + +∑y X Z u eβ , (1.28) 

ou encore, en incorporant la résiduelle dans la structure générale des u via 0 0;  N= =u e Z I  

0

K
k kk =

= + ∑y X Z uβ , (1.29) 

et, pour lequel, E( ) =y Xβ , 2~ ( , )k k kσu 0 I , 'E( ) 0,k l k l= ∀ ≠u u  et, donc,  

2

0

K

u k kk
σ

=
= ⊕ IΣ  et 2 '

0

K
k k kk

σ
=

= ∑V Z Z .  

Il est à noter que les mêmes propriétés de linéarité de V  en les paramètres subsistent 

dans le cas où les facteurs ku  sont corrélés entre eux comme cela se produit dans les modèles 

«père» et «grand-père» des généticiens (Quaas et al, 1979) ou dans les modèles à coefficients 

de régression aléatoires (Laird et Ware, 1982). Ces modèles s’écrivent dans le cas le plus 

simple:  

1 1 2 2= + + +y X Z u Z u eβ  (1.30) 

où par exemple { }1 1iu=u  est le vecteur des «intercepts» des individus (indicés par i) mesurés 

de façon répétée et { }2 2iu=u , celui des pentes tels que  

2
1 1 12

2
2 12 2

var q q
q

q q

σ σ
σ σ

  
= = ⊗  

    

u I I
I

u I I
Σ ,  (1.31) 

avec 
2

1 1 12
2

2 12 2

var i

i

u
u

σ σ
σ σ

  
= =   

   
Σ  formée par les variances de l’intercept ( 2

1σ ), de la pente ( 2
2σ ) 

et leur covariance ( 12σ ).  

Par définition du modèle, il vient:  

2 2 2
1 0 1 2 12

2

var
N

q q

q q

σ σ σ σ
        
        = + + +        

                 

e I 0 0 0 0 0 0 0 0 0 0 0
u 0 0 0 0 I 0 0 0 0 0 0 I
u 0 0 0 0 0 0 0 0 I 0 I 0

 (1.32),  

qui suit bien la forme linéaire (1.27). 
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22. Approche marginale de modèles hiérarchiques 

221. Présentation de Lindley-Smith 

La référence en ce domaine est l’article de Lindley and Smith (1972) intitulé «Bayes 

estimates for the linear model». On considère un processus d’échantillonnage gaussien en 

deux étapes relatives aux données et aux paramètres de position respectivement:  

a) 1 1 1 1 1| , ~ ( , )Ny C A Cθ θ ,  

b) 1 2 2 2 2 2| , ~ ( , )NC A Cθ θ θ . (1.33) 

La résultante de ces deux étapes conduit à la distribution marginale des données suivantes:  
'

2 2 1 2 2 1 1 2 1| , ~ ( , )N +y C A A C A C Aθ θ .  (1.34) 

Pour s’en convaincre, il suffit d’écrire a) et b) sous forme de modèles linéaires soit 

1 1 1

1 2 2 2

;  ~ ( , )
;  ~ ( , )

N
N

= +
= +

y A e e 0 C
A u u 0 C

θ
θ θ

 (1.35) 

et, en reportant la deuxième équation dans la première, on obtient: 

1 2 2 1= + +y A A A u eθ , (1.36) 

qu’on identifie bien à la structure = + +y X Zu eβ .  

On se réfère quelquefois au qualificatif de «mélange» pour désigner l’approche 

marginale de modèles hiérarchiques. En effet, un mélange d’un nombre fini ( )p  de 

composantes ayant chacune pour loi ( | )if y θ  avec par exemple un vecteur de paramètres 

( )2, 'i i iµ σ=θ  comportant l’espérance iµ  et la variance 2
iσ  a une densité qui s’écrit: 

1
( ) ( | )p

i ii
f fπ

=
= ∑y y θ , 

où iπ  est la proportion de la composante i  telle que 
1

1p
ii

π
=

=∑ . 

Cette sommation finie se généralise au cas continu et peut alors rendre compte d’un processus 
de marginalisation : 

( ) ( ) ( | )f f dπ= ∫y yµ µ µ . (1.37) 

tel celui réalisé en (1.34) 1 1 1 1 1( ) ( | ) ( | , )f f dπ= ∫y C y Cθ θ θ  par intégration des paramètres 

1θ . 

222. Exemples 

-Le modèle «père» de la sélection animale 

Dans les espèces animales domestiques, la sélection des reproducteurs mâles s’effectue 

fréquemment à partir des performances de leurs descendants obtenus par accouplement de 

chacun des pères avec un échantillon de femelles reproductrices. Conditionnellement au 
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mérite génétique ui  de chaque père, un modèle simple d’analyse réside dans le modèle 

linéaire suivant (Henderson, 1973 ; Thompson, 1979):  

 '|ij i ij i ijy u u e= + +x β  

avec 

 ' 2E( | ) ;  ~ (0, )ij i ij i ij ey u u e iid σ= +x β  

où yij  est la performance du èmej  descendant du père i ; '
ijx β  représente la contribution des 

facteurs systématiques de milieu et ije  la résiduelle.  

Si l’on pose: 

{ }x1N ijy=y , { }x1q iu=u , ( )' ' ' '
x 1 2' , ,..., ,...,p N i q=X X X X X , 

 ( )'
1 2( x ) , ,..., ,...,

iii i i ij inp n =X x x x x , x 1 i

q

N q ni=
= ⊕Z 1 ,  

on peut écrire la loi conditionnelle des observations sachant les mérites des pères sous la 

forme matricielle suivante: 

 | ~ N( , )+y u X Zu Rβ ,  (1.38) 

avec 2
e Nσ=R I . 

En fait, il est d’usage de considérer que le vecteur u  des effets des pères est lui-même 

une va d’espérance Qg  et de matrice de variance covariance G .  

 ~ N( , )u Qg G .  (1.39) 

Qg  correspond à une structuration des pères en différentes souches ou groupes ancestraux 

(Thompson, 1979; Quaas and Pollak, 1980; Quaas, 1988) et 2
uσ=G A  représente la variabilité 

génétique entre ceux-ci compte tenu de la matrice de parenté A . Marginalement c’est-à-dire 

après avoir éliminé par intégration la variation des u , on a: 

 ~ N( , ' )+ +y X ZQg ZGZ Rβ ,  (1.40) 

ce qui équivaut au modèle linéaire mixte suivant: 

 *= + + +y X ZQg Zu eβ , (1.41) 

avec 2* ~ N( , )uσu 0 A  et 2~ N( , )e Nσe 0 I .  

-Le modèle à coefficients de régression aléatoires 

On peut introduire ce modèle à partir de l’exemple simple des données de croissance faciale à 

4 âges (8, 10, 12 et 14 ans) de 11 filles et 16 garçons présentées par Pothoff et Roy (1964). 
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Ces données ont été analysées en détail par Verbeke et Molenberghs (1997) et Foulley et al 

(2000).  

Un modèle simple et pertinent d’analyse de ces données consiste en l’ajustement d’une 

droite de régression propre à chaque individu. Si i désigne l’indice du sexe (i=1,2 pour les 

sexes femelle et mâle), j l’indice de la période de mesure (j=1,2,3,4) avec t j  le temps 

correspondant et k celui de l’individu intra-sexe (k=1,2,...,11 pour i=1; k=1,2,...,16 pour i=2), 

ce modèle s’écrit:  

 ijkjikikijk etBAy ++= , (1.42) 

où ikA  est l’intercept propre à l’individu ik et Bik  la pente.  

Conditionnellement aux valeurs des coefficients de régression Aik , Bik  des individus, le 

modèle (1.42) est un modèle linéaire classique du type décrit en (1.1) à va résiduelles 

indépendantes.  

Si, maintenant, en une deuxième phase du raisonnement, on considère que les individus 

représentent un échantillon aléatoire des enfants de chaque sexe, les ikA  et les ikB  sont des 

variables aléatoires qu’on peut aisément caractériser par leurs deux premiers moments:  

 





































2

2
,~

bab

aba

i

i

ik

ik

B
A

σσ
σσ

β
α .  (1.43) 

Cela revient à décomposer l’intercept et la pente en la somme de deux parties:  
 ik i ikA aα= + , (1.44a) 

 ik i ikB bβ= +  (1.44b) 

une composante systématique α i  et β i  propre à chaque sexe et un écart aléatoire centré aik  et 

bik  propre à l’individu k du sexe i.  

Ce faisant, le modèle d’origine se met sous la forme usuelle: 

 ijkjikikjiiijk etbaty ++++= βα ,  (1.45) 

qui sépare la partie fixe ( i i jtα β+ ) de la partie aléatoire ( ik ik ja b t+ ). 

Si l’on pose { } { },ik ijk ik ijky e= =y e , ( )4 1 1 2 1 1 2 1, , , 'x α α α β β β= − −β  ( ), 'ik ik ika b=u  auxquels 

correspondent les matrices d’incidence ( )4 4 4, , ,ik =X 1 0 t 0  si 1i = , ( )4 4, , ,ik =X 1 1 t t  si 2i =  

et ( )4 ,ik =Z 1 t  avec { }4x1 jt=t , (1.45) s’écrit sous la forme matricielle typique d’un modèle 

linéaire mixte: 

 ik ik ik ik ik= + +y X Z u eβ ,  (1.46) 
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où ~ ( , )iku 0 G , ~ ( , )ike 0 R  avec 
2

2
a ab

ab b

σ σ
σ σ

 
=  

 
G et 2

4eσ=R I .  

Un modèle linéaire mixte apparaît donc comme un modèle linéaire dans lequel toute ou partie 

des paramètres associés à certaines unités expérimentales sont traités comme des variables 

aléatoires du fait de l’échantillonnage de ces unités dans une population plus large.  
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ANNEXE I-A 
Démonstration =PX X  

 
C’est une conséquence des deux lemmes suivants (Searle, 1982, p62-63) 

Lemme 1 : Pour toute matrice réelle ( ) { }x ijn n a=A  ; ' = ⇒ =A A 0 A 0 .  

En effet, le jème élément diagonal du produit s’écrit 2
1

n
jii

a
=∑ et sa nullité implique 0jia = , i∀  

et cela est vrai aussi j∀ .  
Lemme 2 : Pour toutes matrices réelles R , S  et X , ' ' ' '= ⇒ =RX X SX X RX SX  
Cela découle de l’identité suivante : ( )( ) ( )( )' ' ' ' ' ' ' '− − = − −RX X SX X R S RX SX RX SX . 
Si ' '=RX X SX X , la relation ci-dessus est nulle ; on peut donc appliquer le lemme 1 au 
membre de droite d’où ' '=RX SX .  
Par application du lemme 2 à ' ( ' ) ' '− =X X X X X X X X , on a ' ( ' ) ' '− =X X X X X X , soit en 
transposant ( ' ) '− =X X X X X X , ie =PX X , QED.  
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ANNEXE I-B 
Paramétrisation et codage 

 
1) Dispositif à deux facteurs croisés A et B suivant:  
 

A\B (1) (2) (3) 
(1) 

11µ  12µ  13µ  
(2) 

21µ  22µ  23µ  

où ijµ  est l’espérance des observations de la ligne i  et de la colonne j .  

2) Analyse par un modèle additif: ij i ja bµ µ= + +  
21) Paramétrisation en écart à une cellule de référence («incremental effects models» SAS); GLM, Mixed, 
Genmod 
 

a b   
µ  (1) (2) (1) (2) (3) 

11µ  1 1 0 1 0 0 

12µ  1 1 0 0 1 0 

13µ  1 1 0 0 0 1 

21µ  1 0 1 1 0 0 

22µ  1 0 1 0 1 0 

23µ  1 0 1 0 0 1 

 
La règle pratique consiste à éliminer les colonnes de X relatives aux niveaux de la cellule de référence: ici 2a  et 

3b . C’est la convention choisie par SAS de mise à zéro des niveaux d’indice les plus élevés. La paramétrisation 

relative à ce codage de X est la suivante : 2 3a bµ µ= + +  ; 1 1 2a a a= −  ; 1 1 3b b b= −  ; 2 2 3b b b= − . 

22) Paramétrisation « 0Σ = » («deviation from the mean model» SAS); Catmod, Logistic 
 

a b   
µ  (1) (2) (1) (2) (3) 

11µ  1 1 0 1 0 0 

12µ  1 1 0 0 1 0 

13µ  1 1 0 -1 -1 1 

21µ  1 -1 1 1 0 0 

22µ  1 -1 1 0 1 0 

23µ  1 -1 1 -1 -1 1 

 
La matrice X a toujours 4 colonnes pour que la paramétrisation soit de plein rang. Cette fois, on retranche la 
colonne 2a  de celle de 1a  et la colonne 3b  de celle de 1b  et de celle de 2b , les colonnes 2a  et 3b  étant 

écartées. La paramétrisation relative à ce codage de X est la suivante: a bµ µ= + +  où 1 2( ) / 2a a a= +  et 

1 2 3( ) / 3b b b b= + +  ; 1 1 1 2( ) / 2a a a a a= − = −  ; 1 1 1 2 3(2 ) / 3b b b b b b= − = − −  ;  

2 2 1 2 3( 2 ) / 3b b b b b b= − = − − . 

3) Analyse par un modèle avec interaction: ( )ij i j ij
a b abµ µ= + + +  

La matrice X a maintenant 6 colonnes, les 4 précédentes auxquelles s’ajoutent deux colonnes pour les effets 
d’interaction. Celles-ci s’obtiennent en multipliant la colonne 1a  par respectivement celle de 1b  et celle de 2b . 
Dans le cas d’une paramétrisation en écart à une cellule de référence, on obtient ainsi: 
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a b ab   

µ  (1) (1) (2) (11) (12) 

11µ  1 1 1 0 1 0 

12µ  1 1 0 1 0 1 

13µ  1 1 0 0 0 0 

21µ  1 0 1 0 0 0 

22µ  1 0 0 1 0 0 

23µ  1 0 0 0 0 0 

 
La paramétrisation relative à ce codage de X est la suivante: 

23µ µ=  ; 1 13 23a µ µ= −  ; 1 21 23b µ µ= −  ; 2 22 23b µ µ= −  ; 

( ) ( )11 11 21 13 23( )ab µ µ µ µ= − − − ; ( ) ( )12 12 22 13 23( )ab µ µ µ µ= − − − .  
 
De même, avec la paramétrisation « 0Σ = », X s’écrit: 

a b ab   
µ  (1) (1) (2) (11) (12) 

11µ  1 1 1 0 1 0 

12µ  1 1 0 1 0 1 

13µ  1 1 -1 -1 -1 -1 

21µ  1 -1 1 0 -1 0 

22µ  1 -1 0 1 0 -1 

23µ  1 -1 -1 -1 1 1 

 
La paramétrisation relative à ce codage de X est la suivante : 

..µ µ=  ; 1 1. ..a µ µ= −  ; 1 .1 ..b µ µ= −  ; 2 .2 ..b µ µ= −  ; 

11 11 1. .1 ..( )ab µ µ µ µ= − − + ; 12 12 1. .2 ..( )ab µ µ µ µ= − − + ,  

où ( ). 1
/J

i ijj
Jµ µ

=
= ∑ , ( ). 1

/I
j iji

Iµ µ
=

= ∑  et ( ) ( ).. . .1 1
/ /I J

i ji j
I Jµ µ µ

= =
= =∑ ∑ .  

 
3) Justification 
On se pose la question de déterminer X sous une paramétrisation de plein rang. On part d’un modèle initial 
E( ) =y Xβ  où X  est une matrice ( )xN k qui n’est pas de plein rang suivant les colonnes r( )k p> =X  

etβ  est le vecteur correspondant x1)k( des coefficients de régression. On introduit un vecteur β  x1)p( relatif 

au modèle E( ) =y Xβ  ayant une paramétrisation de plein rang et tel que β = Τβ , Τ étant une matrice de 

passage x )p k(  connue et de plein rang suivant les lignes. En identifiant les deux modèles, il vient XΤ X=  

ou encore ' 'XΤΤ XΤ= . Comme Τ est de plein rang suivant les lignes, 'ΤΤ  est inversible et X  s’écrit:  

 ( ) 1' ' −X XΤ ΤΤ=  
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Exemple: paramétrisation additive  
 

1) en écart à la cellule (23) 
 

1 1 0 1 0 0
1 1 0 0 1 0
1 1 0 0 0 1
1 0 1 1 0 0
1 0 1 0 1 0
1 0 1 0 0 1

 
 
 
 

=  
 
 
 
  

X ; 

1 0 1 0 0 1
0 1 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 1

 
 − =

− 
 − 

T . On trouve bien par application de la 

formule: 

1 1 1 0
1 1 0 1
1 1 0 0
1 0 1 0
1 0 0 1
1 0 0 0

 
 
 
 

=  
 
 
 
  

X . 

2) paramétrisation « 0Σ = », 

T s’écrit: 

1 1/ 2 1/ 2 1/ 3 1/ 3 1/ 3
0 1/ 2 1/ 2 0 0 0
0 0 0 2 / 3 1/ 3 1/ 3
0 0 0 1/ 3 2 / 3 1/ 3

 
 − =

− − 
 − − 

T et on obtient 

1 1 1 0
1 1 0 1
1 1 1 1
1 1 1 0
1 1 0 1
1 1 1 1

 
 
 

− − 
=  − 

 −
 
 − − − 

X   
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1. Approche directe 

11. Définition 

Le concept de prédiction apparaît rarement dans la littérature tel quel; il reste la plupart 

du temps indéfini ou confondu avec celui de l’estimation alors qu’il s’en distingue nettement.  

Faire une prédiction, c’est substituer à une variable aléatoire W  -non observable dans 

les conditions du problème- une variable aléatoire Ŵ  qui est fonction d’une variable aléatoire 

Y  observable2ie ˆ ( )=W f Y et telle que la distribution de Ŵ  soit aussi proche que possible de 

celle de W  selon un critère donné. Il pourra s’agir d’une distance (ex celle de Kullback-

Leibler) ou d’un critère tel que l’erreur quadratique moyenne 2ˆE ( )MSE W W = −  . 

12. Meilleur prédicteur 

Nous utiliserons ici la terminologie d’Henderson. Il s’agit ici du meilleur prédicteur au 

sens de l’erreur quadratique moyenne (abréviation BP en anglais). Soit ˆ ( )=W f Y le 

prédicteur et ˆ ( )=w f y  une réalisation, l’erreur quadratique moyenne se décompose en 

 
22ˆ ˆ ˆE ( ) Var( ) E( ) E( )W W W W W W   − = − + −    . (2.1) 

On peut appliquer au premier terme de (2.1) le théorème de conditionnement-

déconditionnement de la variance, soit 

{ } { }ˆ ˆ ˆVar( ) E Var ( ) Var E ( )Y YW W W W Y y W W Y y   − = − = + − =    . (2.2) 

Or, conditionnellement à =Y y , ˆ =W Y y  est une constante égale à ŵ ; son espérance est 

donc ŵ  et sa variance est nulle, si bien que (2.2) se réduit alors à: 

 ˆ ˆVar( ) E Var( ) Var E( )− =  =  +  − =    Y YW W W Y y w W Y y . (2.3) 

Le premier terme de (2.3) ne dépend pas du choix du prédicteur; le second s’annule si l’on 

prend un prédicteur tel que  

 ˆ E( )w W Y y= = .  (2.4) 

Par construction, ce prédicteur vérifie  

 ˆE( ) E E( ) E( )YW W Y y W=  =  =   (2.5) 

Il est donc sans biais -au sens de ˆE( ) E( )=W W - et minimise (2.1) par construction; il vérifie 

également la propriété suivante: 

 ˆVar( ) E Var( )= − =  =  YMSE W W W Y y . (2.6) 

                                                 
2 Aucune hypothèse à ce stade sur la dimension de Y 
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Ces résultats s’appliquent aisément au cas gaussien avec ( )'' ,W Yµ= µµ  et 

WW WY

YW YY

 
 
 

Σ Σ
Σ Σ

Σ = . On connaît alors la forme de la loi conditionnelle de =Y yW  qui est aussi 

normale 

 . .~ ( , )W Y WW YW µ=Y y ΣN , (2.7) 

où, l’espérance ( )1
.W Y W WY YY Yµ µ −= + −Σ Σ y µ  est linéaire en y , et la variance 

1
.WW Y WW WY YY YW

−= −Σ Σ Σ Σ Σ  ne dépend pas de la valeur particulière de y  pour laquelle on 

conditionne.  

13. Meilleur prédicteur linéaire 

Comme précédemment, on suppose que les deux premiers moments de la loi conjointe 

( ), 'YW  sont connus, mais la forme précise de celle-ci ne l’est pas. Une des possibilités est de 

se restreindre à une classe particulière de prédicteurs, en l’occurrence aux prédicteurs linéaires 

de la forme: ( )0
ˆ ' YW a= + −a Y µ . Dans ces conditions: 

 ( ) 0
ˆE µ− = − WW W a   

 ( )ˆVar ' 2 'YY YW WWW W− = − +a Σ a a Σ Σ  

Soit ( )2ˆE  = −  
Q W W , la minimisation de Q  par rapport aux coefficients 0a  et 

{ }=a ka ; 1, 2,...,k N=  ( N  étant la dimension de Y ) conduit aux équations aux dérivées 

partielles suivantes: 

 0
0

2( ) 0µ∂
= − =

∂ W
Q a
a

 

 2 2 0YY YW
Q∂

= − =
∂

Σ a Σ
a

. 

Il vient immédiatement: 0 µ= Wa  (propriété de non biais) et 1
YY YW
−=a Σ Σ  si bien que le 

prédicteur s’écrit en définitive: 

 1ˆ ( )W WY YY YW µ −= + −Σ Σ Y µ ,  (2.8) 

et a la même forme que le meilleur prédicteur résultant du cas gaussien. Ce prédicteur vérifie 

 ( )ˆ ˆVar Var( ) Var( )= − = −Q W W W W  (2.9) 

avec 
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 1ˆVar( ) ' 'YY YW WY YY YWW −= = =a Σ a a Σ Σ Σ Σ . (2.10) 

14. Meilleur prédicteur linéaire sans biais (BLUP) 

Ce type de prédicteur est connu mondialement sous l’acronyme anglais de BLUP3 

(«Best Linear Unbiased Predictor») suite aux travaux notamment de CR Henderson à 

l’Université Cornell et de ses élèves (Harville, Quaas, Schaeffer).  

Ce prédicteur a été proposé pour répondre à la levée de l’hypothèse de moments connus 

de 1er ordre de la distribution de ( ), 'YW . On va supposer que ceux-ci sont des fonctions 

linéaires d’un vecteur de paramètres inconnus P∈β R ie 'Wµ = k β  et Y =µ Xβ . En fait, on 

exprime la variable aléatoire à prédire sous la forme: 'µ= + m uWW . Dans ces conditions le 

problème se formalise dans un cadre de modèle linéaire mixte: = +Y Xβ Ζu e+  où 

E( ) =Y Xβ  et Var( ) '= = +Y V ΖGZ R  avec ~( , )u 0 G  et ~( , )e 0 R .  

 141. Formulation classique 

On recherche un prédicteur qui soit a priori 

 a-linéaire,  

 b-sans biais au sens de ˆE( ) E( )=W W , 

 c-optimum au sens de l’erreur quadratique moyenne (MSE) minimum. 

Ces conditions se traduisent respectivement par: 

 a) ˆ = 'a YW  

 b) x1' p− =X a k 0  

 c) ˆVar( ) ' ' 2 '   minimumW W− = + −a Va m Gm a Cm où =Cov( , ')=C Y u ZG . 

Minimiser l’expression en c) sous la contrainte b) revient à minimiser la fonction  

( , ) ' 2 ' 2 '( ' )Q = − + −a θ a Va a Cm θ X a k , (2.11) 

où θ  est un vecteur x1)p( de multiplicateurs de Lagrange.  

Les dérivées partielles par rapport à a  et θ  s’écrivent: 

 2 2 2Q∂
= − +

∂
Va Cm Xθ

a
, (2.12) 

 ( )2 'Q∂
= −

∂
X a k

θ
. (2.13) 

Par annulation, on tire: ( )1−= −a V Cm Xθ  et, en reportant dans (2.13), il vient: 

( )1' − − =X V Cm Xθ k  soit, en résolvant en θ , puis en reportant dans l’expression de a : 

                                                 
3 Le sigle a été en fait introduit par Goldberger (1962) 
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( ) 1' ' ' ' ' −= −a m C θ X V , d’où 

( )( )1 1 1 1ˆ ' ' ' ' ' ' ' 'W
−− − − −= = + −a Y m C V Y k m C V X X V X X V Y , 

qui, après réarrangement, se met sous la forme: 

 ( )1ˆ ˆˆ ' ' 'W −= −k β m C V Y Xβ+ , (2.14) 

où β̂  est l’estimateur GLS de β , solution du système: 

 1 1ˆ' '− −X V Xβ X V Y=  (2.15) 

et ( )1 ˆ' − −C V Y Xβ  s’obtient à partir du meilleur prédicteur linéaire de u , ie 

[ ] [ ]1ˆ Cov( , ') Var( ) E( )−= −u u Y Y Y Y (cf (2.8)) dans lequel on a remplacé E( )Y  par son 

estimateur GLS, ˆXβ . Ce résultat est du à Goldberger (1962; page 371, eq 3.13) et Henderson 

(1963; page 161, equations 19 et 20).  

142. Formulation de Bulmer 

Bulmer (1980) s’intéresse à la meilleure prédiction d’une variable centrée telle que u  à 

partir d’une variable observable Y  d’espérance inconnue Xβ . Pour ce faire, il procède en 

deux étapes: 

 -corriger les observables pour les effets systématiques estimés par GLS, soit 

ˆ
c = −Y Y Xβ  

 -prédire u  par le meilleur prédicteur linéaire de cY ce qui est légitime puisque u  et 

cY ont une espérance connue –en l’occurrence nulle.  

Un tel prédicteur u  s’écrit: 

 [ ]'Cov( , ) Var( )c c c
−=u u Y Y Y . (2.16) 

Il est à noter que cette expression fait intervenir une inverse généralisée des observables 

puisque, du fait de la correction, la matrice de variance covariance correspondante n’est plus 

de rang N  mais de rang rang( )N − X . En fait cY  peut s’écrire sous la forme c =Y VPY  où 

( )1−= −P V I Q  et 1 1( ' ) '− − −=Q X X V X X V  est le projecteur défini au chapitre I (cf 1.21). 

Alors  

 Var( )c = =Y VPVPV VPV  ( V  étant une inverse généralisée de P ),  

 'Cov( , ) 'c =u Y C PV , ( )1 −− =V VPV  

et, en remplaçant dans (2.16), on obtient: 
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 ' ' 'c= = =u C PY C PVPY C PY , (2.17) 

qui correspond bien au BLUP, ( )1 ˆˆ ' −= −u GZ V y Xβ de u , basé sur Y  (Gianola et Goffinet, 

1982).  

L’expression (2.17) illustre bien la propriété d’invariance par translation du BLUP 

puisque û  est bâti sur ( )−I Q Y et que =QX X .  

Cette expression permet également d’établir aisément que: 

 ˆ ˆVar( ) Cov( , ') '= =u u u C PC , (2.18) 

et donc, du fait de l’absence de corrélation entre û et ˆ −u u , que: 

 ˆVar( ) '− = −u u G C PC . (2.19) 

On notera à ce propos que s’il s’était agi du meilleur prédicteur linéaire-cas où Yµ ou β  est 

connu-, on aurait eu: 

 1ˆVar( ) ' −− = −u u G C V C . (2.20) 

On notera que, dans (2.19), P  remplace 1−V ; on retrouvera cette substitution dans 

l’estimation des composantes de la variance quand on passe du maximum de vraisemblance 

au maximum de vraisemblance restreinte. 

 

2. Equations du modèle mixte 

21. Approche d’Henderson 

C’est dans un article collectif de Biometrics publié en 1959 (Henderson et al, 1959) 

qu’Henderson présente le système des équations dites du modèle mixte. Celles-ci sont 

relatives à l’estimateur des moindres carrés généralisés, ( )1 1ˆ ' '
−− −β X V X X V y=  de β  et au 

Blup, ( )1 ˆˆ ' −= −u GZ V y Xβ de u qui interviennent dans un modèle linéaire mixte de la forme: 

 = +y Xβ Ζu e+  (2.21) 

où E( ) =y Xβ  et Var( ) '= = +y V ΖGZ R  avec ~( , )u 0 G , ~( , )e 0 R et Cov( , ') =u e 0 .  

Ce système s’écrit comme suit: 

 
1 1 1

1 1 1 1

' ' '
' ' '

− − −

− − − −

    
=    +    

X R X X R Z X R yβ
Z R X Z R Z G Z R yu

.  (2.22) 

L’intérêt calculatoire de ce système est manifeste puis qu’il ne nécessite plus le calcul de 

l’inverse de la matrice V  de variance-covariance des observations dont la dimension N  peut 

être très élevée; celle-ci n’a pas dans le cas général de structure simple contrairement à R .  
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22. Justification 

Henderson présente ce système de façon détournée -et un peu étrange- comme le résultat de la 

maximisation de la densité conjointe ( , )f y u (ou de son logarithme) par rapport à β et u  sous 

l’hypothèse de multinormalité, soit: 

 ,, arg max ln ( , )f= uβ u y uβ .  (2.23) 

On résumera ici les étapes de cette maximisation. On part de la décomposition de la 

densité conjointe en le produit suivant: ( , ) ( ) ( )f f f=y u y u u où ~ ( , )y u Xβ Ζu R+N et 

~ ( , )u 0 GN . De là, on tire: 

 12 ln ( ) ln 2 ln ( ) ' ( )f N π −− = + + − −y u R y X Ζu R y Xβ Ζuβ − −  

 12 ln ( ) ln 2 ln 'f q π −− = + +u G u G u . 

La minimisation de la somme de ces deux termes considérée comme fonction de β  et u  se 

fait par l’écriture et l’annulation des dérivées partielles. Soit ( ; ) ln ( , )l y f=β u y u, , on a: 

 [ ] 12 ( ;
2 ' ( )

l y −∂ −
= − − =

∂
u

X R y Xβ Ζu 0
β
β,

−  

 [ ] 1 12 ( ;
2 ' ( ) 2

l y − −∂ −
= − − + =

∂
u

Z R y Xβ Ζu G u 0
u
β,

−  

d’où découle immédiatement le système (2.22).  

Cependant, ( ; )l yβ u, n’est pas le logarithme d’une vraisemblance classique de données 

observées et, de plus, u  n’est pas un paramètre si bien qu’a priori toute cette manipulation 

paraît tout à fait illégitime sinon infondée; heureusement, comme on le verra à la fin, la 

maximisation de cette fonction trouve sa pleine justification non plus dans un cadre classique 

mais dans la théorie bayésienne. 

Au préalable, et ce fut la démarche d’Henderson, on va montrer qu’on peut identifier les 

solutions β et u  du système (2.22) à celle des moindres carrés généralisés d’une part, et au 

Blup, d’autre part.  

La première équation s’écrit aussi: ( )1 1' '− −=X R Xβ X R y Ζu− . De même la deuxième, 

( ) ( )1 1 1' '− − −+ =Z R Z G u Z R y Xβ− et, en reportant l’expression de u  de celle-ci dans celle-là, 

on obtient: 

 ' '=X WXβ X Wy , (2.24) 

où 
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 ( ) 11 1 1 1 1' '
−− − − − −= − +W R R Z Z R Z G Z R . (2.25) 

On peut montrer (cf. annexe II) que: 

 ( ) 1 1' − −= + =W Z GZ R V ,  (2.26) 

et donc ˆ=β β . 

De la deuxième équation, on tire: 

 ( ) ( )11 1 1 ˆ' '
−− − −= +u Z R Z G Z R y Xβ−  

et, en utilisant les résultats de l’annexe A, on montre alors que: 

 ( ) 11 1 1 1' ' '
−− − − −+ =Z R Z G Z R GZ V  

ce qui établit l’identité entre la solution u  en u  et le BLUP û .  

 23. Variances d’erreur 

Il s’agit des variances d’échantillonnage des effets fixes et des variances d’erreur de 

prédiction des effets aléatoires. Leurs expressions ont été établies par Henderson (1975) dans 

un article de Biometrics.  

Soit C  une inverse de la matrice4 des coefficients et qu’on peut partitionner comme suit: 

 
11 1

1 1 1

' '
' '

u

u uu

ββ β

β

−− −

− − −

   
=   +  

C C X R X X R Z
C C Z R X Z R Z G

 (2.27) 

On montre que: 

 ˆVar( ' ) ' ββ=k β k C k , (2.28a) 

 ˆ ˆCov( ' ') =k β u 0, , (2.28b) 

 ( )ˆ ˆCov ' ' ' uβ
 − = k β u u k C, , (2.28c) 

 ( )ˆVar uu= −u G C . (2.28d) 

 ( )ˆVar uu− =u u C , (2.28e) 

La formule en a) découle directement de l’expression de l’inverse d’une matrice  

partitionnée en blocs. En effet ( )
111 1 1 1 1' ' ' 'ββ

−−− − − − − = − +  
C X R X X R Z Z R Z G Z R X soit, 

compte tenu de la propriété (2.26) se réduit à ( ) 11'ββ

−−=C X V X QED.  

                                                 
4 Celle-ci est supposée ici de plein rang pour simplifier la présentation, mais les résultats s’appliquent aussi à une 
inverse généralisée.  
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La propriété b) découle de l’orthogonalité des projecteurs Q  et − QΙ (c.f. 1.21) comme 

suit. 'k β  étant une fonction estimable peut s’exprimer comme une combinaison linéaire de 

l’espérance des observations soit ' 'k β λ Xβ=  d’où ˆ ˆ' ' 'k β λ Xβ λ Qy= = ; par ailleurs comme 

on l’a montré précédemment (2.21) ˆ '=u C Py  d’où ˆ ˆCov( ' ') '=k u QVPCβ, λ ; or 

( )= − =QVP Q I Q 0 .  

Compte tenu de b), la relation c) est équivalente à ( )ˆCov ' ' ' uβ= −k β u k C, . Or ˆ'k β  peut 

se mettre sous la forme: ( ) 1'ˆ' '
'uββ β

− 
 
 

X
k β k C C R y

Z
=  de telle sorte que 

( ) ( )
1

1

'ˆCov ' ' '
'uββ β

−

−

 
=  

 

X R Z
k β u k C C G

Z R Z
, . Or, par définition de l’inverse:  

( )
1

1 1

'
'uββ β

−

− −

 
= 

+ 

X R Z
C C 0

Z R Z G
, d’où ( ) 1ˆCov ' ' ' uβ

−= −k β u k C G G, ,QED.   

Pour établir la relation d), on peut utiliser la propriété du BLUP selon laquelle 

ˆ ˆVar( ) Cov( , ')=u u u  (c.f. 2.18); puis, on procédera selon la même méthode que précédemment 

en écrivant: ( ) 1'
ˆ

'u uuβ
− 

 
 

X
u C C R y

Z
=  si bien que ( )

1

1

'ˆCov( , ')
'u uuβ

−

−

 
 
 

X R Z
u u C C G

Z R Z
=  ou 

encore ( )1
uu

−−I C G G , QED.  

La relation e) sur la variance des erreurs de prédiction ˆ −u u  découle de la relation 

précédente et du corollaire de (2.18) à savoir. ˆ ˆVar( ) Var( ) Var( )= + −u u u u .  

Enfin, s’agissant d’une combinaison linéaire ' 'w = +k β m u  quelconque d’effets fixes et 

d’effets aléatoires, sa variance d’erreur de prédiction s’obtient par : 

 ˆVar( ) ' ' 2 'uu uw w ββ β− = + +k C k m C m k C m . (2.29) 

24. Interprétation bayésienne 

Les liens qui unissent le BLUP et la statistique bayésienne ont été soulignés depuis 

longtemps (Dempfle, 1977; Lefort,1980; Gianola et Fernando, 1986, Searle et al, 1992). Les 

fondements de l’analyse bayésienne du modèle linéaire ont été donnés par Lindley et Smith 

(1972) et c’est cette présentation que nous utiliserons ici comme au chapitre I (cf 2.2 

«approche marginale de modèles hiérarchiques»). Rappelons brièvement qu’on considère ici 

un modèle gaussien avec échantillonnage en deux étapes suivantes: 

1) ~ ( , )y |θ Tθ RN ,  (2.30a) 

2) ~ ( , )θ |α W ΩαN .  (2.30b) 
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D’après le théorème de Bayes, f( ) f( )f( )∝θ | y y |θ θ , et comme les densités a 

priori f( )θ et conditionnelle des observations f( )y |θ  sont conjuguées,  

 f( ) exp( / 2)Q∝ −θ | y , (2.31) 

avec 

 ( ) ( ) ( ) ( )1 1' 'Q − −= − − + − −y Tθ R y Tθ θ Wα Ω θ Wα  

On montre que Q peut se mettre sous la forme alternative suivante: 

 
( ) ( )( )

( )

1 1 1

1 1 1

ˆ ˆ' ' '

ˆ ' ' '

Q − − −

− − −

= + +

− + +

θ -θ T R T Ω θ -θ y R y

θ' T R y Ω Wα α W Ω Wα
, (2.32) 

où θ̂  est solution du système  

 ( )1 1 1 1ˆ' '− − − −+ = +T R T Ω θ T R y Ω Wα . (2.33) 

Seul le premier terme de (2.32) concoure à l’expression du noyau de la densité a 

posteriori qui est donc  

 ( )ˆ~θ | y Cθ, N . (2.34) 

où  

 ( ) 11 1'
−− −= +C T R T Ω  

Posons ( )', ' '=θ β u , ( ),=T X Z , f( ) f( )f( )= β uθ  avec ( )0~ ,β β BN et ( )~ ,u 0 GN . On 

va différencier le statut de β et de u  en postulant une information a priori uniforme sur β  

qu’on peut assimiler à un cas limite de la spécification précédente pour → ∞B ; dans ce cas,  

1
1

−
−

 
→  

 

0 0
Ω

0 G
, 01

1
−

−

    
→ =    

    

0 0 β 0
Ω Wα

0 G 0 0
si bien que: ( )ˆ ˆ ˆ', ' '=θ β u  est solution 

du système des équations du modèle mixte.  

De plus, on a compte tenu de (2.34): 

 ( )ˆ, , ~ βββ | y G R β C, N , (2.35) 

 ( )ˆ, , ~ uuu | y G R u C, N  . (2.36) 

propriétés qui conduisent à une interprétation plus riche des solutions des équations du 

modèle mixte; en particulier l’estimateur GLS β̂  des effets fixes s’interprète dans cette 

formulation comme l’espérance a posteriori de β  sachant G et R  avec une information a 

priori uniforme sur β . Cela permet au passage d’illustrer la différence de présentation des 
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propriétés de l’inférence sur les effets fixes en statistique bayésienne ( )ˆ~ βββ | y β C, N  par 

rapport à la présentation classique ( )ˆ~ βββ β C, N . De la même façon, le BLUP de u  

s’interprète comme l’espérance de la distribution a posteriori de u  sachant G et R  et la 

variance de cette distribution équivaut alors à la variance des erreurs de prédiction sous 

l’hypothèse de normalité:  

 ˆVar( | , , ) Var( )= −u y G R u u  (2.37) 

Le lien apparaît maintenant clairement avec la justification première donnée par 

Henderson de ses équations. En effet, considérons la densité conjointe de ( , , )y u β . Sous 

l’hypothèse d’une distribution uniforme de β , f( , , )y u β  est proportionnelle à f( , | )y u β : 

 f( , , ) f( , | )f( ) f( , | )= ∝y u β y u β β y u β , (2.38) 

qui est la densité qu’Henderson maximisait par rapport à β et u . D’un autre côté par 

application du thèorème de Bayes, on trouve que f( , , )y u β  est proportionnelle à f( , | )β u y

 f( , , ) f( | , )f( , ) f( , | )= ∝y u β y u β u β β u y , (2.39) 

Donc maximiser le logarithme de (2.38) par rapport à β et u  équivaut à chercher le mode de 

f( , | )β u y  en (2.39). Or, sous l’hypothèse de normalité, l’espérance et le mode de la densité a 

posteriori de ( , )β u sont confondus et égaux à la solution GLS β̂  de β  et au BLUP û  de u  

basé sur les observations y .  

 

3. Conclusion 

Au terme de ce chapitre, nous avons défini un cadre conceptuel rigoureux pour aborder 

le problème de la prédiction. Celle-ci se décline suivant différents vocables selon les 

hypothèses faites sur la distribution conjointe de la variable à prédire ( )W et de la variable 

prédictrice ( )Y .  

L’espérance de la distribution conditionnelle joue un rôle clé dans la prédiction avec le 

critère d’erreur quadratique moyenne. Dans ce cadre, la théorie permet des développements 

simples quand on se place sous l’hypothèse de normalité ou dans le cadre de prédicteurs 

linéaires.  

Dans le cas où les moments de premier ordre ne sont pas connus et peuvent se 

formaliser dans le cadre d’un modèle linéaire mixte, on aboutit dans la classe des prédicteurs 

linéaires sans biais à un prédicteur aux propriétés remarquables et qui, à la suite de 

Goldberger et d’Henderson, est dénommé BLUP. Son intérêt est d’autant plus grand qu’on 
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peut l’obtenir simplement à partir d’un système d’équations dites du modèle mixte 

d’Henderson qui est proche de celui des moindres carrés et dont la justification apparaît tout 

naturellement dans un cadre bayésien. 

Cela explique pourquoi le BLUP et les équations du modèle mixte ont une portée qui 

dépasse largement le cadre des applications de la génétique et la sélection animale pour 

lesquelles ces outils ont été conçus au départ par Henderson, puis développés avec grand 

succès par ses élèves. Ils sont aussi au cœur des méthodes d’estimation des composantes de la 

variance et des algorithmes correspondants tel l’algorithme EM. Les équations d’Henderson 

constituent donc un outil incontournable dans la traitement général -qu’il soit classique ou 

bayésien- des modèles mixtes linéaires et même non linéaires.  
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ANNEXE II-A 

INVERSE DE V  

 

Considérons la partition suivante en blocs d’une matrice carrée non singulière et de son 

inverse : 

 
1 11 12

11 12
21 22

21 22

−
  

=   
   

A A A A
A A A A

 (II-A.1) 

où 11A  et 22A sont deux matrices carrées supposées non singulières.  

La démonstration proposée repose sur les deux résultats suivants: 

 ( ) 111 1 1 1 22 1
11 12 22 21 11 11 12 21 11

−− − − −= − = +A A A A A A A A A A A , (II-A.2) 

 12 1 22 11 1
11 12 12 22
− −= − = −A A A A A A A . (II-A.3) 

Idem pour 22A  et 21A . 

Posons maintenant: 

 
1 1

11 12
1 1 1

21 22 ' '

− −

− − −

  
=    +   

A A R R Z
A A Z R Z R Z G

. (II-A.4) 

En appliquant la 1ère partie de (II-A.2) à 22A , il vient: 

 ( ) ( )1 122 1 1 1 1 1
22 21 11 12 ' '

− −− − − − −= − = + − =A A A A A Z R Z G Z R RR Z G  

De même pour 11A , on a: 

 ( )
1111 1 1 1 1 1 1' '

−−− − − − − − = − + =  
A R R Z Z R Z G Z R W  (II-A.5) 

puis la 2ème partie de (II-A.2) donne: 

 11 1 1' '− −= + = + =A R RR ZGZ R R R ZGZ V , QED. (II-A.6) 

L’application de (II-A.3) à la matrice définie en (2-I.4) conduit à: 

 12 1 22 1
11 12
− −= − = − = −A A A A RR ZG ZG  

 ( ) 112 11 1 1 1 1
12 22 '

−− − − −= − = − +A A A A VR Z Z R Z G  

soit à l’égalité:  

 ( ) 11 1 1 1' ' '
−− − − −= +GZ V Z R Z G Z R , (II-A.7) 

établissant l’équivalence entre le BLUP û  et la solution u  des équations d’Henderson.  
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Introduction 

Le maximum de vraisemblance est une méthode générale d’estimation due à Fisher 

(1922,1925) qui possède des propriétés statistiques intéressantes surtout dans les conditions 

asymptotiques (Cox et Hinkley, 1974). Dans le cas de la variance, cette méthode a été utilisée 

par Crump (1947) dans des situations simples (modèle à une voie, dispositifs équilibrés). Mais 

ce sont Hartley et Rao (1967) qui, les premiers, en donnèrent un formalisme général dans le 

cadre du modèle linéaire mixte gaussien (cf la revue historique de Searle, 1989). L’article de 

Hartley et Rao marque la rupture avec les estimateurs quadratiques. Ceux-ci s’inspiraient de 

l’analyse de variance qui fut la technique reine imprégnant fortement tout le secteur de 

l’estimation des composantes de la variance depuis les travaux originaux de Fisher sur le 

coefficient de corrélation intra classe jusqu’aux méthodes d’Henderson (1953) dites I, II et III 

basées sur les idées de Yates (1934).  

Avec Rao (1971ab), le choix des formes quadratiques quitta l’univers de l’ANOVA et des 

moindres carrés pour se rationaliser autour de propriétés d’optimalité. En fait, cette classe 

d’estimateurs quadratiques sans biais et localement de norme minimum (dits MINQUE) 

(LaMotte, 1973) n’apparaît plus aujourd’hui que comme une transition entre la période 

d’Henderson et celle du maximum de vraisemblance puisque le MINQUE aboutit 

naturellement sous sa forme itérée à un estimateur du maximum de vraisemblance.  

On distingue à cet égard deux approches. La première, dite en abrégé ML, utilise le concept 

classique de fonction de vraisemblance de l’ensemble des paramètres (position et dispersion). 

L’autre méthode, dite REML, fut introduite par Anderson et Bancroft (1952) et Thompson 

(1962) dans l’analyse de dispositifs équilibrés puis généralisée à un modèle mixte gaussien 

quelconque par Patterson et Thompson (1971). Cette méthode considère la vraisemblance 

d’une fonction des observations, libre des effets fixes –«contrastes d’erreur» dans la 

terminologie d’Harville (1977)- d’où son appellation de vraisemblance restreinte ou résiduelle 

(acronyme anglais REML). Cette vraisemblance résiduelle possède par ailleurs une 

interprétation bayésienne (Harville, 1974) en terme de vraisemblance marginalisée par 

intégration des effets fixes selon une distribution uniforme.  

Les techniques du maximum de vraisemblance ont suscité beaucoup d’intérêt en 

biostatistiques depuis le début de la décennie 80. La raison principale de l’essor de ces 

méthodes en est la faisabilité numérique grâce au développement simultané des ordinateurs, 

d’algorithmes performants (algorithmes dits EM «Expectation Maximisation» ou AI 
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«Average Information» par exemple) et de logiciels faciles d’accès et d’utilisation (SAS, 

ASREML, Splus). L’objet de cet article est de faire le point sur ces deux techniques 

d’inférence dans une optique à la fois pédagogique et opérationnelle. 

 

1. Méthode dite ML 

11. Fonction de vraisemblance 

Nous nous placerons tout d’abord dans le cadre du modèle linéaire gaussien exprimé 

sous sa forme la plus générale: 

~ ( , )γy Xβ VN  (3.1) 

où X est la matrice ( x )N p des p  variables explicatives relatives aux N  éléments du vecteur 

y  des observations et β , le vecteur ( x1)p des coefficients de ces variables ou effets fixes. 

γV est la matrice ( x )N N de variance-covariance des observations (notée en abrégé V ) 

supposée symétrique, définie-positive, dépendant d’un vecteur ∈Γγ  de paramètres et dont la 

structure caractéristique est, dans le cas des modèles linéaires mixtes, 
0

K
k kk
γ

=
= ∑V V  où les 

kV  sont des matrices réelles connues.  

La densité des observations y s’écrit: 

 ( ) ( ) ( )1/ 2/ 2 11p ( , ) 2 exp '
2

N
Y π −− − = − − −  

y β γ V y Xβ V y Xβ ,  (3.2), 

d’où le logarithme de la vraisemblance ( )L ; ln p ( )Y=β, γ y y β, γ  (dite logvraisemblance) 

considéré ici comme une fonction des paramètres β  et γ  (Edwards, 1972): 

 ( ) ( ) ( ) ( )11 1L ; ln 2 ln '
2 2 2
N π −= − − − − −β,γ y V y Xβ V y Xβ ,  (3.3a) 

ou, sous sa forme « –2L »  

 ( ) ( ) ( ) ( )12 L ; ln 2 ln 'N π −− = + + − −β, γ y V y Xβ V y Xβ . (3.3b) 

12. Maximisation 

 121. Dérivées premières 

Rappelons que la recherche des points ( )', ' 'β γα =  qui maximisent ( )L ;yα (ou 

minimisent ( )2 L ;− yα ) soit 

 
A x

ˆ arg max L( ; )
p∈ = Γ

= y
α

α α�R
 (3.4) 

se fait habituellement en annulant les dérivées premières: 
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 ( )L ;∂
=

∂
y

0
α
α

  (3.5) 

Une telle démarche ne doit pas être abordée sans prudence. Il importe, en effet, de bien 

vérifier 1) que les points ainsi obtenus appartiennent à l’espace paramétrique, et 2) que les 

dérivées secondes en ces points ( )2 L
'

∂
<

∂ ∂
0

α
α α

 forment une matrice définie-négative. Si la 

condition p∈β R ne pose aucune difficulté, par contre l’espace paramétrique Γ  de γ  doit être 

soigneusement précisé en fonction du modèle adopté. La restriction minimale découle de la 

condition 0>V  (définie-positive) mais, dans la plupart des cas, la définition de l’espace 

paramétrique Γ  imposera des restrictions supplémentaires. Par exemple, dans un modèle 

linéaire mixte unidimensionnel à K facteurs aléatoires indépendants plus une résiduelle tel 

que ' 2
0

K
k k kk

σ
=

= ∑V Z Z , on aura { }2 2
0 0;  0,  1,...,k k Kσ σΓ = > ≥ ∀ = .  

La propriété de négativité de la matrice des dérivées secondes aux points annulant les 

dérivées premières conditionnent l’existence d’un maximum mais qui n’est pas 

nécessairement global. Il est peut être difficile -du moins fastidieux- de répertorier tous les 

maxima locaux et d’évaluer la vraisemblance en ces points ainsi qu’en bordure de l’espace 

paramétrique. Cela nécessite alors le recours à des techniques de maximisation sous 

contraintes (cf annexe I). Les choses se simplifient beaucoup lorsque L est une fonction 

concave du paramètre (ou d’un transformé bijectif) puisque alors les conditions de premier 

ordre garantissent l’existence d’un maximum global.  

Les dérivées premières s’écrivent:  

 1( 2L) 2 ' ( )−∂ −
= − −

∂
X V y Xβ

β
, (3.6) 

 
1ln( 2L) ( ) ' ( )

k k kγ γ γ

−∂∂ − ∂
= + − −

∂ ∂ ∂
V Vy Xβ y Xβ .  (3.7) 

Or, d’après des résultats généraux (cf par exemple Searle, 1982, pages 335-337 ; Harville 

(1997, pages 305-308) 

 1ln
tr

k kγ γ
−∂  ∂

=  ∂ ∂ 

V VV  (3.8) 

 
1

1 1

k kγ γ

−
− −∂ ∂

= −
∂ ∂
V VV V . (3.9) 

d’où 
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 1 1 1( 2 L) tr ( ) ' ( )
k k kγ γ γ

− − − ∂ − ∂ ∂
= − − − ∂ ∂ ∂ 

V VV y Xβ V V y Xβ .  (3.10) 

L’annulation des dérivées premières en (3.6) et (3.7) conduit au système suivant: 

 1 1ˆˆ ˆ' '− −X V Xβ X V y= , (3.11a) 

 1 1 1

ˆ ˆ

ˆ ˆˆ ˆtr ( ) ' ( ) 0
k kγ γ

− − −

= =

 ∂ ∂
− − − = ∂ ∂ V V V V

V VV y Xβ V V y Xβ . (3.11b) 

où β̂  et V̂  solutions de ce système (quand elles existent) désignent les estimations du 

maximum de vraisemblance (ML).  

Quelques simplifications sont possibles. Tout d’abord, on élimine β̂  de (11b) en reportant son 

expression ( )1 1ˆ ˆ ˆ' '
−

− −β X V X X V y=  de (3.11a) dans (3.11b) et en remarquant que: 

( )1 1ˆ ˆˆ ˆ ˆ( )− −− = − =V y Xβ V I Q y Py  où P̂  représente la notation abrégée de la valeur de la 

matrice  

 ( )1 1 1 1( ' ) '− − − − −= − = −P V I Q V X X V X X V , (3.12) 

(Searle,1979) évaluée au point ˆ=V V , 1 1( ' ) '− − −=Q X X V X X V  représentant le projecteur des 

moindres carrés généralisés.  

 

122. Cas général 

Le système en (3.11ab) ainsi obtenu n’est pas soluble plus avant et l’on a recours à un 

algorithme du second ordre tel que l’algorithme de Newton-Raphson ou celui des scores de 

Fisher qui implique le calcul respectivement du hessien 2( ; ) L( ; ) / '= ∂ ∂ ∂L α y α y α α  et de la 

matrice d’information ( ) E ( ; )Y  = − αJ α L α y| (cf annexe II), soit , pour cette dernière 

 
1'

( )
/ 2

− 
=  

 

X V X 0
J α

0 F
.  (3.13) 

où 

 ( ) 1 1tr
kl

k lγ γ
− − ∂ ∂

=  ∂ ∂ 

V VF V V . (3.14) 

En ce qui concerne γ , on résout itérativement le système suivant: 

 [ ] [ 1] [ ]( ) ( )n n n+ =J γ ∆ L γ  (3.15) 

où  
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 [ 1] [ 1] [ ]n n n+ += −∆ γ γ  ; ( ) L( ; ) /= ∂ ∂L γ α y γ , 

 
[ ]

[ ] 11 1( ) tr '
2 2

n

n

k kγ γ
−

=

  ∂ ∂ = − +  ∂ ∂    γ γ

V VL γ V y P Py , (3.16) 

 ( )[ ] [ ]1/ 2( )n n=J γ F γ .  (3.17) 

L’estimation γ̂ étant obtenue, on en déduit β̂  par résolution de (3.11a) qui est alors linéaire en 

β . Si V  est connu, l’estimateur des moindres carrés généralisés (dite GLS en anglais) est 

solution du système 1 1' '− −X V Xβ X V y= . On retrouve ici pour le ML de β  une forme 

similaire dans laquelle V est remplacé par son estimation ML, V̂ .  

 

 123. Cas du modèle mixte. 

Alors 
0

K
l ll
γ

=
= ∑V V , / k kγ∂ ∂ =V V  où kV  est une matrice ( x )N N  connue, par exemple: 

'
k k k=V Z Z  (cf 1.29) et l’équation (3.11b) devient  

 ( )1ˆ ˆ ˆtr ' 0k k
− − =V V y PV Py . (3.18) 

Du fait de la linéarité de V , on peut expliciter le terme de gauche de (3.18) en 

 ( ) ( )1 1 1
0

tr trK
k k l ll

γ− − −
=

= ∑V V V V V V .  

Le système en (3.18) s’écrit alors 

 ( )1 1
0

ˆ ˆ ˆ ˆˆtr 'K
k l l kl

γ− −
=

=∑ V V V V y PV Py , ( 0,1,..., )k K=  (3.19a) 

soit encore, sous forme matricielle :  

 ˆ ˆ ˆ=Fγ g ,  (3.19b) 

où F est une matrice ( ) ( )1 x 1K K+ +  symétrique et g  un vecteur ( )1K +  définis par 

 { } ( ){ }1 1trkl k lf − −= =F V V V V , (3.20a) 

 { } { }'k kg= =g y PV Py , (3.20b) 

F̂  et ĝ correspondant à F  et g évalués au point ˆ=γ γ .  

Le système en (3.19ab) est un système non linéaire qui, en général, n’a pas de solution 

analytique; on le résout numériquement par un algorithme itératif ayant la forme d’un système 

linéaire en γ : 

 ( ) ( )[ ] [ 1] [ ]n n n+

=F γ γ g γ , (3.21) 
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où 
[ ]n

γ est la valeur courante du paramètre à l’itération n  à partir de laquelle on évalue la 

matrice des coefficients F  et le second membre g ; puis on résout le sytème ainsi obtenu en 

γ  de façon à obtenir la valeur du paramètre à l’itération suivante.  

On montre aisément que le système (3.21) équivaut à celui des équations des scores de Fisher 

(3.15) au coefficient ½ près.  

Lorsque '
k k k=V Z Z , le calcul des éléments de F  et de g  en (3.20ab) et (3.21) peut être à son 

tour grandement simplifié en tirant avantage du fait que la trace du produit d’une matrice et de 

sa transposée est égale à la somme des carrés des élements de la matrice, ie 2tr( ') ijij
a= ∑AA . 

Ainsi, ( )2' 1
kl k lij ij

f −= ∑ Z V Z  et ( )2'
k ki i

g = ∑ Z Py .  

13. Variantes 

 131. Vraisemblance profilée 

L’idée à la base de la vraisemblance profilée est de maximiser la vraisemblance par 

étapes successives. On va d’abord maximiser ( )L ;β, γ y  par rapport à β , puis la fonction 

ainsi obtenue ( ) ( )ˆL ; L ;P = γγ y β ,γ y  (du seul paramètre γ ) dite vraisemblance profilée (Cox 

et Reid, 1987) ou concentrée (Harville et Callanan, 1990) par rapport à γ . En bref 

( ) ( )

( )
( )

Max L , ; Max Max L , ;

ˆMax L , ;

Max L ;P

 =  

=

=

β,γ γ β

γ γ

γ

β γ y β γ y

β γ y

γ y

, (3.22) 

où ( )1 1ˆ ' '
−− −

γ γ γβ X V X X V y=  est solution GLS de β .  

Compte tenu de (3.7b), il vient immédiatement : 

 ( ) ( ) ( ) ( )1ˆ ˆ2L ; ln 2 ln 'P N π −− = + + − −γ γ γ γγ y V y Xβ V y Xβ  

ou encore, en ignorant l’indiçage par γ  dans V  :  

 ( ) ( )2L ; ln 2 ln 'P N π− = + +γ y V y Py . (3.23) 

Sachant que 
k kγ γ

∂ ∂
= −

∂ ∂
P VP P  (cf annexe II), on en déduit facilement l’expression du gradient 

: 

 
( ) 12 L ;

tr 'P

k k kγ γ γ
−∂ −   ∂ ∂  = − ∂ ∂ ∂ 

γ y V VV y P Py  (3.24) 

qui coïncide bien (au coefficient ½ près) avec (3.11b).  
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Deux remarques méritent d’être faites à ce stade: 1) la vraisemblance profilée permet de 

réduire la dimensionnalité du problème en «concentrant» la fonction de logvraisemblance sur 

le paramètre d’intérêt après avoir éliminé le paramètre parasite; 2) toutefois, la fonction ainsi 

obtenue n’est pas à proprement parler –en dépit de son appellation- une fonction de 

logvraisemblance même si, à l’occasion, elle conserve certaines de ses propriétés (Berger et 

al, 1999).  

 

 132. Formulation de Hartley-Rao 

Hartley et Rao (1967) se placent dans le cadre du modèle linéaire mixte gaussien usuel 

décrit en (1.28) et (1.29).  

Au lieu de paramétrer V  en terme de variances { }2 2
kσ=σ , Hartley et Rao isolent la 

variance résiduelle 2
0σ  et introduisent le vecteur { }2 2

x1 0/K k kη σ σ= =η  des rapports de 

variance. Pour ce faire, ils posent 2
0σ=V H  où '

1

K
N k k kk

η
=

= + ∑H I Z Z  est fonction du seul 

vecteur η . Comme 2
0

Nσ=V H , la logvraisemblance s’écrit : 

 
( ) ( )

( ) ( )

2 2
0 0

1 2
0

2L , , ; ln 2 ln ln

                                          ' /

N Nσ π σ

σ−

− = + +

+ − −

β η y H

y Xβ H y Xβ
.  (3.25) 

On calcule ensuite les dérivées partielles de ( )2
02L , , ;σ− β η y  par rapport aux paramètres soit : 

 1 2
0

( 2L) 2 ' ( ) /σ−∂ −
= − −

∂
X H y Xβ

β
, (3.26a) 

 
1

2 2 4
0 0 0

( 2L) ( ) ' ( )N
σ σ σ

−∂ − − −
= −

∂
y Xβ H y Xβ , (3.26b) 

 1 1 1 2
0

( 2 L) tr ( ) ' ( ) /
k k k

σ
η η η

− − − ∂ − ∂ ∂
= − − − ∂ ∂ ∂ 

H HH y Xβ H H y Xβ .  (3.26c) 

Par annulation de ces dérivées, on obtient immédiatement : 

 1 1ˆˆ ˆ' '− −X H Xβ X H y= , (3.27a) 

 2 1
0

ˆ ˆˆˆ ( ) ' ( ) / Nσ −= − −y Xβ H y Xβ , (3.27b) 

 ( )1 1 1 2
0

ˆ ˆˆ ˆ ˆ ˆtr ( ) ' ( ) / 0k k σ− − −− − − =H H y Xβ H H H y Xβ , (3.27c) 

où '/k k k kη= ∂ ∂ =H H Z Z .  

On retrouve en (3.27a) le même résultat que celui obtenu avec l’estimateur GLS dont 

l’expression ne dépend pas explicitement de la variance résiduelle. La formulation de Hartley-
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Rao permet l’obtention directe d’un estimateur ML de cette variance dont Henderson (1973) a 

donné un algorithme de calcul très simple faisant intervenir les éléments des équations du 

modèle mixte. Comme précédemment (cf (26a)), on peut remplacer (34c) par une équation 

plus accessible. Sachant que, 
1

K
N l ll

η
=

= + ∑H I H , on a: 

( ) ( ) ( )1 1 1 2
1

tr tr trK
k k l l kl

η− − − −
=

= +∑H H H H H H H H , d’où le système linéaire itératif 

suivant :  

 
( )

( )
[ ]

[ ]

1 1 [ 1]
1

1 1 2 2
0

tr

ˆ ˆ ˆ  ( ) ' ( ) / tr

n

n

K n
k l ll

k k

η

σ

− − +
=

− − −

=

 − − − 

∑ η=η

η=η

H H H H

y Xβ H H H y Xβ H H
 (3.28) 

pour 1, 2,...,k K= .  

La même remarque qu’en (3.21) s’applique ici quant à la simplification des calculs des 

éléments des traces intervenant en (3.28).  

14. Aspects calculatoires 

 141. Algorithme d’Henderson 

Henderson (1973) se place également dans le cadre du modèle linéaire mixte précédent 

et considère la dérivée de 2 LP−  par rapport à 2
kσ  (cf (3.18)) qui s’écrit :  

 ( ) ( )2 1 ' '2L / tr 'P k k k k kσ −∂ − ∂ = −V Z Z y PZ Z Py .   

Or, le meilleur prédicteur linéaire sans biais (acronyme BLUP en anglais) ˆ ku  de ku  s’écrit par 

définition: ( ) ( )1 ˆˆ Cov , 'k k
−= −u u y V y Xβ , soit 2 'ˆ k k kσ=u Z Py  d’où une façon d’exprimer la 

forme quadratique '' k ky PZ Z Py  sous la forme équivalente: ' 4ˆ ˆ /k k kσu u .  

De même, Henderson montre que: ( ) ( ) 2
01 '

2 4

tr
tr kkk

k k
k k

q σ
σ σ

− = −
C

V Z Z  où, en posant 

( )1 2, ,..., ,...,k K=Z Z Z Z Z , ( ) 12 1
0'kk

kk
σ

−− = +  
C Z Z G est le bloc relatif au facteur k de taille 

( x )k kq q dans l’inverse de la partie relative aux effets aléatoires (ici 2

1
k

K

k q
k

σ
=

= ⊕G I ) de la 

matrice des coefficients des équations dites du modèle mixte. L’annulation de la dérivée 

conduit à : 

 ( )2 ' 2
0

ˆˆ ˆ ˆ ˆtrk k k k kkq σ σ= +u u C  (3.29) 
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Pour la variance résiduelle 2
0σ , le raisonnement s’appuie sur la vraisemblance profilée 

( ) ( ) ( )2
0

ˆ ˆ2L ; 2L , , ;p σ − = −  η y β η η η y  relative à la formulation d’Hartley-Rao, soit 

 ( ) ( ) ( )2
0ˆ2 L ; ln 2 1 ln lnp N Nπ σ− = + + +η y H η .  

où  

 ( ) ( ) ( )2 1
0

ˆ ˆˆ ' / Nσ −   = − −   η y β η H y β η  

avec ( )β̂ η  solution de ( )1 1ˆ' '− −X H Xβ η X H y= .  

Sachant que le BLUP ê  de = − −e y Xβ Zu  s’écrit ˆ =e RPy , (ici 2
0Nσ=R I ), on en déduit une 

forme équivalente à cette dernière expression:  

 ( ) ( ) ( )2
0

ˆˆ ˆ' ' ' ' ' / Nσ  = − − η y y β η X y u η Z y  (3.30) 

Henderson propose alors d’utiliser les expressions (3.29) et (3.30) comme bases d’un 

algorithme itératif de calcul des estimateurs ML de 2
kσ , soit : 

 ( ) ( ) ( ){ }2[ 1] ' [ ] [ ] [ ] 2[ ]
0ˆ ˆ tr /t t t t t

k k k kk kqσ σ+  = +  u η u η C η , (3.31a) 

 ( ) ( )2[ 1] [ ] [ ]
0

ˆ ˆ' ' ' ' ' /t t t Nσ +  = − − y y β η X y u η Z y  (3.31b) 

où { }[ ] 2[ ] 2[ ]
0/t t t

kσ σ=η  est le vecteur ( )x1K  des rapports de variance des K  facteurs aléatoires 

à la variance résiduelle à l’itération t . Ainsi, dès 1973, Henderson anticipait un algorithme de 

type EM permettant de calculer simplement les estimateurs ML des composantes de variance.  

Une variante de cet algorithme qui mérite attention a été formulée par Harville (1977). L’idée 

est de récrire (3.29) sous la forme suivante: ( )2 ' 2ˆˆ ˆ ˆ ˆ ˆtr /k k k k kk k kq σ σ η= +u u C  et de factoriser 2ˆkσ  à 

gauche d’où la formule: 

 ( ) ( ) ( ){ }2[ 1] ' [ ] [ ] [ ] [ ]ˆ ˆ / tr /t t t t t
k k k k kk kqσ η+    = −   u η u η C η  (3.31c) 

qui est combinée pour la variance résiduelle avec (3.31b). Outre la simplicité de leur forme, 

ces deux algorithmes garantissent la localisation des valeurs dans l’espace paramétrique. 

Enfin, dans de nombreux exemples, l’algorithme d’Harville s’est avéré nettement plus rapide 

que celui d’Henderson.  

 142. Calcul de 2L p−  

Reprenons l’expression (3.23) de la logvraisemblance profilée (multipliée par moins deux) 

 2 L ln 2 ln 'P N π− = + +V y Py  (3.32) 
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On a montré, d’une part, que 1 ˆ( )−= −Py V y Xβ , et d’autre part, que dans le cadre d’un 

modèle linéaire mixte tel que '= +V ZGZ R , 1ˆ−=Py R e , d’où il découle que : 

 1 1ˆ' ' ' '− −= −y Py y R y θ T R y , (3.33) 

où ( )ˆ ˆ ˆ', ' '=θ β u est solution des équations du modèle mixte d’Henderson.  

Par ailleurs, si l’on utilise les règles du calcul du déterminant de matrices partitionnées (cf 

annexe III ), on montre que : 

 1 1' − −= +V R G Z R Z G . (3.34) 

On en déduit le résultat général suivant, applicable à tout modèle linéaire gaussien de type 

~ ( , ' )+y Xβ ZGZ RN  : 

 
1 1

1 1

2L ln 2 ln ln ln '

ˆ                         ' ' '

P N π − −

− −

− = + + + +

+ −

R G Z R Z G

y R y θ T R y
. (3.35) 

Cette formule permet de simplifier grandement le calcul de la logvraisemblance profilée et 

donc aussi du maximum Lm  de la logvraisemblance 

 ˆ ˆ2 L 2 L ( , )m P ML ML− = − = =G G R R  

grâce au recours aux éléments des équations du modèle mixte d’Henderson. Par ailleurs, cette 

formule va encore se simplifier dans maintes situations par la prise en compte des structures 

particulières de R  et de G .  

 1421. 2
0σ=V H  

C’est la formulation d’Hartley-Rao, mais elle s’applique également à des modèles plus 

complexes qui ne supposent pas nécessairement 2
0Nσ=R I  comme par exemple les modèles à 

structure d’erreurs autorégressives (Foulley, Jaffrézic et Robert-Granié, 2000). Dans ce cas: 

 ( ) ( )1 1 2 2 2
0 0 0

ˆ ˆˆ ˆ ˆ ˆ' ' / /N Nσ σ σ− − = − − = = y R e y Xβ H y Xβ  

et, 

 ( ) 1 12L ln 2 1 ln ln ln 'P N π − −− = + + + + +R G Z R Z G . (3.36) 

En (3.36), ( ) ( )2
0

ˆ ˆL L , ,P σ =  β η η η , ( )[ ]2
0ˆ ,σ=R R η η , de même pour 

( )[ ]2
0ˆ ,σ=G G η η , η  étant le vecteur des paramètres dont dépend H .  

 

 1422. 2
0Nσ=R I  
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Alors 2
0ln lnN σ=R  et ( )1 1 2 1 2

0 0' ' /σ σ− − −+ = +Z R Z G Z Z G , d’où 

 ( ) ( ) 2 2 1
0 0ˆ ˆ2L ln 2 1 ln ln ln 'P N N qπ σ σ −− = + + − + + +G Z Z G , (3.37) 

où q  représente le nombre de colonnes de Z .  

 1423. 
1

K

k
k =

= ⊕G G  et 2
k k kσ=G A  

C’est la situation relative à K  facteurs aléatoires indépendants, chacun ayant une 

matrice de variance-covariance de la forme 2
k kσA  où kA  est une matrice définie-positive 

connue (par ex A  matrice des relations de parenté entre pères ou entre individus, ou à 

l’extrême 
kk q=A I , matrice identité).  

 
( ) ( )

( )

2 2
01 1

1 2 2
01

1

ˆ2 L ln 2 1 ln ln

ˆ            ln ln ' /

K K
P k k kk k

KK
k k kk

k

N N q qπ σ σ

σ σ

= =

−
=

=

− = + + − + +

+ +

∑ ∑

∑ ⊕A Z Z A
.  (3.38) 

Cet inventaire n’a aucune prétention à l’exhaustivité. Il faudrait également envisager les les 

modèles multidimensionnels. Dans tous les cas, la formule générale (3.36) peut être 

appliquée.  

15. Tests d’hypothèses 

 151. Loi asymptotique 

Soit ˆ Nα , l’estimateur ML de ∈ Αα  basé sur les observations Ny  d’un échantillon de 

taille N . Sous des conditions de régularité précisées par ailleurs dans les ouvrages spécialisés 

(espace paramétrique Α  compact; logvraisemblance continue et continûment dérivable à 

l’ordre deux; existence de la matrice d’information et de son inverse), la suite 

( )ˆ NN −α α converge en loi vers une distribution normale centrée, de matrice de variance-

covariance ( ) 1
Lim NN

−
  J α  quand N → ∞  (Sweeting, 1980 ; Mardia et Marshall, 1984) 

soit, en bref: 

 ( ) ( )( )1ˆ 0,Lim  N NN N
−

− →   α α J α
L
N , (3.39) 

où ( ) ( )2E L ; / 'N N = −∂ ∂ ∂ J α α y α α  est la matrice d’information de Fisher relative à α .  

Comme ( ) 1
Lim  NN

−
  J α s’estime de façon convergente par ( ) 1ˆNN

−
  J α , on peut alors 

former le pivot asymptotique suivant (Leonard and Hsu, 1999, page 33-35): 

 ( ) ( )/ 2ˆ ˆ ,T
N N − →J α α 0 I

L
N , (3.40) 
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où / 2ˆ T
NJ est la notation condensée relative à la décomposition de Cholesky suivante 

( ) 1/ 2 / 2ˆ ˆ ˆˆ T
N N N N= =J α J J J .  

La propriété en (3.39) se généralise à une fonction ( )g α continûment dérivable (de pR  dans 

qR ) 

 ( ) ( ) ( ) ( ) ( )1 'ˆ 0, Lim 
'N NN N

−∂ ∂ 
− →       ∂ ∂ 

g α g α
g α g α J α

α αL
N .  (3.41) 

 

 152. Statistique de Wald  

On va considérer le test de l’hypothèse nulle: 0H : ' =k β m  contre son alternative 

contraire: 1H : ' ≠k β m  où 'k  est une matrice ( )xr p  avec r p<  dont les r  lignes sont 

linéairement indépendantes et m  un vecteur ( x1)r  de constantes, souvent nulles mais pas 

nécessairement.  

Nous avons vu précédemment (cf (3.13)) qu’asymptotiquement les lois de β̂  et de γ̂  

(estimateurs ML) étaient indépendantes sachant que : 

 ( )
1'

/ 2N
β

γ

− =
=  = 

J X V X 0
J α

0 J F
.  

Dans ces conditions, on peut appliquer les résultats (3.40) et (3.41) à ˆ'k β , soit, sous 

l’hypothèse nulle,  

 ( ) ( )1ˆ' 0,Lim 'N N β
−− →k β m k J k

L
N , (3.42) 

et, en posant 1ˆ ˆ'β
−=J X V X  

 ( ) ( ) ( )
/ 211 ˆˆ' ' ,

T

rβ

−
−  − →  

k J k k β m 0 I
L
N , (3.43) 

d’où, l’on déduit le Khi-deux asymptotique à r  degrés de liberté:  

 ( ) ( ) ( )
111 2ˆ ˆˆ' ' ' ' ' rχ

−−
− − − →  

k β m k X V X k k β m
L

, (3.44) 

qui est la statistique de Wald relative au test étudié. On obtient donc formellement la même 

chose que dans le cas où V  est connu, à la nuance près qu’il s’agit ici d’une distribution 

asymptotique. C’est pourquoi, l’on voit souvent cette propriété présentée sous la forme 

classique suivante : 
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 ( )1ˆ ˆ' '  ' '
−− ≈   

k β k β k X V X k,N  (3.45) 

A proprement parler, la distribution asymptotique de ˆ'k β  est dégénérée et cette notation est 

donc un abus de langage qu’il faut interpréter avec prudence comme un raccourci 

opérationnel, en gardant à l’esprit le cheminement rigoureux qui y conduit.  

De nombreux logiciels proposent une option de Fisher-Snedecor pour ce test des effets fixes 

par analogie avec le cas où V  est connu à 2
0σ  près. En effet si 2

0σ=V H  et H  est connu, en 

désignant par W  la statistique ( ) ( ) ( )
1

1ˆ ˆ' ' ' ' '
−−− − −  

k β m k X V X k k β m , on sait que, sous 0H , 

( ) [ ]2
0ˆ / ~F , - r( )W r r Nσ   X . Ici, on forme ˆ /W r  où Ŵ  est la statistique (51) qu’on compare à 

un ( ),F r d  avec un nombre de degrés de liberté d  qui est calculé selon une méthode 

approchée (Satterthwaite par exemple). Mais ce procédé n’a pas de justification théorique. 

 

 153. Statistique du rapport de vraisemblance 

Une alternative au test de Wald réside dans celui du rapport de vraisemblance de 

Neyman-Pearson qu’on peut formuler ainsi (Mood et al, 1974, page 419 ; Cox et Hinkley, 

1974, page 322, formule 50):  

{ } { }0 0H : xp∈ Β ⊂ ∈ Γβ γR  contre ( ){ } { }1 0H : \ x∈ Β Β ∈Γβ γ . Par exemple, dans le 

cas précédent, Β  correspond à pR  et 0Β  est un sous-espace réel de dimension p r−  

correspondant à pR contraint par les r  relations ' =k β m .  

Si l’on considère le maximum de la logvraisemblance L( , ; ) log p( ; , )=β γ y y β γ  selon les deux 

modalités 0H  et 0 1H H∪ , et que l’on note respectivement: 

 
0 ,Max L( , ; )R ∈Β ∈Γ= β γL β γ y  

 ,Max L( , ; )C ∈Β ∈Γ= β γL β γ y ,  

on sait que la statistique 2 2R Cλ = − +L L suit asymptotiquement, sous 0H , une loi de Khi-

deux dont le nombre de degrés de liberté est la différence de dimensions de Β  et de 0Β , (Cox 

and Hinkley, 1974, page 322) soit 

 
00

2
dim( ) dim( )H

2 2R Cλ χ Β − Β= − + →L L
L

 (3.46) 
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 154. Statistique du score 

Si l’on se place dans les mêmes conditions que précédemment, le test du score proposé 

par Rao (1973) s’appuie sur la statistique suivante : 

 'U β β β
−= S J S , (3.47) 

où βS  est la valeur de la fonction score ( ) ( ), ; L , ; /β β= = ∂ ∂S S β γ y β γ y β  évaluée au point 

des estimations ML, =β β  et =γ γ  obtenues sous le modèle réduit  et βJ , la valeur de la 

matrice d’information de Fisher ( )2E L , ; / 'β  = − ∂ ∂ ∂ J β γ y β β  relative à β , évaluée au 

même point soit ( ),β β=J J β γ .  

L’idée de ce test est très simple : si l’on évaluait la fonction ( ) ',U β β β
−=β γ S J S  au point 

des estimations ML ˆ=β β  et ˆ=γ γ  obtenues sous le modèle complet, alors ( )ˆ ˆ, 0U =β γ  

puisque par définition, ( )ˆ ˆ, ;β =S β γ y 0 . Evaluée en =β β  et =γ γ , cette forme quadratique 

s’interprète comme une distance à sa valeur de référence nulle. Si elle est proche de zéro, on 

aura tendance à accepter 0H  ; au contraire, plus sa valeur sera grande, plus on sera enclin à ne 

pas accepter cette hypothèse. Comme précédemment, sous l’hypothèse nulle, la statistique 

( ),U β γ  tend asymptotiquement vers une loi de Khi-deux dont le nombre de degrés de liberté 

est la différence entre le nombre de paramètres du modèle complet et celui du modèle réduit 

 ( ) 0
0

2
dim( ) dim( )H

,U χ Β − Β→β γ
L

. (3.48) 

Un cas particulièrement intéressant est celui du test d’absence d’effets 0 2H : =β 0  

résultant de la comparaison du modèle réduit : 1 1= +y X β e  et du modèle complet 

1 1 2 2= + = + +y Xβ e X β X β e  où, sous les deux modèles, ( ),∼e 0 VN . Par ailleurs, 1X  et 2X  

sont supposés de plein rang pour simplifier. Dans ce cas, la fonction du score s’écrit 

( )1'β
−= −S X V y Xβ  et sa valeur sous 0H  se réduit à 1

2 1 1
' ( )β −

 
=  − 

0
S

X V y X β
 où ( )=V V γ  

puisque, par définition, le score sous le modèle réduit est tel que 1
1 1 1
' ( )− − =X V y X β 0 . Il en 

résulte que  

 ( ) 11 1 1
1 1 2 2 1 1

22

'( ) ' ' ( )U
−− − − = − −  

y X β V X X V X X V y X β .  (3.49) 

Si l’on pose ( )1
1 1N

−= −P V I Q  avec ( ) 11 1
1 1 1 1 1

' '−− −=Q X X V X X V , (3.49) peut s’écrire aussi 
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 ( ) ( )
1

1 2 2 1 2 2 1 2 2 1
' ' 'ˆ' 'U

−
 = =  y P X X P X X P y β γ X P y , (3.50) 

où ( )2β̂ γ  est solution du système ( ) ( )2 1 2 2 2 1
' 'ˆ =X P X β γ X P y  ou celle en 2β  du système général 

( ) ( )1 1ˆ' '− −=X V X β γ X V y .  

Il est intéressant de comparer cette statistique à celle de Wald appliquée au même test 

d’hypothèses. Par application de (3.44), il vient : 

 ( ) ( ) ( )2 2 1 2 2
'ˆ ˆˆˆ ˆ'W  =  β γ X P X β γ , (3.51) 

où ( )2
ˆ ˆβ γ  est solution du système ( ) ( )2 1 2 2 2 1

' 'ˆˆ ˆˆ =X P X β γ X P y  et ( )ˆ ˆ=V V γ  avec γ̂  estimation 

ML sous le modèle complet. Il en résulte que  

 ( )2 2 1
'ˆ ˆˆ 'W  =  β γ X P y . (3.52) 

A l’examen de (3.50) et de (3.51), il s’avère que les statistiques de Wald et du score ont donc 

la même forme, la différence entre elles étant que la première est basée sur une estimation ML 

de V  soit ( )ˆ ˆ=V V γ  obtenue sous le modèle complet alors que la seconde utilise l’estimation 

( )=V V γ  sous le modèle réduit. Ces statistiques U  et W  peuvent se calculer aisément grâce 

à une formule développée par Harvey (1970, formule 3, p487).  

 

 155. Discussion 

Les trois tests sont équivalents asymptotiquement (Rao, 1973 ; Gourieroux et Monfort, 

1989). Le débat reste ouvert quant à leurs mérites respectifs à distance finie, avec toutefois 

une préférence de certains spécialistes pour le test de Neyman-Pearson notamment si l’on 

replace la comparaison de modèles dans un cadre plus général tel que celui adopté par les 

Bayésiens. S’agissant de conditions asymptotiques, il importe également de s’assurer que la 

structure particulière des modèles étudiés autorise bien une application raisonnable de celles-

ci. Le nombre d’observations ou d’unités expérimentales (individus par ex) est-il suffisant? 

D’une part, que se passe-t-il quand le nombre d’observations augmente? Est-ce que la 

dimension p  de β  augmente corrélativement ou non? Si oui, comment varie /N p ?  

Le test du rapport de vraisemblance nécessite de contraster deux modèles: le modèle 

complet (C) et le modèle réduit (R) correspondant à 0H  alors que la statistique de Wald ne 

requiert que la mise en œuvre du modèle complet. La statistique de Wald offre toutefois le 

désavantage de ne pas être invariante par transformation non linéaire des paramètres. Enfin, 
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avec les formules de calcul du maximum de la logvraisemblance présentées précédemment, la 

différence en terme de difficulté et temps de calcul entre les deux n’est pas si grande. 

Il est important de souligner que les deux modèles contrastés vis-à-vis des effets fixes β  

comportent la même structure de variance-covariance ( )V γ . De la même façon, toute 

comparaison de structures de ( )V γ  se fera à structure d’espérance identique. Cette contrainte 

technique inhérente à la procédure de test n’est pas sans poser des interrogations sur la 

méthode de choix de ces deux structures dans les modèles linéaires mixtes. Pour contourner 

cette circularité, on pourra être amené à développer des tests robustes d’une des structures qui 

soient peu sensibles à l’autre.  

Ainsi, dans le cas de données répétées { }i ijy=y  sur une même unité expérimentale i , le 

test robuste des effets fixes de Liang et Zeger (1986) permet de s’affranchir, dans une certaine 

mesure, de l’incertitude qui existe sur la structure de variance covariance des observations. Il 

se fonde sur l’estimateur « sandwich » de la variance d’échantillonnage de l’estimateur 

( )' '
1 1

ˆ= I I
i i i i i ii i

−

= =∑ ∑β X W X X W y  des moindres carrés pondérés, soit  

 ( ) ( )( )' ' '
1 1 1

ˆVar( ' ) ' I I I
i i i i i i i i i i ii i i

− −

= = =
= ∑ ∑ ∑k β k X W X X W V W X X W X k   

où iW  est une matrice de travail et la variance var( )i i=V y  est remplacée par une estimation 

convergente ( )( )ˆ ˆˆ 'i i i i i= − −V y X β y X β .  

Enfin, pour des raisons de concision, la discussion des tests relatifs aux structures de 

dispersion est reportée à la suite de l’exposé de la méthode REML ce qui n’exclut pas qu’on 

puisse les envisager dans le cadre d’une estimation ML de tels paramètres. 
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2. Méthode dite REML 

21. Exemple simple 

211. Estimateur 

Pourquoi REML plutôt que ML? Nous allons aborder cette question à travers un 

exemple simple: celui de l’estimation de la variance à partir d’un échantillon de N  

observations 2
iid~ ( , )iy µ σN  supposées indépendantes et de même loi normale d’espérance µ  

et de variance. 2σ . Du fait de l’indépendance des iy , la logvraisemblance se met sous la 

forme suivante : 

 ( ) ( ) ( )22 2 2
1

2 L , ; ln 2 ln /N
ii

N yµ σ π σ µ σ
=

− = + + −∑y . (3.53) 

On peut décomposer ( )2

1

N
ii

y µ
=

−∑  en la somme  

 ( ) ( )2 22
1

N
ii

y N s yµ µ
=

 − = + − ∑ , (3.54) 

où ( )1
/N

ii
y y N

=
= ∑  est la moyenne des observations, et ( )22

1
/N

ii
s y y N

=
= −∑ , la variance 

de l’échantillon, d’où 

 ( ) ( )22
2 2

22L , ; ln 2 ln
s y

N
µ

µ σ π σ
σ

 + −
− = + + 

  
y , (3.55) 

et les dérivées partielles par rapport à µ  et 2σ : 

 ( ) ( ) 22 L/ / 2 /N yµ µ σ∂ − ∂ = − − , (3.56a) 

 ( ) ( )22
2

2 4

12L/ /
s y

N
µ

σ
σ σ

+ −
∂ − ∂ = − . (3.56b) 

Par annulation de ces dérivées, on obtient: 

 ˆ yµ =  , (3.57) 

Et, pour 2N ≥ ,  

 ( )22 2 2ˆ ˆML s y sσ µ= + − = . (3.58) 

Or 

 ( ) ( )2 2ˆE 1 /ML N Nσ σ= −  (3.59) 

indiquant que l’estimateur 2s  du maximum de vraisemblance de 2σ  est biaisé par défaut, la 

valeur du biais étant de 2 / Nσ− . C’est la constatation de ce biais qui est à l’origine du 

développement du concept de vraisemblance restreinte (ou résiduelle).  
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212. Correction du biais 

L’estimation de µ  interférant avec celle de 2σ , on va faire en sorte d’éliminer µ . Pour 

ce faire deux approches sont envisageables qui préfigurent les méthodes générales exposées 

par la suite.  

 2121. Factorisation de la vraisemblance 

Le principe est le suivant : on factorise la vraisemblance en deux parties et on ne retient 

pour l’estimation de la variance que celle qui ne dépend pas de µ . A cet égard, on considère 

la transformation biunivoque suivante : 

 ( ) { } ( ) ( )'
1x1 x1* , 'i NN Ny y−= ↔ =y y z  (3.60) 

où { }1 ; 1,2,..., 1N i iz y y i N− = = − = −z , le vecteur des 1N −  écarts élémentaires à la moyenne.  

S’agissant d’une transformation biunivoque, on peut donc relier les densités de y  et de *y  

par l’expression: 

 ( ) ( )2 2
*p , p * ,Y Y Jµ σ µ σ=y y  (3.61) 

où J  est la valeur absolue du jacobien 
*'

detJ
 ∂

=  ∂ 

y
y

 de la transformation.  

Or, y  et 1N −z  sont indépendantes et la loi de 1N −z  ne dépend pas de µ  d'où la factorisation de 

la densité de *y  en: 

  ( ) ( ) ( )2 2 2
* 1p * , p p ,Y Z N Y yµ σ σ µ σ−=y z , (3.62) 

Par ailleurs, eu égard à la définition de la transformation (3.60), la valeur du jacobien J  ne 

dépend pas des paramètres; on en déduit donc la décomposition suivante de la 

logvraisemblance ( )2 2L( , ; ) ln p ,Yµ σ µ σ=y y : 

 2 2 2
1 1 2L( , ; ) L ( ; ) L ( , ; )N y csteµ σ σ µ σ−= + +y z , (3.63) 

où ( )2 2
1 1 1L ( ; ) ln pN Z Nσ σ− −=z z , ( )2 2

2L ( , ; ) ln p ,Yy yµ σ µ σ= , la constante étant égale à 

ln J .  

L’idée sous-jacente à REML consiste à n’utiliser que 2
1 1L ( ; )Nσ −z  pour faire inférence sur 

2σ , d’où le nom de (log)vraisemblance résiduelle ou restreinte (la restriction portant sur 

l’espace d’échantillonnage) donné par Thompson (1989) à cette fonction ou de 

(log)vraisemblance de «contrastes d’erreur» selon la terminologie d’Harville.  
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Par spécification directe de la loi de 1 Z~ (0, )N −z VN  avec 2
Z 1 1( / )N N Nσ − −= −V I J , (par 

définition '
N N N=J 1 1 ) ou indirectement, compte tenu de (3.63), on montre que : 

 ( )( ) ( )22 2 2
1 1 1

2 L ( ; ) 1 ln 2 ln ln /N
N ii

N N y yσ π σ σ− =
 − = − + − + − ∑z .(3.64)  

Il s’en suit que : 

 ( ) ( )1 2 2 4
2

2L
1 /N Nsσ σ

σ
∂ −

 = − − ∂
, 

et, par annulation : 

 ( )2 2ˆ / 1 ; 2Ns N Nσ = − ≥  (3.65) 

qui est l’estimateur usuel, sans biais, de 2σ . 

 2122. Remplacement de µ  par son espérance conditionnelle 

Le point de départ du raisonnement réside dans la remarque suivante: si µ  était connu, 

l’estimateur ML de 2σ  serait, comme indiqué en (3.58): ( )22 2ˆ s yσ µ= + − dont la valeur est 

toujours supérieure ou égale à l’estimateur 2 2ˆ sσ = ; µ  est généralement inconnu, mais on 

peut prédire sa contribution au terme ( )2y µ−  en remplaçant ce dernier par son espérance 

conditionnelle sachant les observations ( )2 2E ,y µ σ −
 

y  à l’instar de ce qui est fait avec 

l’algorithme EM (Foulley, 1993).  

L’écriture du pivot normal réduit 
2

~ (0,1)
/

y
N

µ
σ

−
N  peut s’interpréter à la fois, en 

statistique classique, comme 2 2, ~ ( , / )y Nµ σ µ σN  ou, en statistique fiduciaire (au sens de 

Fisher), comme 2 2, ~ ( , / )y y Nµ σ σN . Si l’on admet cette dernière interprétation, on a 

 ( ) ( )2 2 2 2E , Var , /y y Nµ σ µ σ σ − = =
 

y , 

et l’équation à résoudre devient: 2 2 2ˆ ˆ /s Nσ σ= +  qui a pour solution la même expression que 

celle obtenue en (3.67) par maximisation de la logvraisemblance résiduelle. Cette approche 

illustre bien le fait que le biais de l’estimateur de 2σ  tire son origine de la mauvaise prise en 

compte par ML de l’incertitude liée à la fluctuation de µ  autour de son estimation y .  
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22. Cas général 

221. Concept de vraisemblance marginale 

Ce concept a été formalisé en statistique classique par Kalbfleisch et Sprott (1970). En 

résumé, le problème revient à chercher une transformation biunivoque de y  en ( )', ' 'u v  telle 

que les deux conditions suivantes portant sur l’expression de la densité conjointe 

f( , , ) f( , )g( , , )=u v β γ v β γ u v β γ  soient réalisées: 

 a) f( , ) f( )=v β γ v γ  

 b) g( , , )u v β γ  «contains no available information concerning γ  in the absence of 

knowledge of β »  

La densité en a) permet ainsi de définir la vraisemblance «marginale» de γ . On dit 

corrélativement que v  est une statistique «ancillaire» de β , considéré ici comme paramètre 

parasite, alors que γ  est le paramètre d’intérêt. 

Il faut bien admettre que la formulation de la condition b) reste quelque peu obscure 

surtout en l’absence de critère rigoureux de vérification. Mc Cullagh et Nelder (1989) 

reconnaîtront eux-mêmes la difficulté de justifier clairement l’inutilité de cette information5 

en l’appliquant au cas du modèle mixte gaussien. Dans la discussion de cet article, un des 

rapporteurs (Barnard) mit en avant le caractère indissociable des informations imputables à β  

et γ  dans g( , , )u v β γ  («This information is inextricably mixed up with the nuisance 

parameters»). Toujours est-il que c’est bien ce concept de vraisemblance marginale qui est à 

l’origine de la théorie classique de REML comme en atteste bien l’acronyme MMLE 

(Marginal Maximum Likelihood Estimator) proposé par Rao pour désigner cet estimateur 

(Rao, 1979).  

222. Application au modèle linéaire mixte gaussien 

Dans le cadre du modèle ~ ( , )y X VβN , Patterson et Thompson (1971) proposèrent le 

choix suivant pour la transformation ( )', ' '↔y u v : =u Hy  et ( )N= = −v Sy I H y , où 

( ' ) '−=H X X X X  est le projecteur classique des moindres carrés «simples» qui est appelé 

aussi «hat matrix»6 dans la littérature anglo-saxonne. Par définition, la variable v  est 

                                                 
5 “In this example, there appears to be no loss of information on γ by using R(" ")v in place of Y , though it is 
difficult to give a totally satisfactory justification of this claim” 
6 Car ˆ=Hy y  
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ancillaire de β  puisque SX = 0  et va donc servir à définir la vraisemblance «marginale» de 

γ . 

Deux remarques méritent l’attention à ce stade: 

 1) En fait, peu importe le choix du projecteur pourvu que celui-ci ne dépende pas des 

paramètres. On aurait pu prendre aussi bien ( )N= = −v Sy I H y  où ( ' ) '−=H X X WX X W , 

( W  étant une matrice symétrique connue définie-positive) puisque alors =v Sv .  

 2) v  comporte N  éléments dont certains sont linéairement dépendants. Pour 

éliminer cette information redondante, Harville (1977) proposa de ne considérer dans la 

vraisemblance marginale qu’un sous-vecteur noté 'K y  formé de r( )N − X  éléments 

linéairement indépendants appelés «contrastes d’erreur». Pour ce faire, il suffit comme l’ont 

montré Searle et al (1992, p251) de prendre 'K  sous la forme WS  où W  est une matrice 

[ ]r( ) xN N− X  de plein rang suivant les lignes. Un choix possible consiste (Searle, 1979) à 

bâtir K  avec les r( )N − X  premiers vecteurs propres du projecteur N= −S I H ; soit A  de 

dimension [ ]x r( )N N − X cette matrice, elle satisfait alors r( )' N −= XA A I  et ' =AA S  et on 

vérifie aisément que 'A  peut se mettre sous la forme WS  indiquée ci-dessus.  

Sur cette base, on peut exprimer la logvraisemblance résiduelle comme la 

logvraisemblance de γ  basée sur 'K y , soit : 

 ( ) [ ] ( ) 12L ; ' r( ) ln 2 ln ' ' ' 'N π −− = − + +γ K y X K VK y K K VK K y . (3.66) 

Cette expression va grandement se simplifier du fait des relations suivantes (Searle, 1979, 

p2.14 à 2.17; Quaas, 1992 ; Rao et Kleffe, 1988, p247) : 

 11' ' ' '−−=K VK V X V X X X K K , (3.67a) 

 ( ) 1' '− =K K VK K P  (3.67b) 

où X  est une matrice d’incidence correspondant à une paramétrisation de plein rang, ( X  

correspond à toute matrice formée par r( )X  colonnes de X  linéairement indépendantes si 

bien que r( ) p=X ) et ( )1
N

−= −P V I Q�  avec ( )1 1' '
−− −=Q X X V X X V . 

En insérant (3.67ab) dans (3.66), et en isolant la constante C , on obtient l’expression suivante 

de la logvraisemblance : 

 ( ) 12 L ; ' ln ln ' 'C −− = + + +γ K y V X V X y Py  (3.68a) 

avec  
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 [ ]r( ) ln 2 ln ' ln 'C N π= − − +X X X K K . (3.68b) 

Dans certains ouvrages et articles, on trouve d’autres valeurs de constantes, telles que : 

 [ ]' r( ) ln 2 ln 'C N π= − −X X X , (3.69a) 

 [ ]" r( ) ln 2C N π= − X .  (3.69b) 

La première (3.69a) (Welham et Thompson, 1997) est liée au choix particulier de =K A  

proposé par Searle (1979) et tel que r( )' N −= XA A I . La valeur "C  résulte de l’interprétation 

bayésienne de la vraisemblance marginale et sera développée dans le paragraphe suivant.  

Si l’on dérive maintenant (3.68a) par rapport à kγ , il vient : 

 
( ) 1ln '2L ; ' ln

'
k k k kγ γ γ γ

−∂∂ −  ∂ ∂  = + +
∂ ∂ ∂ ∂

X V Xγ K y V Py y  (3.70) 

Par manipulation algébrique, on montre que : 

 
1ln 'ln

tr
k k kγ γ γ

−∂∂  ∂
+ =  ∂ ∂ ∂ 

X V XV VP .  (3.71) 

De même, à partir de ( )1
N

−= −P V I Q� , il vient (cf démonstration en annexe II) 

 
k kγ γ

∂ ∂
= −

∂ ∂
P VP P ,  

d’où 

 
( )2L ; '

tr '
k k kγ γ γ

∂ −   ∂ ∂  = − ∂ ∂ ∂ 

γ K y V VP y P Py  (3.72) 

Si V  a une structure linéaire, soit 
0

K
l ll
γ

=
= ∑V V  avec / k kγ∂ ∂ =V V , et sachant que 

=PVP P� , alors ( ) ( )0
tr trK

k k l ll
γ

=
= ∑PV PV PV  et le système des équations REML s’écrit: 

 ( )0
ˆ ˆ ˆ ˆˆtr 'K

k l l kl
γ

=
=∑ PV PV y PV Py . (3.73) 

En posant 

 { } ( ){ }trkl k lf= =F PV PV  (3.74a) 

 { } { }'k kg= =g y PV Py . (3.74b) 

Le système en (3.73) peut être résolu numériquement par un algorithme itératif ayant la forme 

d’un système linéaire en γ : 

 ( ) ( )[ ] [ 1] [ ]n n n+

=F γ γ g γ , (3.75) 
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La remarque faite à propos de ML s’applique également ici quant au calcul des éléments de 

F  qui se simplifie en tirant avantage de la forme que prend la trace du produit d’une matrice 

et de sa transposée. Ainsi, { }2'
kl k lij ij

f = ∑ Z PZ .  

Au vu de ces équations, tout se passe de ML à REML comme si la matrice P  était 

substituée à 1−V  dans la matrice des coefficients du système (82), ces deux matrices 

partageant la propriété d’avoir V  comme inverse (respectivement généralisée et classique). 

Mais, cette substitution a son importance sur les propriétés de ML et de REML. Ainsi, 

l’espérance du score 
( ) ( )

L ; ' 1 ' tr
2 k k

kγ
∂    = −  ∂

γ K y
y PV Py PV  des équations REML est par 

définition nulle, alors que celle du score relatif à la vraisemblance profilée 

( ) ( )1L ; 1 ' tr
2

P
k k

kγ
−∂     = − ∂

γ y
y PV Py V V  ne peut l’être. Cette différence de propriété est 

mise en avant par Cressie et Lahiri (1993) pour expliquer le meilleur comportement de REML 

par rapport à ML en terme de non biais.  

Enfin, le système (3.75) appliqué une seule fois est formellement identique à celui des 

équations du MINQUE (Rao, 1971ab, LaMotte, 1970, 1973). Il montre en outre que 

l’estimateur REML peut s’interpréter aussi comme un estimateur dit MINQUE itéré pour 

lequel les estimations premières servent de poids a priori pour des estimations ultérieures et 

ainsi de suite (Searle, 1979, p6.7 ; Rao et Kleffe, 1988, p236).  

Dans le cas général, on procédera comme pour ML, en utilisant le hessien de la 

logvraisemblance ou la matrice d’information de Fisher dans un algorithme de Newton-

Raphson ou des scores de Fisher. Ces matrices ont pour expression (cf annexe II) : 

 

2 2

2

L 1 1tr tr
2 2

1               ' 2
2

k l k l k l

k l k l

γ γ γ γ γ γ

γ γ γ γ

   ∂ ∂ ∂ ∂
− = −   ∂ ∂ ∂ ∂ ∂ ∂   

 ∂ ∂ ∂
− − ∂ ∂ ∂ ∂ 

V V VP P P

V V Vy P P Py
, (3.76) 

 
2 L 1E tr

2k l k lγ γ γ γ
   ∂ ∂ ∂

− =   ∂ ∂ ∂ ∂   

V VP P .  (3.77) 

Comme pour ML, on montre aisément que le système des équations des scores de Fisher 

équivaut dans le cas linéaire au système (3.75) au coefficient ½ près.  
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La complémentarité des formules (3.76) et (3.77) a incité Gilmour et al (1995) à proposer 

pour les modèles linéaires mixtes, un algorithme de second d’ordre dit AI-REML basé sur la 

moyenne de ces deux matrices d’information soit  

 1 '
2kl

k l

AI
γ γ

∂ ∂
=

∂ ∂
V Vy P P Py .  (3.78) 

Cet algorithme est d’ailleurs appliqué dans le logiciel ASREML qui a été développé par les 

mêmes auteurs.  

223. Interprétation bayésienne 

C’est à Harville (1974) que l’on doit l’interprétation bayésienne de REML. Celle-ci 

repose sur le concept de vraisemblance marginale, cette fois au sens bayésien du terme 

(Dawid, 1980), comme outil d’élimination des paramètres parasites par intégration de ceux-ci. 

Dans le cas qui nous concerne, la vraisemblance marginale de γ  se définit par: 

 p( ) p( , )d= ∫y γ y β γ β , (3.79) 

où dβ  est le symbole représentant 1 2d d ...d pβ β β .  

L’intégrale en (86) peut se décomposer aussi en 

 p( ) p( , ) ( )dπ= ∫y γ y β γ β γ β , (3.80) 

où p( , )y β γ  est la densité usuelle des observables sachant les paramètres et ( )π β γ  est la 

densité a priori de p∈β R sachant γ .  

L’équivalence avec la vraisemblance résiduelle s’obtient en considérant une distribution 

uniforme pour cette dernière densité comme prouvé ci-dessous.  

Dans le cadre du modèle ~ ( , )y X VβN , la densité p( , )y β γ  s’écrit:  

 ( ) ( ) ( )1/ 2/ 2 1p( , ) 2 exp ' / 2Nπ −− − = − − − y β θ V y Xβ V y Xβ . 

Or, ( ) ( )1' −− −y Xβ V y Xβ  peut se décomposer en (Gianola, Foulley et Fernando, 1986):  

( ) ( ) ( ) ( ) ( ) ( )1 1 1ˆ ˆ ˆ ˆ' ' ' '− − −− − = − − + − −y Xβ V y Xβ y Xβ V y Xβ β β X V X β β , (3.81) 

où β̂  correspond à l’estimateur GLS de β .  

Le premier terme de cette décomposition ne dépend pas de β  et l’intégration de cette partie 

par rapport à β  est donc une constante qui se factorise, d’où 

 
( ) ( ) ( )

( ) ( )

1/ 2/ 2 1

1

ˆ ˆp( ) 2 exp ' / 2

ˆ ˆ              exp ' ' / 2 d

Nπ −− −

−

 = − − − 
 − − − ∫

y γ V y Xβ V y Xβ

β β X V X β β β
 (3.82) 
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L’expression sous le signe «somme» est le noyau de ,β y γ  qui est distribuée selon 

( ) 11ˆ , '
−− 

  
β X V XN  ce qui implique que: 

 ( ) ( ) ( )1/ 2/ 2 1 1ˆ ˆ2 ' exp ' ' / 2 d 1pπ − − − − − − = ∫X V X β β X V X β β β . 

L’intégrale en (3.82) est donc égale à ( ) 1/ 2/ 2 12 'pπ
−−X V X d’où l’expression de la densité 

marginale:  

 
( ) ( )

( ) ( )

1/ 21/ 2/ 2 1

1

p( ) 2 '

ˆ ˆ                         exp ' / 2

N pπ
−−− − −

−

=

 − − − 

y γ V X V X

y Xβ V y Xβ
,  (3.83) 

dont moins deux fois le logarithme est bien identique à (3.68a) avec une constante égale à 

( ) ln2  N p π− .  

On en déduit donc que le REML de γ , s’il existe, est le mode de la densité marginale de y  

(ou maximum de vraisemblance marginale de γ ). On montrerait de la même façon que c’est 

aussi le mode de la densité marginale a posteriori ( )π γ y  de γ  sous l’hypothèse additionnelle 

d’une densité uniforme de γ .  

En résumé:  

 ˆ argmax ln p( )REML ∈Γ= γγ y γ , (3.84a) 

 ˆ argmax ln ( )REML π∈Γ= γγ γ y . (3.84b) 

 

23. Aspects calculatoires 

 231. Algorithme «type-Henderson» et d’Harville 

Sans entrer dans le détail des démonstrations, on montre que les algorithmes 

d’Henderson et d’Harville (38abc) relatifs au calcul des estimations ML des composantes de 

variance présentent des pendants REML de forme similaire soit: 

 ( ) ( ) ( ){ }2[ 1] ' [ ] [ ] [ ] 2[ ]
0ˆ ˆ tr /t t t t t

k k k kk kqσ σ+  = +  u η u η C η , (3.85a) 

 ( ) ( ) [ ]2[ 1] [ ] [ ]
0

ˆ ˆ' ' ' ' ' / r( )t t t Nσ +  = − − − y y β η X y u η Z y X  (3.85b) 

et, pour l’algorithme d’Harville:  

 ( ) ( ) ( ){ }2[ 1] ' [ ] [ ] [ ] [ ]ˆ ˆ / tr /t t t t t
k k k k kk kqσ η+    = −   u η u η C η , (3.85c) 
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où { }[ ] 2[ ] 2[ ]
0/t t t

kσ σ=η  est, comme précédemment, le vecteur des rapports de variance des K 

facteurs aléatoires à la variance résiduelle à l’itération n, ( )[ ]ˆ t
ku η  est le BLUP de ku  

conditionnellement à ces valeurs courantes des ratios de variance et kkC  est le bloc 

correspondant au facteur k dans l’inverse 
1

2 1
0

' '
' ' σ

−

−

 
=  + 

X X X Z
C

Z X Z Z G
 de la matrice des 

coefficients des équations du modèle mixte d’Henderson (Henderson, 1973, 1984) (après 

factorisation de 2
01/σ ). Hormis cette différence portant sur la définition de kkC , les formules 

(3.85ac) restent inchangées. Il en est de même pour la variance résiduelle à la nuance 

importante près que, pour REML, [ ]r( )N − X se substitue à N  au dénominateur de (3.85b).  

 232. Calcul de –2RL 

Reprenons l’expression (3.68ab) de la logvraisemblance résiduelle soit, en reprenant la 

notation de Welham et Thompson: 

 [ ] 12RL r( ) ln 2 ln ln ' 'N X π −− = − + + +V X V X y Py  (3.86) 

On a déjà montré (cf (3.33)) que :  

 1 1ˆ' ' ' '− −= −y Py y R y θ T R y , 

où ( )ˆ ˆ ˆ', ' '=θ β u  est la solution des équations dites du modèle mixte ( )1 1ˆ' '− − −+ =T R T Σ θ T R y  

avec ( , )=T X Z  et 1

0 0
0

−
−

 
=  

 
Σ

G
.  

Par ailleurs, les règles de calcul du déterminant d’une matrice partitionnée permettent 

d’établir que : 

 1 1 1 1' ' '− − − − −+ = +T R T Σ Z R Z G X V X . (3.87) 

On a aussi montré (41) que: 

 1 1' − −= +V R G Z R Z G . 

d’où 

 1 1' '− − −= +V X V X R G T R T Σ . (3.88) 

On en déduit le résultat général suivant, applicable à tout modèle linéaire gaussien de type 

~ ( , ' )+y X ZGZ RβN : 
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[ ] 1

1 1

2RL r( ) ln 2 ln ln ln '

ˆ                         ' ' '

N X π − −

− −

− = − + + + +

+ −

R G T R T Σ

y R y θ T R y
. (3.89) 

Comme pour la logvraisemblance profilée, cette formule permet de simplifier 

grandement le calcul de la logvraisemblance résiduelle notamment de son maximum grâce au 

recours aux équations du modèle mixte d’Henderson. Il suffit, pour calculer cet extremum, de 

remplacer dans (3.89), R  et G  par leurs estimations REML soit :  

 ˆ ˆ2RL 2RL( , )m REML REML− = − = =G G R R .  

Cette formule peut aussi se simplifier dans maintes situations par la prise en compte des 

structures particulières de R  et de G . Le seul terme susceptible de poser quelques difficultés 

de calcul est 1ln ' − −+T R T Σ . Celles-ci se résorbent en partie en ayant recours à une 

transformation de Cholesky 1' ' − −= +EE T R T Σ  de la matrice des coefficients, si bien que 
( )1
1

ln ' 2 lnrg
jjj

e− −
=

+ = ∑ ET R T Σ  où les jje  sont les termes diagonaux de E .  

24. Vraisemblance résiduelle et tests 

 241. Approximation de Kenward et Roger 

Dans le cas où V  dépend de paramètres inconnus γ , la précision de β̂  est obtenue 

comme l’inverse de la matrice d’information de Fisher évaluée à la valeur estimée γ̂ . Cette 

approche ignore l’incidence du bruit généré par les fluctuations d’échantillonnage de γ̂  si 

bien que la valeur de la précision qui en découle est surestimée (erreur-standard sous-

estimée). En conséquence, les propriétés du test de Wald sont aussi affectées pour les petits 

échantillons. Comme les variances d’échantillonnage sont sous-estimées, les statistiques du 

test sont surévaluées et on a donc tendance à rejeter trop souvent l’hypothèse nulle (niveau 

effectif supérieur au niveau nominal ou P-value trop petite).  

Kenward et Roger (1997) ont proposé récemment des ajustements de l’estimation de la 

précision et de la construction des tests relatifs aux effets fixes visant à améliorer leurs 

propriétés pour des petits échantillons. Pour ce faire, ils se placent délibérément dans le cadre 

d’un estimateur de β  de type GLS où γ  est remplacé par son estimation ˆ REMLγ . 

Soit ( ) ( ){ }1ˆ ˆ'
−−

=   Φ γ X V γ X , l'estimateur GLS de β  basé sur REML s’écrit: 

 ( ) ( ) ( ) 1ˆ ˆ ˆ ˆ'
−

=   β γ Φ γ X V γ y . (3.90) 

et sa variance d’échantillonnage : 
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 ( ) ( ) ( ) ( ) ( ) ( ){ }ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆvar var E '       = + − −       β γ β γ β γ β γ β γ β γ  (3.91) 

Cette formule montre clairement que l’estimateur usuel ( ) ( ) 1ˆ ˆ'
−

=   Φ γ X V γ X pose 

problème puisqu’à la fois ( )ˆΦ γ  diffère du premier terme ( ) ( )ˆvar   = β γ γΦ (la différence 

( ) ( )ˆ −Φ γ Φ γ  étant une matrice négative-définie) et que le second terme est ignoré.  

Partant de l’expression ajustée, notée en bref ( ) ( ) ( )A = +Φ γ Φ γ Λ γ , Kenward et Roger 

construisent un estimateur ˆ
AΦ  de ( )AΦ γ  à partir de l’estimateur usuel ( )ˆΦ γ  et d’un 

estimateur Λ̂  de la correction Λ . Comme ( ) ( )ˆ ≠  E Φ γ Φ γ , il faut faire également un 

ajustement pour le biais ( ) ( )ˆ= −  B E Φ γ Φ γ . Pour ce faire, Kenward et Roger procèdent 

comme Kackar et Harville (1984) en formant un développement limité de ( )ˆ ˆ=Φ Φ γ  au 

second ordre au voisinage de la valeur vraie du paramètre soit  

( ) ( ) ( ) ( ) ( )( ) ( )2

1 1 1

1ˆ ˆ ˆ ˆ
2

K K K
k k k k l lk k l

k k l

γ γ γ γ γ γ
γ γ γ= = =

∂ ∂
≈ + − + − −

∂ ∂ ∂∑ ∑ ∑
Φ γ Φ γ

Φ γ Φ γ  

conduisant à ( )2

1 1

1
2

K K
klk l

k l

W
γ γ= =

∂
≈

∂ ∂∑ ∑
Φ γ

B   

où klW  est l’élément kl  de ˆVar( )=W γ et, 

  ( )2

( )k l l k kl lk kl
k lγ γ

∂
= + − − +

∂ ∂
Φ γ

Φ P ΦP PΦP Q Q R Φ  (3.92) 

avec 
1

'k
kγ

−∂
=

∂
VP X X , 

1 1

'kl
k kγ γ

− −∂ ∂
=

∂ ∂
V VQ X V X  et ( )2

1 1'kl
k lγ γ

− −∂
=

∂ ∂
V γ

R X V V X . 

On peut procéder d’une façon similaire vis-à-vis de Λ  en faisant un développement limité au 

premier ordre de ( )ˆ ˆβ γ  autour de ˆ =γ γ , soit ( ) ( ) ( ) ( )1
ˆ ˆ ˆˆ ˆ /K

k k kk
γ γ γ

=
≈ + − ∂ ∂∑β γ β γ β γ .  

Comme ( ) ( ) ( )
1

1
ˆ

ˆ' '
k kγ γ

−−−∂ ∂
= −

∂ ∂
β γ VX V X X y Xβ  et ( )1ˆvar( ) ' '

−−− = −y Xβ V X X V X X , on en 

déduit, à l’instar de Kackar et Harville (1984), que: 

 ( )1 1

K K
kl kl k lk l

W
= =

 ≈ − ∑ ∑Λ Φ Q P ΦP Φ  (3.93) 

Avec une structure linéaire de V  telle que 
1

K
k kk
γ

=
= ∑V V , les termes klR  sont nuls et il vient 

= −B Λ  ce qui implique ( )ˆ ˆˆ= −Φ Φ γ B  ; comme ˆˆ ˆ
A = +Φ Φ Λ , on aboutit en définitive à : 
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 ( ) ˆˆ ˆ 2A = +Φ Φ γ Λ . (3.94) 

Rappelons que W  peut être approché par l’inverse ( )1−J γ de la matrice d’information de 

Fisher soit avec REML: ( ) ( ) ( ){ }1/ 2 1/ 2 tr k l= =J γ F γ PV PV . Mais on peut également utiliser 

la matrice d’information observée (3.76) ou d’information moyenne (3.78). Des 

approximations similaires ont été développées par Monod (2000) dans le cadre de dispositifs 

«bloc-traitement» équilibrés de petite taille. 

 Soit à tester l’hypothèse 0H : ' =k β 0  de rang r  contre son alternative contraire 1H , 

Kenward et Roger proposent de bâtir une statistique de test de la forme  

 *F Fλ=   (3.95) 

où  

 - F  est la statistique classique basée sur un pivot de Wald ( ˆ /F W r=  avec 

( ) 1ˆ ˆˆ ˆ' ' 'AW
−

= β k k Φ k k β ) et qui prend en compte l’ajustement de la variance 

d’échantillonnage; 

 - λ  un facteur d’échelle ( 0 1λ< ≤ ) de la forme ( )/ 1m m rλ = + − où m  joue le rôle 

d’un nombre de degrés de liberté du dénominateur d’un F  de Fisher-Snedecor. 

Kenward et Roger déterminent m  tel que *F  soit distribué approximativement sous 

l’hypothèse nulle comme un ( )F ,r m ; ils s’imposent de surcroît que ce soit une distribution 

exacte ( )F ,r m  dans le cas où Ŵ  est un 2T  d’Hotelling ou dans d’autres situations d’anova 

en dispositif équilibré.  

Une situation typique relevant d’une statistique de Hotelling découle du test de 

l’hypothèse 0H : ' =k µ 0  sous le modèle multidimensionnel iid~ ( , )i mY µ ΣN ; 1, 2,...,i N= , 

(Rao, 1973, p564-565). La statistique de Hotelling s’écrit alors: 

 ( ) ( ) ( )
0

12 min ' /HT N −= − −Y µ S Y µ , (3.96) 

où ( )1
/N

ii
Y N

=
= ∑Y  et ( ) ( )( )1

1
1 'N

i ii
N −

=
= − − −∑S Y Y Y Y  sont les estimateurs usuels de µ  

et de Σ . Alors * 2 /F T rλ=  avec ( ) ( )/ 1N r Nλ = − −  et l’on peut montrer qu’ici 

( )
12 ˆ ˆˆ ˆ' 'V 'T W

−
 = =  µ k k µ k k  où ˆ =µ Y  et ( )ˆ ˆV / N=µ S   

Kenward et Roger donnent les valeurs suivantes de m  et de λ  à utiliser: 
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 24
1

rm
rρ

+
= +

−
 et 

( )* 2
m

E m
λ =

−
 (3.97) 

où * *2/ 2V Eρ =  (3.98a) 

avec ( ) 1*
21 /E A r −= − ; 

( ) ( )
* 1

2
2 3

2 1
1 1

c BV
r c B c B

+
=

− −
 (3.98b) 

 
( ) ( ) ( )
( ) ( )

1 2

3

/ 3 2 1 ; / 3 2 1

2 / 3 2 1

c g r g c r g r g

c r g r g

= + − = − + −      
= + − + −  

 (3.98c) 

pour ( ) ( ) ( )1 2 21 4 / 2g r A r A r A= + − + +       .  (3.98d) 

 ( )1 26 / 2B A A r= +  (3.98e) 

 ( ) ( )1 1 1
tr trK K

kl k lk l
A W

= =
= ∑ ∑ ΘΦP Φ ΘΦPΦ  (3.98f) 

 ( )2 1 1
trK K

kl k lk l
A W

= =
= ∑ ∑ ΘΦP ΦΘΦPΦ  (3.98g) 

sachant que 

 ( ) 1' '−=Θ k k Φk k . (3.98h) 

Dans le cas d’un seul contraste à tester ( 1r = ), λ  vaut 1 et l’approximation de Kenward 

et Roger se ramène au carré d’un T de Student dont le nombre de degrés de liberté se calcule 

comme une variante de la méthode de Satterthwaite. Quoiqu’il en soit, l’approximation 

proposée conduit à une meilleure adéquation entre le niveau nominal et le niveau effectif que 

celle observée avec les tests de Wald et de type F non ajusté qui, appliqués à de petits 

échantillons, rejettent trop souvent l’hypothèse nulle (tests trop libéraux). Il est à remarquer 

que cette méthode est maintenant disponible dans la procédure Proc-mixed de SAS (version 

8). 

 

 142. Approche de Welham et Thompson 

Dans le cas de ML, le test des effets fixes dit du rapport de vraisemblance est basé sur la 

variation de 2 Lm−  entre un modèle réduit et un modèle complet correspondant 

respectivement à l’hypothèse nulle 0H  et à la réunion 0 1H H∪  de celle-ci et de son 

alternative. Malheureusement, la transposition immédiate de cette technique à la 

logvraisemblance résiduelle 2R Lm−  n’a guère de sens puisque cela revient à contraster deux 

types d’ajustement des mêmes effets aléatoires mais qui utilisent des informations différentes: 
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0S y  pour le modèle réduit 0 0E ( )R =y X β  et Sy  pour le modèle complet 

0 0 1 1E ( )C = = +y Xβ X β X β  où ' 1
0 0 0 0 0( )N

−= −S I X X X X  et 1( ' )N
−= −S I X X X X .  

Pour rendre le procédé cohérent, Welham et Thompson (1997) proposent de contraster 

les deux modèles sur la base d’une même projection en l’occurrence 0S y  (ou '
0K y  en écriture 

de plein rang) soit: 

( ) ( ) ( ) ( ) ( )1' ' ' ' ' ' '
0 0 0 0 0 0 0 0 0 0 0 0 0 02 L , ; ln 2 ln ' VarN p π

−
 − = − + + − − β γ K y K VK K y K X β K y K y K X β

et  

( ) ( ) ( ) ( ) ( )1' ' ' ' ' ' '
0 0 0 0 0 0 0 0 02 L , ; ln 2 ln ' VarN p π

−
 − = − + + − − β γ K y K VK K y K Xβ K y K y K Xβ  

où ( )0 0rp = X . 

Comme '
0 0 =K X 0 , la première expression est celle classique d’une vraisemblance résiduelle 

(cf 3.68ab) qu’on peut écrire sous la forme: 

 ( ) ( ) ( )' ' 1 1
0 0 0 0 0 0 0 0

ˆ ˆ2L ; ( ) ln ln 'C − −− = + + + − −γ K y X V X V X y X β V y X β , (3.99) 

où 0( )C X  est une constante fonction de la matrice 0X  telle que définie en (75b) et 0β̂  

l’estimateur GLS de 0β .  

En ce qui concerne la seconde expression, on remarque que ' '
0 0 1 1=K Xβ K X β  et 

( ) 1' '
0 0 0 0 0

−
=K K VK K P  où ( )1

0 0
−=P V I - Q , d’où 

 ( ) ( ) ( )' ' 1
0 0 0 0 1 1 0 1 12L , ; ( ) ln ln 'C −− = + + + − −β γ K y X V X V X y X β P y X β . (3.100) 

Par ailleurs, ( ) ( )' '
, 0 0max L , ; max L , ; =  β γ γβ γ K y β γ γ K y  où ( ) '

0L , ;  β γ γ K y  est la 

vraisemblance profilée ( )'
0L ;P γ K y de γ  basée sur '

0K y  et définie par: 

 ( ) ( ) ( )
1

' ' 1
0 0 0 0 1 1 0 1 12L , ; ( ) ln ln min 'C − − = + + + − −  ββ γ γ K y X V X V X y X β P y X β  

Or, on peut montrer par manipulation matricielle que: 

( ) ( ) ( ) ( ) ( ) ( )
1

1 1

1 1 0 1 1min ' min ' '− −− − = − − = − −β βy X β P y X β y Xβ V y Xβ y Xβ V y Xβ , (3.101) 

où β  est une solution du système GLS : ( )1 1' '− −=X V Xβ γ X V y . En définitive: 

 ( ) ( ) ( )' ' 1 1
0 0 0 02L , ; ( ) ln ln 'C − − − = + + + − − β γ γ K y X V X V X y Xβ V y Xβ . (3.102) 

Welham et Thompson proposent la statistique A  du logarithme du rapport de 

vraisemblance qui, mesure comme dans le cas classique, la variation de moins deux fois la 
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logvraisemblance maximum quand on passe du modèle réduit au modèle complet à partir, non 

plus de l’information sur y , mais de celle sur 0S y , soit: 

 ( ) ( )' '
0 02max L ; 2max L , ;A  = − +  γ γγ K y β γ γ K y . (3.103a) 

ou, encore 

 ( ) ( )' '
0 0ˆ2L ; 2L , ;A  = − +  γ K y β γ γ K y , (3.103b) 

où ( ) '
0arg max L , ; =  γγ β γ γ K y .  

Si, à l’instar de Welham et Thompson, on introduit la notation suivante : 

 ( ) ( )' 1 12RL , , , ( ) ( ) ln ln 'j i i i i j jC − − − = + + + − − y X β γ S X X X V X V y X β V y X β  (3.104) 

qui est celle d’une vraisemblance obtenue en ajustant le modèle E( ) j=y X β , corrigée 

forfaitairement en fonction de l’information procurée par le projecteur ( )iS X , la statistique A  

s’écrit comme  

 ( ) ( )0 0 0 0
ˆ ˆ ˆ2RL , , , ( ) 2RL , , , ( )A    = − +   y X β γ γ S X y Xβ γ γ S X . (3.105) 

A la lumière de cette expression, on peut considérer la formule homologue obtenue en 

ajustant le modèle complet Xβ  à partir du projecteur correspondant ( )S X soit 

[ ] ( ) ( )1 12RL , , , ( ) ( ) ln ' ln 'C − −− = + + + − −y Xβ γ S X X X V X V y Xβ V y Xβ  

puis, en passant au modèle réduit sur la base de l’expression (3.104) correspondante: 

[ ] ( ) ( )1 1
0 0 0 0 0 02RL , , , ( ) ( ) ln ' ln 'C − −− = + + + − −y X β γ S X X X V X V y X β V y X β  

conduisant à la statistique  

 ( ) ( )0 0
ˆ ˆ ˆ2RL , , , ( ) 2RL , , , ( )D    = − +    

y X β γ γ S X y Xβ γ γ S X , (3.106) 

où ( )ˆˆ arg max RL , , , ( ) =  γγ y Xβ γ γ S X  avec ( )β̂ γ  solution du système 

( )1 1ˆ' '− −=X V Xβ γ X V y  et, de façon similaire, ( )0 0arg max RL , , , ( ) =   γγ y X β γ γ S X  avec 

( )' 1 ' 1
0 0 0 0

− −=X V X β γ X V y .  

Il est important de noter que, dans le cas de la statistique D , ( )0 0RL , , , ( ) 
  
y X β γ γ S X  n’a 

plus d’interprétation en terme de maximum d’une fonction classique de logvraisemblance 

obtenue en ajustant le modèle 0X β  aux observations 'K y  utilisant le projecteur ( )S X . 

Contrairement à ce qui advenait avec A , cette statistique n’est donc pas le logarithme d’un 
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rapport de vraisemblances maximisées, mais seulement celui d’un rapport de vraisemblances 

profilées ajustées. Toutefois, au vu de résultats de simulation effectués sur des petits 

échantillons, Welham et Thompson concluent à de meilleures performances du test basé sur 

D  par rapport à celles utilisant A  et la statistique de Wald, et cela en terme d’approximation 

de ces statistiques à une loi Khi deux sous l’hypothèse nulle.  

 243. Tests des effets aléatoires 

Le test de l’existence de certains effets aléatoires doit retenir l’attention car il pose des 

problèmes particuliers dans la théorie des tests de rapport de vraisemblance du fait que les 

paramètres spécifiés dans l’hypothèse nulle se trouvent à la frontière de l’espace paramétrique 

général. Cette question a été abordée d’un point de vue théorique par Self et Liang (1987) et 

son application au modèle linéaire mixte d’analyse de données longitudinales par Stram et 

Lee (1994, 1995). Un condensé des principaux résultats théoriques figure en annexe I.  

Nous nous plaçons dans le cadre du modèle linéaire mixte gaussien 

( )2 2~ , ' u N eσ σ+y Xβ ZZ IN  et considérons le test: 2
0H : 0uσ =  vs 2

1H : 0uσ > . La statistique 

du test du rapport de vraisemblance s’écrit alors: 2 2R CL Lλ = − +  où 

2
2 2

0
Max RL( 0, ; )

e
R u eL

σ
σ σ

>
= = y  et 2 2

2 2
0, 0

Max RL( , ; )
u e

C u eL
σ σ

σ σ
≥ >

= y  si l’on utilise la fonction 

de vraisemblance résiduelle RL . L’utilisation de celle-ci se justifie parfaitement eu égard à la 

propriété de normalité asymptotique de l’estimateur REML qui a été formellement établie par 

Cressie et Lahiri (1993). Une statistique homologue basée sur la vraisemblance classique 
2 2L( ; , ; )u eσ σβ y  est également envisageable même si celle-ci s’avère en pratique moins 

efficace (Morell, 1998).  

L’utilisation usuelle de ce test se réfère alors à une distribution asymptotique de λ  sous 

0H  qui est une loi de Khi-deux à 1 degré de liberté. Cette assertion est inexacte et cela pour la 

simple raison de bon sens suivante. En effet, il est fort possible que sous le modèle complet 

(C: 2 20, 0u eσ σ≥ > ), l’estimateur REML de 2
uσ  soit nul ( 2ˆ 0uσ = ) si bien que C RL L=  et 

0λ = . Sous 0H , un tel événement survient asymptotiquement une fois sur deux du fait de la 

propriété de normalité asymptotique de l’estimateur non contraint de 2
uσ  autour de sa valeur 

centrale nulle. La distribution asymptotique correcte à laquelle il faut se référer sous 0H  est 

donc celle d’un mélange en proportions égales, d’une loi de Dirac en zéro ( 0D  notée aussi 

quelquefois 2
0χ ) et d’une loi de Khi-deux à un degré de liberté ( 2

1χ ) soit en abrégé: 
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 2
0 11/ 2D 1/ 2λ χ→ +

L
. (3.107) 

En conséquence, le test «naïf» est trop conservateur et le seuil s  du test correct au niveau α  

correspond à:  

 2
1Pr( ) 2s αχ ≥ =  (3.108) 

puisque, sous 0H , la décision de rejet est prise lorsque la statistique est positive (une fois sur 

deux) et que celle-ci, alors de loi de Khi-deux à un degré de liberté, dépasse le seuil s . En 

définitive, la procédure correcte revient à effectuer un test unilatéral au lieu d’un test bilatéral 

en utilisant le rapport de vraisemblance.  

Ce résultat se généralise au test 11
0

0
H :

0 0
σ 

=  
 

Σ  vs 11 12
1

12 22

H :
σ σ
σ σ

 
=  

 
Σ , cette 

dernière hypothèse correspondant au modèle 1 1 2 2= + + +y X Z u Z u eβ  où 

( )' '
1 2var , ' q= ⊗u u IΣ . Ce modèle se rencontre dans l’analyse de données longitudinales (Laird 

et Ware, 1982 ; Diggle et al, 1994).  

Si l’on contraint Σ  sous 1H  à être définie semi-positive, alors, (Stram et Lee , 1994) 

 2 2
1 21/ 2 1/ 2λ χ χ→ +

L
 (3.109). 

De la même façon, on généralise ensuite au cas du test 11( x )
0

0
H :

0 0
q q 

=  
 

Σ
Σ  vs 

11 12
1 ( 1)x( 1)

21 22

H : q q σ+ +

 
=  

 

Σ Σ
Σ

Σ
définie semi-positive pour lequel  

 2 2
11/ 2 1/ 2q qλ χ χ +→ +

L
.  (3.110) 

Discussion-Conclusion 

La théorie de la vraisemblance qui, à la suite de Fisher, est devenue le paradigme central 

de la statistique inférentielle paramétrique trouve dans le modèle linéaire une de ses 

applications les plus démonstratives. Il est apparu également que les techniques ML et REML 

avaient des liens profonds avec la théorie du BLUP et les équations du modèle mixte 

d’Henderson (Henderson et al, 1959 ; Henderson, 1973, 1984 ; Goffinet, 1983), relations qui 

s’explicitent clairement grâce à la théorie EM (Dempster et al, 1977, McLachlan and 

Krishnan, 1997). Ce relais permet de développer des algorithmes de calcul performants 

applicables à des échantillons de grande taille et des dispositifs déséquilibrés et relativement 

complexes.  
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Développée au départ pour estimer les poids à affecter à l’information intra et inter blocs 

dans l’analyse en blocs incomplets déséquilibrés, la méthode REML s’est avérée rapidement 

comme un passage obligé et une référence dans l’inférence des composantes de la variance en 

modèle linéaire mixte au point qu’elle a supplanté en pratique les estimateurs quadratiques 

d’Henderson (1953) et du MINQUE (Rao et Kleffe, 1988 ; LaMotte, 1970, 1973). Cette place 

privilégiée de REML a été d’autant mieux affirmée et acceptée que les interprétations qu’on 

pouvait en faire (vraisemblance de contrastes d’erreur, inférence conditionnelle, 

vraisemblance marginalisée par rapport aux effets fixes, MINQUE itéré) se révélaient 

diverses et complémentaires enrichissant ainsi la compréhension de la méthode. A la lumière 

des travaux récents de Kenward et Roger (1997) ainsi que de Welham et Thompson (1997), 

on peut gager que la place qu’occupe REML va dépasser le cadre strict de l’estimation des 

composantes de la variance pour intervenir également dans l’inférence des effets fixes.  

L’offre logicielle est relativement abondante (SAS Proc-Mixed, ASREML, Splus) et 

permet de traiter un grand éventail de structures de variances covariances avec accès aussi 

bien à ML qu’à REML. Ces logiciels généralistes s’appuient sur des algorithmes de second 

ordre (Newton Raphson, Fisher ou information moyenne) de convergence rapide. Toutefois, 

comme le notait récemment Thompson (2002) lui-même lors d’une comparaison de ces 

différents algorithmes, les techniques EM se montrent en constant progrès ; elles s’avèrent 

aussi plus fiables et quasi incontournables dans certaines situations ou avec certains modèles 

(van Dyk, 2000 ; Delmas et al, 2002).  

La disponibilité des logiciels explique pour une grande part le succès grandissant du 

modèle mixte et des méthodes du maximum de vraisemblance auprès des utilisateurs et l’on 

ne saurait que s’en féliciter. Celui-ci d’ailleurs ne pourra aller que grandissant eu égard à 

l’ampleur du domaine d’application du modèle mixte; ses extensions au modèle linéaire 

généralisé (Mc Cullagh et Nelder, 1989) et au modèle non linéaire (Davidian et Giltinian, 

1995) le prouvent à l’évidence. On a pu aussi montrer que maintes techniques particulières 

pouvaient faire l’objet d’une interprétation en terme de modèle mixte; on peut citer par 

exemple le krigeage, le filtre de Kalman (Robinson, 1991) l’ajustement par splines (Verbyla 

et al, 1999) et l’hétérogénéité de variance (Foulley et Quaas, 1995 ; San Cristobal, Robert-

Granié et Foulley, 2002) ; cette vision unificatrice ne peut qu’enrichir l’ensemble et stimuler 

l’esprit de tous.  
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ANNEXE II 
 
Matrices d’information 

1. Estimation ML 
Le point de départ est l’expression de la logvraisemblance sous la forme 
 ( ) ( ) ( )1( ) ln 2 ln 'l N π −= + + − −β, γ V y Xβ V y Xβ  (II.1) 

où ( )( ) 2 L ; 2 ln p ( )Yl = − = −β, γ β, γ y y β, γ . 
Nous avons vu que les dérivées premières s’écrivent : 

 ( ) 1,
2 ' ( )

l −∂
= − −

∂
β γ

X V y Xβ
β

, (II.2) 

 1 1 1( ) tr ( ) ' ( )
k k k

l
γ γ γ

− − − ∂ ∂ ∂
= − − − ∂ ∂ ∂ 

β, γ V VV y Xβ V V y Xβ  . (II.3) 

On en déduit l’expression des dérivées partielles secondes 

 ( )2
1,

2 '
'

l −∂
=

∂ ∂
β γ

X V X
β β

, (II.4) 

 ( )2
1 1,

2 ' ( )
k k

l
γ γ

− −∂ ∂
= −

∂ ∂ ∂
β γ VX V V y Xβ

β
, (II.5) 

 

2 2
1 1 1

2
1 1 1

( ) tr tr

( ) ' 2 ( )

k l k l k l

k l k l

l
γ γ γ γ γ γ

γ γ γ γ

− − −

− − −

   ∂ ∂ ∂ ∂
= −   ∂ ∂ ∂ ∂ ∂ ∂   

 ∂ ∂ ∂
− − − − ∂ ∂ ∂ ∂ 

β,γ V V VV V V

V V Vy Xβ V V V y Xβ
 (II.6) 

En divisant par deux, ces formules fournissent les termes qui permettent de calculer la matrice 

d’information dite observée ( )2

ˆ

L ;ˆ( ; )
' =

∂
= −

∂ ∂ α α

α y
I α y

α α
 où ( )', ' '=α β γ  qui interviennent par 

exemple, dans l’algorithme de Newton-Raphson.  
En prenant l’espérance de ( ; )I α y , on obtient les termes de la matrice d’information de Fisher 

( ) [ ]E ( ; )=J α I α y soit : 

 1'ββ
−=J X V X , (II.7) 

 βγ =J 0 , (II.8) 

 ( ) 1 11 tr
2kl

k l
γγ γ γ

− − ∂ ∂
=  ∂ ∂ 

V VJ V V . (II.9) 

Deux remarques importantes méritent d’être formulées à ce stade. Premièrement, les 
estimations ML de β  et de γ  sont asymptotiquement non corrélées. Deuxièmement, les 
formules (7-8-9) s’appliquent aussi bien aux modèles linéaires qu’aux modèles non linéaires 
en V  ce qui n’est pas le cas pour ( ; )I α y .  
 
2. Estimation REML 
La logvraisemblance résiduelle s’écrit 
 ( ) [ ] 1r( ) ln 2 ln ln ' 'r N π −= − + + +γ X V X V X y Py  [II.10] 
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où ( )( ) 2 L ; 'r = −γ γ K y . 
En différenciant par rapport à kγ , on obtient : 

 ( ) 1ln 'ln
'

k k k k

r
γ γ γ γ

−∂∂∂ ∂
= + +

∂ ∂ ∂ ∂

X V XVγ Py y  [II.11] 

Or,  

 1ln

k k

tr
γ γ

−∂  ∂
=  ∂ ∂ 

V VV  

( ) ( )
1

1 1 1 1 1 1
ln '

tr ' ' tr ' '
k k kγ γ γ

−
− −− − − − − −

∂    ∂ ∂
= − = −   ∂ ∂ ∂   

X V X V VX V X X V V X V X X V X X V , 

ce qui permet de faire apparaître et de factoriser la matrice P , soit 

 
1ln 'ln

tr
k k kγ γ γ

−∂∂  ∂
+ =  ∂ ∂ ∂ 

X V XV VP  [II.12] 

Il reste à expliciter 
kγ

∂
∂

P . Par définition, ( )= −VP I Q avec ( )1 1' '
−− −=Q X X V X X V . Par 

dérivation de cette expression, on a :  

 
k k kγ γ γ

∂ ∂ ∂
+ = −

∂ ∂ ∂
V P QP V .  [II.13] 

Or, la dérivée de l’expression explicite de Q  conduit à : 

 
k kγ γ

∂ ∂
= −

∂ ∂
Q VQ P , 

d’où, en remplaçant dans [II.13], ( )1

k kγ γ
−∂ ∂

= − −
∂ ∂

P VV I Q P , c’est-à-dire 

 
k kγ γ

∂ ∂
= −

∂ ∂
P VP P . [II.14] 

Il s’en suit l’expression suivante du score : 

 ( ) tr '
k k k

r
γ γ γ

 ∂ ∂ ∂
= − ∂ ∂ ∂ 

γ V VP y P Py . [II.15]. 

On vérifie bien au passage que l’espérance du score est nulle puisque  

 ( )E tr tr E( ')
k k k

r
γ γ γ

     ∂ ∂ ∂
= −     ∂ ∂ ∂     

γ V VP P P yy  

Or, E( ') ' '= +yy Xββ X V . Comme =PX 0  et =PVP P , le deuxième terme est égal au 
premier, QED. 
En dérivant à nouveau terme à terme [II.15], on obtient l’expression du hessien qui peut 
s’écrire sous une forme similaire à celle présentée en [II.6] avec ML, soit : 

 

2 2

2

( ; ) tr tr

' 2

k l k l k l

k l k l

r
γ γ γ γ γ γ

γ γ γ γ

   ∂ ∂ ∂ ∂
= −   ∂ ∂ ∂ ∂ ∂ ∂   

 ∂ ∂ ∂
− − ∂ ∂ ∂ ∂ 

γ y V V VP P P

V V Vy P P Py
. [II.16] 

La matrice d’information de Fisher s’en déduit immédiatement  
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 ( ) 1 tr
2kl

k l
γγ γ γ

 ∂ ∂
=  ∂ ∂ 

V VJ P P .  [II.17] 

ANNEXE III 

Calcul de V  

On considère la partition suivante:  

 
1 1

11 12
1 1 1

21 22 ' '

− −

− − −

  
= =    +   

A A R R Z
A

A A Z R Z R Z G
, 

alors on sait que: (cf par ex Searle, 1982, Ch 10, page 257-271 

 1
11 22 21 11 12

−= −A A A A A A  

Ici, 1 1 1 1 1' ' 1/− − − − −= + − =A R Z R Z G Z R RR Z R G .  

De même, par symétrie 

 
( ) 11 1 1 1 1 1 1

1 1

' ' '

' /

−− − − − − − −

− −

= + − +

+

A Z R Z G R R Z Z R Z G Z R

Z R Z G V
 

d’où 1 1' − −= +V R G Z R Z G  
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Introduction 

Le modèle linéaire mixte est un domaine de prédilection pour l’application de l’algorithme 

EM. Un développement particulier lui était déjà consacré dans le chapitre « Exemples » de 

l’article séminal de Dempster, Laird et Rubin (§4.4, pages 17-18) et la tendance s’est 

poursuivie par la suite (Laird, 1982 ; Laird et Ware, 1982 ; Laird, Lange et Stram, 1987 ; 

Meng et van Dyk, 1998 ; van Dyk, 2000). Une mention particulière est à attribuer au monde 

de la statistique appliquée qui a très largement contribué par le nombre de ses publications à 

la vulgarisation et au succès de l’algorithme EM (Meng et van Dyk, 1997).  

En fait, Henderson anticipait EM dès 1973 en proposant un algorithme de calcul des 

estimations du maximum de vraisemblance des composantes de variance d’un modèle linéaire 

mixte qui s’avérera ultérieurement très proche de la solution EM standard.  

Mais l’algorithme EM a une portée beaucoup plus générale. C’est effectivement un 

algorithme qui permet d’obtenir les estimations du maximum de vraisemblance dans les 

modèles où apparaissent des données manquantes ou qui peuvent être formalisés comme tels. 

Dans l’algorithme EM, le concept de données manquantes dépasse son acception classique 

(observations initialement planifiées mais qui ne sont pas effectuées) pour englober le cas de 

variables (ou processus) aléatoires de tout modèle théorique sous jacent aux observations 

réelles (Meng, 2000). 

De fait, EM tient naturellement sa réputation et son succès, en tant qu’algorithme, de ses 

qualités intrinsèques de généralité, stabilité et simplicité, mais il dépasse ce cadre strictement 

numérique pour faire partie intégrante du mode de pensée statistique comme l’illustrent ses 

liens avec les techniques dites d’augmentation de données (Tanner and Wong, 1987; Van Dyk 

and Meng, 2001), avec le concept de variables cachées (ou auxiliaires ou latentes) et les 

méthodes de simulation de Monte Carlo par chaînes de Markov (Robert et Casella , 1999).  

Dans ce contexte, il nous est paru utile de consacrer un développement spécifique au domaine 

du calcul des estimations ML et REML des composantes de la variance. Cela dit, un  tel 

développement nécessite des connaissances élémentaires sur l’algorithme en général. C’est la 

raison pour laquelle nous avons fait précéder l’application au modèle mixte d’une 

présentation théorique générale de l’algorithme, de ses propriétés et de ses principales 

variantes. Ces rappels de théorie devraient également permettre d’aborder d’autres secteurs 

d’application de l’algorithme tels que, par exemple, celui des mélanges ou celui des modèles 

de Markov cachés.  
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1. Théorie 

Avant de définir formellement l’algorithme et ses deux étapes E «Expectation» et M 

«Maximisation», nous allons tout d’abord montrer, à travers un exemple simple, comment on 

peut appréhender empiriquement les principes de base de l’EM, puis nous établirons, à partir 

des règles du calcul différentiel, un résultat théorique élémentaire dont la lecture conduit 

immédiatement à la formulation de l’algorithme.  

1.1. Exemple 

Celui-ci a trait à l’estimation des fréquences alléliques au locus de groupe sanguin humain 

ABO qui est un problème classique de génétique statistique (Rao, 1973; Weir, 1996). Il s’agit 

d’un locus autosomal à 3 allèles A, B et O, ce dernier étant récessif par rapport aux deux 

premiers qui sont codominants entre eux: on observe donc les phénotypes [A] (génotypes AA 

et AO), [B] (génotypes BB et BO), [AB] (génotype AB) et [O] (génotype OO). Sous 

l’hypothèse d’une population panmictique de grande taille en équilibre de Hardy-Weinberg, 

les fréquences des génotypes AA, AO, BB, BO, AB et OO sont respectivement de 2p , 2 pr , 
2q , 2qr , 2 pq  et 2r  si l’on désigne respectivement par p , q  et r  les fréquences des allèles 

A,B et O. L’estimation par maximum de vraisemblance de ces fréquences peut être abordée 

classiquement en exprimant la logvraisemblance des données et les dérivées premières et 

secondes de celle-ci par rapport aux paramètres.  

Soit ( ) ( )L ; ln p |=y yφ φ  la logvraisemblance où ( ), , , 'A B AB Oy y y y=y  est le vecteur des 

nombres observés des différents phénotypes, ( )0, , , 'A B ABπ π π π=Π  celui homologue de leurs 

probabilités et ( ), , 'p q rφ =  celui des paramètres qui se réduit à ( ), 'p qφ =  puisque 

1p q r+ + = . Comme il s’agit d’un échantillonnage multinomial typique, ( )L ;yφ  s’écrit  

 4

1
L lnj jj

y Csteπ
=

= +∑ , (1) 

où jπ  est le jème  élément de ( )0, , , 'A B ABπ π π π=Π  .  

On en tire les expressions des scores { }L/k ks φ= = ∂ ∂S  

 4

1
j j

k j
j k

y
s

π
π φ=

∂
=

∂∑ , (2) 

et des éléments de la matrice d’information de Fisher { } LE
'klI  ∂

= = − ∂ ∂ 
I

φ φ
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 4

1

1 j j
kl j

j k l

I N
π π

π φ φ=

∂ ∂
=

∂ ∂∑ , (3) 

où 4

1 jj
N y

=
= ∑ .  

Comme les jπ  ne sont pas des fonctions élémentaires des paramètres p  et q , les expressions 

des ks  et klI  ne sont pas immédiates et leur obtention s’avère quelque peu fastidieuse. 

A l’inverse, les choses deviennent beaucoup plus simples si l’on suppose que tous les 

génotypes sont observés. En désignant par kx  le nombre d’individus de génotype k , les 

estimateurs du maximum de vraisemblance (ML) de p  et q  s’obtiennent classiquement par 

les fréquences des gènes A et B dans l’échantillon soit: 

 ( )' 2 / 2AA AB AOp x x x N= + + ; ( )' 2 / 2BB AB BOq x x x N= + + , (4) 

avec ici AB ABx y= .  

Il est naturel de remplacer dans ces expressions les observations manquantes AAx , AOx  et BBx , 

BOx  par des prédictions de celles-ci compte-tenu des observations faites ( y ) et du modèle 

adopté (équilibre de Hardy-Weinberg) soit 
2

#
2 2AA A

px y
p pr

=
+

 et #
2

2
2AO A

prx y
p pr

=
+

 ou après 

simplification:  

 #

2AA A
px y

p r
=

+
; # 2

2AO A
rx y

p r
=

+
. (5) 

On procède de même par symétrie pour BBx  et BOx . En reportant ces quantités dans (4), on 

obtient les estimations suivantes: 

 ( )# #" 2 / 2AA AB AOp x y x N= + + ; ( )# #" 2 / 2BB AB BOq x y x N= + +  (6) 

Les prédictions en (5) dépendant des valeurs des paramètres, le procédé va donc être appliqué 

de façon itérative : on va utiliser les valeurs actualisées des paramètres en (6) pour remettre à 

jour les prédictions des observations «manquantes» en (5), et celles-ci obtenues, on les reporte 

en (6) pour obtenir de nouvelles estimations des paramètres et ainsi de suite. On a, de cette 

façon, construit un algorithme itératif qui comporte deux étapes:  

 -1) prédiction des données manquantes en fonction des valeurs courantes des paramètres 

et des observations; 

 -2) estimation des paramètres en fonction des prédictions actualisées et des observations, 

et qui préfigurent à la lettre respectivement les étapes E et M de l’algorithme de Dempster, 

Laird et Rubin. 
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On peut appliquer ce raisonnement à l’échantillon suivant: 179Ay = , 35By = , 6ABy =  et 

202Oy = . Les estimations du maximum de vraisemblance obtenues directement sont 

ˆ 0.251560p = , ˆ 0.050012q =  et ˆ 0.698428r = . Les résultats de l’algorithme EM figurent au 

tableau 1. La convergence s’effectue en quelques itérations y compris pour des valeurs de 

départ très éloignées de la solution.  

 

Tableau 1. Exemple de séquences EM dans le calcul des estimations ML des fréquences 

géniques ,p q  et r  des allèles A,B et O  

Itération p q r 
 Valeurs initiales égales 
0 0.33333333 0.33333333 0.33333333 
1 0.28988942 0.06240126 0.64770932 
2 0.25797623 0.05048400 0.69153977 
3 0.25253442 0.05003857 0.69742702 
4 0.25170567 0.05001433 0.69827999 
5 0.25158173 0.05001197 0.69840630 
6 0.25156326 0.05001165 0.69842509 
7 0.25156051 0.05001161 0.69842788 
8 0.25156010 0.05001160 0.69842830 
9 0.25156004 0.05001160 0.69842836 
 Valeurs initiales quelconques 
0 0.92000000 0.07000000 0.01000000 
1 0.42676717 0.08083202 0.49240082 
2 0.28331520 0.05172378 0.66496102 
3 0.25644053 0.05002489 0.69768439 
5 0.25166896 0.05001344 0.69831761 
6 0.25157625 0.05001187 0.69841188 
7 0.25156244 0.05001164 0.69842592 
8 0.25156039 0.05001160 0.69842801 
9 0.25156009 0.05001160 0.69842832 
10 0.25156004 0.05001160 0.69842837 

 

1.2. Résultat préliminaire 

Soit y  une variable aléatoire ( )x1N  dont la densité notée ( )g y φ|  dépend du vecteur de 

paramètres ∈Φφ  et z  un vecteur de variables aléatoires auxiliaires, qualifiées de données 

manquantes7, et ayant avec y  une densité conjointe notée ( )f ,y z φ|  dépendant elle aussi de 

φ . Dans ces conditions très générales, on peut établir le résultat suivant, connu sous le nom 

d’identité de Fisher (1925), cité par Efron (1977), (cf annexe A):  
                                                 
7 ou variables latentes, supplémentaires ou cachées selon les circonstances et les auteurs 
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( ) ( )ln g ln f ,
EC

∂ ∂ 
=  ∂ ∂ 

y y zφ φ
φ φ

| |
,  (7) 

formule qui traduit simplement le fait que la dérivée de la logvraisemblance 

( )L( ) ln g=y yφ; φ|  de φ  basée sur y  par rapport au paramètre est l’espérance conditionnelle 

de la dérivée de la logvraisemblance ( )L( ) ln f=x xφ; φ|  des données dites augmentées 

( ( )', ' '=x y z ). Cette espérance, notée ( )E .C , est prise par rapport à la distribution 

conditionnelle des données supplémentaires z  sachant les données observées y  et le 

paramètre φ .  

Ce résultat étant acquis, admettons qu’on veuille résoudre par un procédé itératif l’équation:  

 L( )∂
=

∂
y 0φ;

φ
, (8) 

ainsi qu’on est conduit classiquement à le faire en vue de l’obtention des estimations du 

maximum de vraisemblance.  

On dispose donc à l’itération [t] d’une valeur courante ]t[φ  du paramètre; si l’on fait appel au 

résultat précédent en (7), on va s’intéresser à l’espérance conditionnelle de 

( )lnf , | /∂ ∂  y z φ φ  par rapport à la densité de ]| , tz y [φ = φ  qu’on note ( )[t]
C

lnf , |
E

∂ 
 ∂ 

y z φ
φ

. 

Cette espérance s’écrit: 

 ( ) ( ) ( )[t] [t]
C Z

lnf , | lnf , |
E = h | , = d

∂ ∂ 
 ∂ ∂ 

∫
y z y z

z y z
φ φ

φ φ
φ φ

 

où Z  désigne l’espace d’échantillonnage de z  et ( )[t]h | , =z y φ φ  est la densité de la loi 

conditionnelle des données manquantes z  sachant y  et [t]=φ φ . Cette précision sera omise 

par la suite pour simplifier la notation, le domaine d’intégration étant implicitement spécifié 

par le symbole différentiel correspondant sous le signe somme, ici d z .  

Comme ( )]h , tz y [φ = φ|  ne dépend pas de φ , on peut sortir l’opérateur de dérivation d’où 

 ( ) ( ){ }[ ] [ ]ln f , |
E E ln f , |t t

C C
∂  ∂

=     ∂ ∂ 

y z
y z

φ
φ

φ φ
. (9) 

La résolution itérative de (8) peut donc se ramener à celle de l’équation 

 ( ){ }[ ]E ln f , |t
C

∂
=  ∂

y z 0φ
φ

, (10) 
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qu’avaient mentionnée Foulley et al. (1987) et Foulley (1993) à propos de l’estimation du 

maximum de vraisemblance des composantes de la variance dans un modèle linéaire mixte. 

En fait, la simple lecture de cette équation préfigure la description de l’algorithme EM et de 

ses deux étapes.  

Le terme ( )ln f , |y z φ  représente la logvraisemblance des données augmentées (dites aussi 

«complètes» dans la terminologie de Dempster, Laird et Rubin). ( )[ ]E ln f , |t
C   y z φ  désigne 

l’espérance conditionnelle de cette logvraisemblance par rapport à la densité des données 

supplémentaires z  (ou «manquantes» ) sachant les données observées y  (ou «incomplètes» 

selon  Dempster, Laird et Rubin) et la valeur courante ]t[φ  du paramètre. C’est donc une 

fonction de y , ]t[φ  et du paramètre φ  que Dempster, Laird et Rubin notent ]Q( )t[φ;φ  et son 

établissement correspond précisément à l’étape E (dite «Expectation») de l’algorithme. 

L’annulation de sa dérivée première ]Q( )t∂   = 0 ∂
[φ;φ

φ
 correspond à la phase de recherche de 

l’extremum: c’est l’étape dite M «Maximisation» de l’algorithme.  

1.3. Formulation de l’algorithme 

Dans la présentation de Dempster, Laird et Rubin, on oppose les données dites incomplètes 

représentées par la variable aléatoire y  de densité g( | )y φ  aux données dites complètes 

( )', ' '=x y z  formées de la concaténation des données incomplètes y  et des données 

manquantes z  et de densité f( | )x φ . Aux variables aléatoires x  et y  correspondent 

respectivement les espaces d’échantillonnage X  et Y  qui sont liés entre eux par une 

application de X  dans Y . Comme l’on n’observe pas ∈x X , mais seulement ( )= ∈y y x Y , 

on peut spécifier de façon générale la relation entre les deux types de variables (complètes et 

incomplètes) par :  

 g( | ) f( | )d
y

= ∫y x xφ φ
X

, (11) 

où yX  est un sous-espace observable de X  défini par l’équation ( )=y y x (espace dit 

antécédent de Y ), soit 

 ( ){ };y = ∈ = ⊂x y y xX X X . (12) 

Pour illustrer cette notion un peu abstraite, on peut prendre l’exemple du modèle dit «animal» 

des généticiens quantitatifs le plus simple: 1µ= + +y a e  où { } ( )20,i aa σ= ∼a A  est le vecteur 
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des effets génétiques additifs des individus indicés par i  ( A  étant la matrice de parenté) et 

{ } ( )20,i ee σ= ∼e I  est celui des  effets génétiques non additifs et des effets environnementaux. 

Dans ce cas, on pourra définir les données complètes directement par ( )', ' '=x a e  et on a 

2 2 2 2g( | , , ) f( , | , , )d d
y

a e a eµ σ σ µ σ σ= ∫y a e a e
X

 avec { };y µ= + = −a e y 1X X  . On peut aussi, 

plus classiquement, définir les données complètes sous la forme ( )', ' '=x y a  ou ( )', ' '=x y e . 

Dans son acception générale, l’algorithme EM se définit par les deux phases suivantes.  

1) Phase E dite «Expectation» (ou Espérance) 

Sachant la valeur courante du paramètre ]t[φ  à l’itération [t], la phase E consiste en la 

détermination de la fonction  

 [ ]] [ ]Q( ) E L( )t t
C= x[φ;φ φ; .  (13) 

Avec ( )', ' '=x y z , ]Q( )t[φ;φ  est l’espérance conditionnelle de la logvraisemblance des 

données complètes par rapport à la distribution des données manquantes z  sachant les 

données incomplètes y  et la valeur courante ]t[φ  du paramètre soit  

 ( )] ]Q( ) L( , ) h | , dt t= ∫ y z z y z[ [φ;φ φ; φ = φ .  (14a) 

Avec une spécification générale des données complètes, cette fonction s’écrit 

 ( )] ]Q( ) L( ) k | , dt t= ∫ x x y x[ [φ;φ φ; φ = φ , (14b) 

où  

 ( ) ( )k( , f / g| | |x y x yφ) = φ φ . (15) 

2) Phase M dite «Maximisation» 

On actualise la valeur courante du paramètre en maximisant la fonction obtenue à la phase E 

par rapport à φ , soit 

 1] ]arg max Q( )t t+
Φ=[ [φ φ;φ .  (16) 

Il existe une version généralisée de l’algorithme dite GEM dans laquelle la valeur actualisée 

ne maximise pas nécessairement Q  mais l’augmente simplement c’est-à-dire satisfait 
1] ] ] ]Q( ) Q( ),t t t t t+ ≥ ∀[ [ [ [φ ;φ φ ;φ .  
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1.4. Cas d’un mélange gaussien 

Un exemple particulièrement illustratif des potentialités de l’algorithme EM réside dans son 

application au cas d’un mélange de distributions (Dempster et al., 1977 ; Titterington et 

al.,1985 ; Celeux et Diebolt, 1985 ; McLachlan et Basford, 1985 ; McLachlan et Peel, 2000). 

Pour simplifier, nous considérerons le cas d’un mélange d’un nombre fixé de lois gaussiennes 

univariées 2( , )j jµ σN  d’espérance jµ  et de variance 2
jσ  en proportion jp  pour chacune des 

composantes 1,...,j J=  du mélange.  

Soit { }x1N iy=y  le vecteur des N  observations iy  supposées indépendantes et de densité  

 ( ) ( )1
; ;

i

J
Y j j jj

f y p f y
=

= ∑ θφ  (17) 

où { }x1J jp=p , ( )2, 'j j jµ σ=θ , ( )' ' '
1', ,..., ,..., 'j Jp θ θ θφ =  représentent les paramètres et 

( );j jf y θ  est la densité de la loi 2( , )j jµ σN relative à la composante j  du mélange.  

Compte tenu de (17) et de l’indépendance des observations, la logvraisemblance des données 

observées s’écrit : 

 ( ) ( )1 1
L ; ln ;N J

j j i ji j
p f y

= =
 =  ∑ ∑y θφ , (18) 

expression qui ne se prête pas aisément à la maximisation.  

Une façon de contourner cette difficulté est d’avoir recours à l’algorithme EM. On introduit 

alors des variables iz  non observables indiquant l’appartenance de l’observation i  à une 

certaine composante j  du mélange et donc telle que Pr( )i jz j p= = . Par définition, cette 

appartenance étant exclusive, la densité ( );ig x φ  du couple ( ), 'i i ix y z=  peut alors s’écrire 

 ( ) ( )1
; , ;

ijaJ
i i ij

g x g y z j
=

= =  ∏φ φ , (19a) 

( ija  désignant l’indicatrice [ ]iij z ja I == ), soit encore, en décomposant la loi conjointe de iy  et 

iz ,  

 ( ) ( )1
; ;

ijaJ
i j j i jj

g x p f y
=

 =  ∏ θφ . (19b) 

Les couples ix  étant indépendants entre eux, la densité des données complètes 

( )1,..., ,..., 'i N= ' ' 'x x x x  est le produit des densités élementaires soit  

 ( ) ( )1 1
; ;

ijaN J
j j i ji j

g p f y
= =

 =  ∏ ∏x θφ .  (20) 

On en déduit immédiatement l’expression de la logvraisemblance correspondante 
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 ( ) ( )1 1
L ln ln ;N J

ij j j i ji j
a p f y

= =
 = + ∑ ∑x θφ; .  

En prenant l’espérance de ( )L xφ;  par rapport à la distribution des données manquantes ija  

sachant les données observées et les paramètres pris à leurs valeurs courantes, on obtient 

l’expresion de la fonction [ ]( )Q tφ;φ à la phase E 

 [ ]( ) [ ] ( )1 1
Q ln ln ;N Jt t

ij j j i ji j
p f yα

= =
 = + ∑ ∑ θφ;φ , (21) 

où [ ] [ ]( )E | ,t t
ij ij ia yα = φ = φ  s’interprète comme la probabilité conditionnelle d’appartenance 

de l’observation i  à la composante j  du mélange, soit 

 [ ] ( )
[ ] [ ]( )

[ ] [ ]( )1

;
Pr | ,

;

t t
j j i jt

ij i i J t t
j j i jj

p f y
z j y

p f y
α

=

= = =
∑

θ

θ
φ .  (22) 

Il ne reste plus maintenant (phase M) qu’à maximiser la fonction [ ]( )Q tφ;φ par rapport à φ , 

ou plus précisèment [ ]( ) [ ]( ) ( )#
1

Q Q 1Jt t
jj

pλ
=

= − −∑φ;φ φ;φ  pour prendre en compte, grâce au 

multiplicateur de Lagrange λ , la relation d’exhaustivité qui lie les probabilités 

d’appartenance. Les dérivées partielles s’écrivent : 

 
[ ]#

1

Q t
N ij
i

j jp p
α

λ
=

∂
= −

∂ ∑  ; [ ] ( )
#

2
1

Q /N t
ij i j ji

j

yα µ σ
µ =

∂
= −

∂ ∑  ;  

 [ ] ( )2
#

2 2 41

Q 1½ N i jt
iji

j j j

y µ
α

σ σ σ=

  −∂   = − − ∂     
∑ . 

Par annulation, on obtient les solutions à savoir 

 [ ] [ ]( )1
1

/Nt t
j iji

p Nα+

=
= ∑ , (23a) 

 [ ] [ ]( ) [ ]( )1
1 1

/N Nt t t
j ij i iji i

yµ α α+

= =
= ∑ ∑ , (23b) 

 [ ] [ ] [ ]( ) [ ]( )22 1 1
1 1

/N Nt t t t
j ij i j iji i

yσ α µ α+ +

= =
 = −  ∑ ∑ . (23c) 

Si l’on avait fait l’hypothèse de variances homogènes, ( )2 2 ,j jσ σ= ∀ , la formule (23c) se 

serait écrite  

 [ ] [ ] [ ]( )22 1 1
1 1

/N Jt t t
ij i ji j

y Nσ α µ+ +

= =
 = −  ∑ ∑ . 
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Les résultats précédents se généralisent sans problème à la situation multivariée 

~ ( , )i j jy µ ΣN . Ici on s’est placé dans la situation où les observations iy  étaient 

indépendantes, mais cette hypothèse peut être levée. Grimaud et al. (2002) ont ainsi traité un 

modèle de mélange de deux modèles mixtes gaussiens.  

En définitive, le traitement d’un mélange par l’algorithme EM rentre dans un cadre très 

général qui est mis à profit dans mainte application. Citons à titre d’exemple la recherche et la 

localisation de loci à effets quantitatifs (dits QTL en anglais) utilisant des marqueurs 

moléculaires dans des dispositifs de croisement (backcross par ex). Dans ce cas, les 

composantes du mélange sont les génotypes possibles au QTL putatif et les probabilités 

d’appartenance a priori sont données par les règles de ségrégation sachant l’ascendance et 

l’information procurée par les marqueurs moléculaires (Wu et al., 2002). Dans ce genre de 

problème, l’algorithme EM a permis de substituer à l’expression classique de la 

vraisemblance (18) une forme plus aisée à maximiser (21) par le biais de la prise en compte 

d’informations cachées. Le traitement des distributions de mélange par l’algorithme EM est 

également à la base de certaines techniques de classification, cf par exemple l’algorithme 

CEM (C pour classification) (Celeux et Govaert, 1992).  

1.5. Cas particuliers 

1.5.1. Famille exponentielle régulière 

On considère ici le cas où la distribution des données complètes appartient à la famille 
exponentielle régulière qu’on peut mettre sous la forme générale suivante : 
 ( ) [ ] ( )f b( )exp ' ( ) / a| =x x t xφ φ φ , (24) 

où φ  est le vecteur ( )x1k  des paramètres dits canoniques, ( )t x  le vecteur ( )x1k de la 

statistique exhaustive correspondante, et ( )a φ  et b( )x  des fonctions scalaires.  
La statistique exhaustive ( )t x  du paramètre canonique φ  se caractérise par  

 [ ] ( )E ( ) ln a /| = ∂ ∂  t x φ φ φ , (25a) 

 [ ] ( )2Var ( ) ln a / '| = ∂ ∂ ∂  t x φ φ φ φ . (25b) 

Eu égard à la forme de la densité en (24), la phase E conduit à la fonction Q suivante 

 [ ] ( )] ]Q( ) 'E ( ) ln at t
C cste= − +  t x[ [φ;φ φ φ .  (26) 

Par annulation de la dérivée de Q, on obtient à la phase M l’équation suivante 

 [ ] [ ]]E ( ) E ( )t
C=t x t x[ , 

que l’on peut écrire aussi, à l’instar de Dempster, Laird et Rubin, sous la forme  
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 1] ]E ( ) E ( )t t+   | = | ,   t x t x y[ [φ φ = φ , (27) 

qui apparaît comme l’équation clé de l’algorithme EM dans la famille exponentielle. 

Si cette équation a une solution dans l’espace des paramètres Φ , elle est unique, puisque, 

dans la famille exponentielle régulière, moins deux fois la logvraisemblance est une fonction 

convexe.  

L’exemple précédent de l’estimation de la fréquence allélique au locus de groupe sanguin 

humain ABO fournit une très bonne illustration de cette propriété. Une statistique exhaustive 

des fréquences alléliques de p  et q  consiste, à effectif total N y+=  fixé, en les nombres 

d’allèles respectifs soit 2A AA AB AOt x x x= + +  et 2B BB AB BOt x x x= + + . A la phase M, on résout 

l’équation (27) ( ) ( )[ 1] [ 1] [ ] [ ]E , E , ,t t t t
A At p q t p q+ +| = | y soit  

 ( ) ( )[ 1] [ ] [ ] [ ] [ ]2 2E , , E , ,t t t t t
AA AB AONp x p q y x p q+ = | + + |y y , (28) 

avec 

 ( )
[ ]

[ ] [ ]
[ ] [ ]E , ,

2

t
t t

AA At t

px y p q y
p r

| =
+

, (29) 

puisque, conditionnellement à Ay , AAx  a une distribution binomiale de paramètres Ay  et 

( )/ 2p p r+ . On fait de même pour [ 1]tq + . On retrouve ainsi les expressions (5) et (6) établies 

empiriquement au début.  

Une autre illustration consiste en l’estimation des composantes de la variance dans le modèle 

linéaire mixte gaussien comme nous le verrons dans la deuxième partie de ce chapître.  

1.5.2. Mode a posteriori 

L’algorithme EM peut être également utilisé dans un cadre bayésien en vue de l’obtention du 

mode de la distribution a posteriori ( )p | yφ . Il existe pour la logdensité a posteriori 

l’homologue de la formule (7) pour la logvraisemblance,  

 ( ) ( )ln p ln p ,
EC

∂ ∂ 
=  ∂ ∂ 

y y zφ φ
φ φ

| |
, (30) 

où ( )E .C  indique comme précédemment une espérance conditionnelle prise par rapport à 

,z y φ| .  

Sur cette base on déduit immédiatement les deux phases de l’algorithme EM correspondant au 

calcul du mode a posteriori de φ .  
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Sachant la valeur courante du paramètre ]t[φ  à l’itération [t], la phase E consiste en la 

spécification de la fonction  

 ( )* ] [ ]Q ( ) E ln p ,t t
C=   y z[φ;φ φ| , (31) 

qui, du fait du théorème de Bayes ( ) ( ) ( )p , p , p∝y z y zφ φ φ| | , se réduit à 

 ( )* ] ]Q ( ) Q( ) ln pt t Cste= + +[ [φ;φ φ;φ φ  ,   (32) 

où ]Q( )t[φ;φ  est défini comme précédemment: cf (13) et (14ab).  

A la Phase M, on actualise la valeur courante de φ  en recherchant 1]t+[φ  qui maximise la 

fonction * ]Q ( )t[φ;φ par rapport à φ , soit 1] * ]arg max Q ( )t t+
Φ=[ [φ φ;φ . 

1.6. Quelques propriétés 

1.6.1. Accroissement monotone de la vraisemblance 

Soit une suite d’itérations EM: ] ] ] ] 1], , ,..., , ,...t t+[0 [1 [2 [ [φ φ φ φ φ , on peut établir le théorème 

suivant: 

 1] ]L( ; ) L( ; ),t t t+ ≥ ∀y y[ [φ φ , (33) 

l’égalité n’intervenant que, si et seulement si, à partir d’un certain rang, 
1] ] ] ]Q( ) Q( )t t t t+ =[ [ [ [φ ;φ φ ;φ  et [ ] [ ]1h( , h( ,t t+| |z y z yφ ) = φ )  ou [ ] [ ]1k( , k( ,  t t+| |x y x yφ ) = φ ) .  

C’est une propriété fondamentale de l’algorithme qui garantit à l’utilisateur une bonne 

évolution des valeurs de la logvraisemblance.  

La démonstration est intéressante pour éclairer la compréhension des mécanismes sous-

jacents à EM. Elle se décline comme suit.  

Par définition de la densité conjointe, on a: f( , | ) g( | )h( ,  = |y z y z yφ φ φ)  et, en passant aux 

logarithmes, ln g( | ) ln f( , | ) ln h( ,  = − |y y z z yφ φ φ) . Si l’on intègre les deux membres par 

rapport à la densité de [ ], t|z y φ , il vient: 

 ] ]L( ) Q( ) H( )t t= −y [ [φ; φ;φ φ;φ , (34) 

où  

 [ ] ( )] ]H( ) ln h( , h | , dt t= |∫ z y z y z[ [φ;φ φ) φ = φ . (35) 

Exprimons maintenant la variation de la logvraisemblance 1] ]L( ; ) L( ; )t t+ −y y[ [φ φ  quand on 

passe d’une itération EM à la suivante. Compte tenu de (34), cette variation s’écrit: 
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1] ] 1] ] ] ]

1] ] ] ]

L( ; ) L( ; ) Q( ) Q( )

                                   H( ) H( )

t t t t t t

t t t t

+ +

+

 − = − 
 − − 

y y[ [ [ [ [ [

[ [ [ [

φ φ φ ;φ φ ;φ

φ ;φ φ ;φ
 (36) 

Par définition de la phase M de l’algorithme, la quantité 1] ] ] ]Q( ) Q( )t t t t+ −[ [ [ [φ ;φ φ ;φ  est positive 

ou nulle qu’il s’agisse d’un EM classique ou généralisé. Quant au deuxième terme, 

considérons la quantité ] ] ]H( ) H( )t t t−[ [ [φ;φ φ ;φ  comme une fonction de φ ; elle s’écrit, au vu 

de la définition donnée en (35):  

 ( )
( ) ( )] ] ] ]

]

h ,
H( ) H( ) ln h | , d

h | ,
t t t t

t

 |
− =  

  
∫

z y
z y z

z y
[ [ [ [

[

φ
φ;φ φ ;φ φ = φ

φ = φ
. (37) 

Le logarithme étant une fonction concave, on peut majorer cette quantité par application de 

l’inégalité de Jensen8.  

 ( )
( ) ( ) ( )

( ) ( )] ]
] ]

h , h ,
ln h , d ln h , d 0

h , h ,
t t

t t

 | |
  ≤ =
  

∫ ∫
z y z y

z y z z y z
z y z y

[ [
[ [

φ φ
φ = φ φ = φ

φ = φ φ = φ
| |

| |
, 

l’égalité ne se produisant que si ( ) ( )]h , h , ,t| = ∀z y z y [φ φ = φ φ|  (cf Rao, 1973, page 59, 

formule 1e6.6) d’où 

 ] ] ]H( ) H( ) 0,t t t− ≤ ∀[ [ [φ;φ φ ;φ φ , (38) 

ce qui établit le théorème de départ (33).  

Remarquons que l’on aurait pu faire la même démonstration en partant de la relation 

( ) ( ) [ ]ln g ln f ln k( ,| | − |      y x x yφ = φ φ)  (cf . 15), H étant définie alors par  

 ( ) ( )] ]H( ) ln k , k , dt t= | |  ∫ x y x y z[ [φ;φ φ φ = φ . (39) 

1.6.2. Cohérence interne 

Si ∗φ  est un point stationnaire de L( )yφ; , il annule aussi la dérivée de Q( )∗φ;φ par rapport à 

φ  et réciproquement :  

 L( ) Q( )∂ ∂
= ⇔ =

∂ ∂
y 0 0

∗

∗ ∗φ=φ φ=φ

φ; φ;φ
φ φ

,  (40) 

Ce théorème découle d’un corollaire de (7) et (9). En effet, par définition 

[ ]0Q( ) E L( )C= x0φ;φ φ;  où ( )0E .C  indique une espérance conditionnelle prise par rapport à la 

                                                 
8 Si X  est une variable aléatoire d’espérance µ  et si ( )f x est une fonction concave, alors 

[ ] ( )E ( )f X f µ≤  
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distribution de ,z y 0φ = φ| , et [ ]{ }0Q( ) E L( )C
∂ ∂

=
∂ ∂

x0φ;φ
φ;

φ φ
. Du fait de l’égalité (9), on peut 

intervertir les opérateurs de dérivation et d’espérance si bien que 0Q( ) L( )EC
 ∂ ∂

=  ∂ ∂ 

x0φ;φ φ;
φ φ

 

et en évaluant ces deux fonctions de φ  au point 0φ , il vient compte tenu de (7) 

 Q( ) L( )∂ ∂
=

∂ ∂
y

0 0

0

φ=φ φ=φ

φ;φ φ;
φ φ

.  (41) 

Le théorème (40) en découle par application de (41) à = ∗
0φ φ  point stationnaire de L( )yφ; . 

Cette propriété de cohérence interne, dite de «self-consistency» dans le monde anglo-saxon, 

remonterait à Fisher et aurait fait l’objet de nombreuses redécouvertes depuis les années 1930. 

Remarquons que, du fait de (34), la propriété (41) implique 

 H( )∂
=

∂
0

0

0

φ=φ

φ;φ
φ

. (42) 

McLachlan et Krishnan (1997, page 85) établissent tout d’abord (42) à partir de (38) et en 

déduisent (41) et (40). Quoiqu’il en soit, ce résultat est fondamental pour établir les propriétés 

de convergence des itérations EM vers un point stationnaire de L( )yφ; .  

1.6.3. Convergence vers un point stationnaire 

La question de la convergence de l’algorithme fait l’objet de plusieurs théorèmes 

correspondant aux différentes conditions qui sous-tendent cette propriété. Nous ne rentrerons 

pas dans tous ces développements, certes importants, mais d’accès difficile. Le lecteur est 

renvoyé à l’ouvrage de McLachlan and Krishan (1997) ainsi que, pour plus de détails, à 

l’article de Wu (1983). Nous nous restreindrons aux deux résultats suivants.  

On note ( ) ( ){ }0 0£ ;LL L= ∈Φ =yφ φ;  le sous-ensemble de Φ  dont les éléments ont pour 

logvraisemblance ( )L yφ; une valeur donnée 0L . 

Théorème. Soit une suite d’itérations EM ou GEM : ] ] ] ] 1], , ,..., , ,...t t+[0 [1 [2 [ [φ φ φ φ φ , qui vérifie la 

condition 
]

1]

Q( )t

t+

∂
=

∂
0

[

[φ=φ

φ;φ
φ

. Lorsque la fonction Q( )∂
∂

Ψφ;
φ

 est continue en φ  et Ψ , alors 

]t →[φ φ∗  quand t → +∞  où φ∗  est un point stationnaire (il vérifie L'( ) =y 0φ∗; ) qui est tel 

que ( ) [ ]( )L * Lim L tL= =y yφ∗; φ ;  si l’une ou l’autre des conditions suivantes est remplie: 

 a) ( )£ *L  est un singleton où ( ) ( ){ }0 0£ : LL L= ∈Φ =yφ φ;  ; 
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 b) ( )£ *L  n’est pas un singleton mais est fini et 1] ] 0t t+ − →[ [φ φ , quand t → +∞ . 

La démonstration dans le cas b) repose sur le raisonnement suivant. Eu égard aux conditions 

de régularité, ]L( )t y[φ ;  converge vers une valeur *L , le point limite φ∗  (du fait de 

1] ] 0t t+ − →[ [φ φ ) correspondant dans ( )£ *L  va vérifier  

 
]

1]

( ) Q( ) Q( )Lim
t

t
t

→∞
+

 ∂ ∂ ∂
 = = =

∂ ∂ ∂  

L y 0
∗ [

[∗ ∗φ=φ φ=φφ=φ

φ; φ;φ φ;φ
φ φ φ

.  

Ce théorème ne garantit donc pas la convergence vers un maximum global de la 

logvraisemblance L( )yφ; . Si ( )L yφ;  a plusieurs points stationnaires, la convergence d’une 

suite d’itérations EM vers l’un d’entre eux (maximum local ou global ou point selle) va 

dépendre de la valeur de départ. Quand le point stationnaire est un point selle, une très petite 

perturbation de cette valeur va détourner la suite des itérations EM du point selle.  

Il est à remarquer que la convergence de L( )yφ; vers *L  n’implique pas automatiquement 

celle de ]t[φ  vers φ∗ ; il faut certaines conditions à cet effet comme la condition de continuité 

de la fonction [ ]Q( ) /∂ ∂Ψφ; φ . Ainsi, Boyles (1983) décrit  un exemple de convergence d’un 

GEM non pas vers un seul point mais vers les points d’un cercle.  

Corollaire. Il a trait au cas où la fonction L( )yφ;  est unimodale avec un seul point 

stationnaire φ∗  à l’intérieur de Φ . On est donc dans le cas a) d’un singleton et, si la fonction 

Q( )∂
∂

Ψφ;
φ

 est continue en φ  et en Ψ , toute suite d’itérations EM quelle que soit la valeur de 

départ converge vers l’unique maximum global de L( )yφ; .  

164. Partition de l’information  

On a montré que ( ) ( ) ( )f g k ,| = | |x y x yφ φ φ (cf. 15). En passant au logarithme et en dérivant 

deux fois par rapport à φ , il vient 

 ( ) ( )ln g ln f ln k( , )
' ' '

∂ | ∂ | ∂ |
= − +

∂ ∂ ∂ ∂ ∂ ∂
y x x y2 2 2φ φ φ

−
φ φ φ φ φ φ

. 

Le deuxième membre fait intervenir les données manquantes. Pour évaluer sa contribution 

réelle, nous en prendrons l’espérance par rapport à la distribution conditionnelle de ces 

données z  sachant y  et φ , notée comme précédemment ( )E .C , d’où 
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 ( ) ( )L L ln k( , )E E
' ' 'C C

 ∂ ∂  ∂ |
= − +   ∂ ∂ ∂ ∂ ∂ ∂  

y x x y2 2 2φ; φ; φ
−

φ φ φ φ φ φ
. (43) 

Cette formule peut s’écrire symboliquement sous la forme 

 ( ) ( ) ( )I c m= −y x yI Iφ; φ; φ; , (44) 

qui s’interprète comme une partition de l’information en ses composantes.  

Le premier terme correspond à la matrice d’information (moins deux fois le hessien de la 

logvraisemblance) relative à φ  procurée par les données observées y ,  

 ( ) ( )L
I

'
∂

=
∂ ∂

y
y

2 φ;
φ; −

φ φ
. (45) 

Le second terme représente la matrice d’information des données complètes x  moyennée par 

rapport à la distribution conditionnelle des données manquantes z  sachant les données 

observées y  et le paramètre φ , soit 

 ( ) ( )L
E

'c C

 ∂
= −  ∂ ∂ 

x
xI

2 φ;
φ;

φ φ
. (46) 

Le terme noté  

 ( ) ln k( , )E
'm C

 ∂ |
= −  ∂ ∂ 

x yyI
2 φ

φ;
φ φ

, (47) 

s’identifie, eu égard à (44), à la perte d’information ( ) ( )Ic −x yI φ; φ;  consécutive au fait 

d’observer y  et non x  d’où son appellation d’information manquante.  

Comme l’a montré initialement Louis (1982), on peut évaluer ce terme assez facilement. Soit 

( ) ( )L∂
=

∂
y

S y
φ;

φ;
φ

 et ( ) ( )L∂
=

∂
x

S x
φ;

φ;
φ

 les fonctions de score relatives respectivement aux 

données observées et aux données complètes, on montre (cf. annexe A) que 

 ( ) ( )Varm C=   y S xI φ; φ;  (48) 

c’est-à-dire que l’information manquante est la variance du score des données complètes, 

variance prise par rapport à la distribution conditionnelle de z  sachant y  et φ .  

Ce résultat découle directement du lemme suivant (cf. annexe A) 

 ( ) ( ) ( )L L L
E Var

' 'C C

 ∂ ∂ ∂ 
= +   ∂ ∂ ∂ ∂ ∂  

y x x2 2φ; φ; φ;
φ φ φ φ φ

 

qui peut s’écrire aussi ( ) ( ) ( )I Varc C− = − +   y x S xφ; φ; φ;I  QED.  
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Comme ( ) ( )EC =  S x S yφ; φ; (cf. 7), l’expression se simplifie en 

 ( ) ( ) ( ) ( ) ( )E ' 'm C= −  y S x S x S y S yI φ; φ; φ; φ; φ; .  (49a) 

et, localement au point d’estimation ML ˆφ = φ  tel que ( )ˆ =S y 0φ; , on a 

 ( ) ( ) ( ) ˆ
ˆ E 'm C=   y S x S xI

φ=φ
φ; φ; φ;  (49b) 

d’où, un moyen de calcul de l’information observée  

 ( ) ( ) ( )ˆ ˆ ˆI c m= −y x yI Iφ; φ; φ; . (50) 

165. Vitesse de convergence  

L’algorithme EM suppose implicitement l’existence d’une application M  de l’espace 

paramétrique Φ  sur lui-même, puisque, par construction, on passe de façon univoque de ]k[φ  

à 1]k +[φ . On peut donc écrire: 

 ( )1] ]k k+ = M[ [φ φ , (51) 

où ( )( ) ( ) ( ) ( ) ( )1 2x1
, ,..., ,..., 'i rr

M M M M=   M φ φ φ φ φ  et ( ) { }x1 ir φ=φ .  

En faisant un développement limité de ( )]kM [φ  au premier ordre au voisinage de 1]k −[φ = φ , 

on obtient : 

 ( )( )1] ] 1] ] 1]k k k k k+ − −− ≈ −J[ [ [ [ [φ φ φ φ φ . (52) 

Dans cette formule, ( )J φ  est la matrice jacobienne ( )xr r dont l’élément ( ),i j  s’écrit 

 ( ) /ij i jM φ= ∂ ∂J φ , 

où iM  est le ième élément de M  et jφ  le jème élément du vecteur φ . Si 1]k − →[ ∗φ φ  alors, 

sous les conditions de continuité habituelles, ( ) ( )1]k − →J J[ ∗φ φ si bien qu’à partir d’un certain 

rang, on pourra écrire ( )( )1] ] ] 1]k k k k+ −− ≈ −J[ [ ∗ [ [φ φ φ φ φ .  

La vitesse de convergence  

 1] ] ] 1]lim /k k k k
kv + −

→∞= − −[ [ [ [φ φ φ φ  (53) 

est alors gouvernée par la plus grande valeur propre de ( )J ∗φ , 1max i r iv λ≤ ≤= , une valeur 

élevée de cette valeur propre impliquant une convergence lente.  

Dans le cas de la famille exponentielle, Dempster, Laird et Rubin ont montré que  

 ( ) { } 1
var ( ) var ( ) ,

−
   = | |   J t x t x y∗ ∗ ∗φ φ φ , (54) 
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où ( )t x  est le vecteur des statistiques exhaustives de φ  basées sur les données complètes x .  

De façon générale, ces mêmes auteurs ont établi que 

 ( ) ( ) ( )1
c m
−=J x y∗ ∗ ∗φ φ ; φ ;I I , (55) 

quantité qui mesure la fraction de l’information complète qui est perdue du fait de la non 

observation de z  en sus de y . Si la perte d’information due à l’existence de données 

incomplètes est faible, la convergence sera rapide, cette perte d’information pouvant d’ailleurs 

varier selon les composantes de φ .  

Comme ( ) ( ) ( )Im c= −y x yφ; φ; φ;I I , la formule (55) peut s’écrire aussi 

 ( ) ( ) ( )1 Ir c
−= −J I x y∗ ∗ ∗φ φ ; φ ;I . (56) 

Pour être en conformité avec la littérature numérique, c’est la matrice 

( ) ( ) ( )1 Ir c
−− =I J x y∗ ∗ ∗φ φ ; φ ;I  dont la valeur propre la plus petite définit les performances de 

l’algorithme qui, certaines fois, est  qualifiée de matrice de vitesse de convergence.  

L’expression (56) conduit aussi à exprimer la matrice d’information des données observées 

sous la forme  

 ( ) ( ) ( )I c r = − y x I J∗ ∗ ∗φ ; φ ; φI , (57) 

et, pour l’inverse: 

 
( ) ( ) ( )

( ) ( ){ } ( )

11 1

1 1

I r c

r r c

−
− −

− −

 = − 

 = + − 

y I J x

I I J J x

∗ ∗ ∗

∗ ∗ ∗

φ ; φ φ ;

φ φ φ ;

I

I
 

 ( ) ( ) ( ) ( ) ( )11 1 1I c r c

−
− − − = + − y x I J J x∗ ∗ ∗ ∗ ∗φ ; φ ; φ φ φ ;I I  (58) 

Cette formule est la base d’un algorithme dit «Supplemented EM» (Meng and Rubin, 1991) 

permettant de calculer la précision asymptotique des estimations ML obtenues via 

l’algorithme EM.  

Au voisinage de ∗φ , on peut écrire, par un développement limité de ( )1] ]k k+ = M[ [φ φ  au 

premier ordre  

 ( )( )1] ]k k+ − ≈ −J[ ∗ ∗ [ ∗φ φ φ φ φ ,  (59) 

formule qui indique le caractère linéaire de la convergence des itérations EM. Un algorithme 

ayant ce type de convergence peut être accéléré notamment par la version multivariée de la 

méthode d’accélération d’Aitken. On a  
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 ( ) ( ) ( ) ( )1] ] 1] 1] ] 2] 1] 1] ]... ..k k k k k k k k h k h− − + + + + − +− = − + − + − + + − +∗ [ [ [ [ [ [ [ [ [φ φ φ φ φ φ φ φ φ φ  

Or, du fait de l’expression (52), 

 ( )( )1] ] ] 1]k h k h h k k+ + + −− = −J[ [ ∗ [ [φ φ φ φ φ ,  

et, en reportant dans l’expression précédente, il vient 

 ( ) ( )1] ] 1]
0

k h k k
h

∞− −
=

 = + − ∑ J∗ [ ∗ [ [φ φ φ φ φ , 

soit encore, en utilisant la propriété de convergence de la série géométrique ( )0
h

h

∞

=∑ J ∗φ  vers 

( ) 1

r

−
 − I J ∗φ lorsque ses valeurs propres sont comprises entre 0 et 1 

 ( ) ( )11] ] 1]k k k
r

−− − = + − − I J∗ [ ∗ [ [φ φ φ φ φ . (60) 

Laird et al. (1987) ont proposé une approximation numérique de ( )J ∗φ à partir de l’historique 

des itérations EM et qu’ils appliquent au calcul des estimations REML des composantes de la 

variance pour des modèles linéaires mixtes d’analyse de données répétées. Ainsi, de 

l’itération k , on va pouvoir se projeter, si tout va bien, au voisinage de ∗φ , donc réduire les 

calculs et gagner du temps.  

1.7. Variantes 

A partir de la théorie de base telle qu’elle fut formulée par Dempster, Laird et Rubin se sont 

développées maintes variantes qui répondent au besoin d’adapter celle-ci aux difficultés qui 

peuvent se rencontrer, soit dans la mise en œuvre des phases E et M, soit dans l’obtention de 

résultats supplémentaires ou de meilleures performances. Sans avoir la prétention d’être 

exhaustif, nous répertorierons les principales d’entre elles.  

171. « Gradient-EM » 

On fait appel à cette technique lorsqu’il n’y a pas de solution analytique à la phase M. Dans la 

version décrite par Lange (1995), celle-ci est réalisée par la méthode de Newton-Raphson. 

Sachant la valeur courante des paramètres ]t[φ , on va initier une série d’itérations internes 
; ]t k[φ utilisant les expressions du gradient et du hessien de la fonction ]Q( )t[φ;φ  soit 

 ( ); ] ; ]

] ; 1] ; ] ]Q( ) Q( )
t k t k

t t k t k t+− − =
[ [

[ [ [ [

φ=φ φ=φ
φ;φ φ φ φ;φ , (61) 

où ] ]Q( ) Q( ) /t t= ∂ ∂[ [φ;φ φ;φ φ  et ] 2 ]Q( ) Q( ) / 't t= ∂ ∂ ∂[ [φ;φ φ;φ φ φ . Il peut être avantageux 

numériquement de ne pas aller jusqu’à la convergence en réduisant le nombre d’itérations 
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internes jusqu’à une seule ;1] 1;0]t t+=[ [φ φ comme l’envisage Lange. Dans ce cas, il importe 

toutefois de bien vérifier qu’on augmente la fonction ]Q( )t[φ;φ  et qu’on reste ainsi dans le 

cadre d’un EM dit généralisé. 

 Dans certaines situations, l’expression de ]E Q( )t  
[φ;φ prise par rapport à la 

distribution de y  est beaucoup plus simple que celle de ]Q( )t[φ;φ et l’on aura alors recours à 

un algorithme de Fisher (Titterington, 1984 ; Foulley et al., 2000).  

1.7.2. ECM et ECME 

La technique dite ECM (« Expectation Conditional Maximisation ») a été introduite par Meng 

et Rubin (1993) en vue de simplifier la phase de maximisation quand celle-ci fait intervenir 

différents types de paramètres. On partitionne alors le vecteur des paramètres ( )', ' 'γ θφ = en 

sous vecteurs (par exemple γ  et θ ), puis on maximise la fonction ]Q( )t[φ;φ  successivement 

par rapport à γ , θ  étant fixé, puis par rapport θ , γ  étant fixé, soit 

 [ ] [ ]1 ]arg max Q( , )t t t+ =γ γ θ [;φ , (62a) 

 [ ] [ ]1 1 ]arg max Q( , )t t t+ +=θ γ θ [;φ . (62b) 

Dans la version dite ECME (« Expectation Conditional Maximisation Either») due à Liu et 

Rubin (1994), une des étapes de maximisation conditionnelle précédentes est réalisée par 

maximisation directe de la vraisemblance L( ; )yφ  des données observées, soit, par exemple, 

 [ ] [ ]1 1arg max L( , )t t+ +=θ γ θ y; . (63) 

1.7.3. EM stochastique 

Cette méthode fut introduite par Celeux et Diebolt (1985) en vue de l’estimation ML des 

paramètres d’une loi de mélange. Le principe de cette méthode dite en abrégé SEM 

(« Stochastic EM ») réside dans la maximisation de la logvraisemblance 

( ) ( )L ; ln f |=   x xφ φ  des données complètes à partir, non pas de son expression analytique, 

mais grâce à une évaluation numérique de celle-ci via le calcul de [ ]( )ln f , |t 
 y z φ  où [ ]tz  est 

un échantillon simulé de données manquantes tiré dans la distribution conditionnelle de 

celles-ci de densité [ ] [ ]( )h | ,t tz y φ = φ . Outre la simplicité du procédé, celui-ci offre l’avantage 

d’éviter le blocage de l’algorithme en des points stationnaires stables mais indésirables 

(Celeux et al., 1996).  
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Wei et Tanner (1990) reprennent cette idée pour calculer la fonction [ ]( )Q tφ;φ  de la phase E 

quand celle-ci n’est plus possible analytiquement par le biais d’une approximation de Monte- 

Carlo classique d’une espérance (Robert et Casella, 1999 ; formule 5.3.4 page 208). 

Concrètement, on procède comme suit : 

a) tirage de m  échantillons de z  soit 1,..., ,...,j mz z z  extraits de la loi de densité 

[ ]( )h | , tz y φ = φ ; 

b) approximation de [ ]( )Q tφ;φ  par  

 [ ]( ) ( )1

1Q lnf , |mt
jjm =

= ∑ y zφ;φ φ . (64) 

On remarque de suite que pour 1m = , MCEM se ramène exactement à SEM, et que 

pour m → ∞ , MCEM équivaut à EM. On gagnera donc à moduler les valeurs de m  au cours 

du processus itératif (Tanner, 1996 ; Booth and Hobert, 1999); en partant par exemple de 

0 1m =  et, en accroissant continûment et indéfiniment m  selon une progression adéquate, on 

mime ainsi un algorithme de recuit simulé où l’inverse de m  joue le rôle de la température 

(Celeux et al., 1995). D’un point de vue théorique, les propriétés de SEM notamment les 

résultats asymptotiques ont été établis par Nielsen (2000). 

Il y a des variantes autour de ces algorithmes de base. Mentionnons par exemple l’algorithme 

dit « SAEM » (Stochastic Approximative EM »). Dans la version de Celeux et Diebolt (1992), 

l’actualisation du paramètre courant [ ]tφ  par SAEM s’effectue par combinaison des valeurs 

actualisées [ ]1t
SEM

+φ  de SEM et [ ]1t
EM

+φ  de EM selon la formule suivante : 

 [ ] [ ] ( ) [ ]1 1 1
1 11t t t

t SEM t EMγ γ+ + +
+ += + −φ φ φ , (65) 

où les tγ  forment une suite de nombres réels décroissant de 0 1γ =  à 0γ ∞ =  avec les deux 

conditions suivantes : ( )1Lim / 1t tγ γ + =  et tt
γ → ∞∑  quand t → ∞ . Ces deux conditions 

assurent la convergence presque sûre de la suite des itérations SAEM vers un maximum local 

de la vraisemblance.  

Ce faisant, on réalise à chaque étape un dosage entre une actualisation purement EM et une 

actualisation purement stochastique, cette dernière composante étant dominante au départ 

pour s’amenuiser au cours des itérations au profit de la composante EM.  

Dans la version de Delyon et al. (1999), cette combinaison se fait à la phase E sur la base de 

la fonction Q précédente notée ici [ ]( )Q tφ;φ  et de la partie simulée en (64) selon la formule 
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 [ ]( ) ( ) ( ) [ ]( )11
1 , 1 11

1

1Q lnf , | 1 Qtmt t
t j t tj

tm
γ γ++

+ + +=
+

 
= + − 

 
∑ y zφ;φ φ φ;φ . (66) 

De la même façon, la composante purement simulée dominante au départ ira en s’amenuisant 

au fil des itérations. L’avantage par rapport à MCEM réside dans la prise en compte de toutes 

les valeurs simulées depuis le départ alors que seules les tm  simulées à l’étape t  sont prises 

en compte dans l’algorithme MCEM. Les conditions de convergence de cet algorithme ont été 

discutées par Delyon et al. (1999) et par Kuhn et Lavielle (2002) quand le processus de 

simulation des données manquantes s’effectue via MCMC.  

1.7.4. EM supplémenté 

Cet algorithme dit « EM supplémenté » (SEM en abrégé) fut introduit par Meng et Rubin 

(1991) pour compléter l’EM classique, en vue d’obtenir la précision des estimations ML de φ  

sous la forme de la matrice de variance covariance asymptotique de φ̂ .  

Le point de départ de cet algorithme est la formule donnant l’expression de l’inverse de la 

matrice d’information de Fisher relative à φ  vue précédemment (cf. 58),  

 ( ) ( ) ( ) ( ) ( )1
1 1 1ˆ ˆ ˆ ˆ ˆI c r c

−
− − − = + − y x I J J xφ; φ; φ φ φ;I I ,  

en fonction de l’inverse ( )1 ˆ
c
− xφ;I  de la matrice d’information des données complètes x  

moyennée par rapport à la distribution conditionnelle des données manquantes et de la matrice 

jacobienne ( )J φ  dont l’élément ij  se définit par /ij i jr M φ= ∂ ∂ .  

Dans la famille exponentielle, il n’y a pas de difficulté particulière à l’obtention de ( )1 ˆ
c
− xφ;I . 

L’apport crucial de Meng et Rubin (1991) est d’avoir montré comment on pouvait évaluer 

numériquement la matrice ( )ˆJ φ  à partir de la mise en œuvre de l’EM classique. Posons, à 

l’instar de McLachlan et Krishnan (1997) : ( )
[ ] [ ]( )1 2 1

ˆ ˆ ˆ ˆ, ,..., , ,..., 't t
j j rj φ φ φ φ φ−=φ , ijr  peut s’écrire 

comme suit :  

 ( )
[ ]( )

[ ]

ˆM
Lim ˆ

t
i ij

ij t t
j j

r
φ

φ φ→∞

−
=

−

φ
.  (67) 

En fait, l’algorithme EM réalise l’application M  (cf. 51) lors du passage d’une itération à 

l’autre. En pratique, partant de ( )
[ ]t
jφ  comme valeur courante, l’itération suivante de EM 

relative à la composante [ ]1t
iφ +  procure donc la valeur de ( )

[ ]( )M t
i jφ  d’où l’on déduit la valeur 
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de ijr  à partir de la formule (67). Ce calcul est réalisé pour différentes valeurs de t  de façon à 

ne retenir in fine que les valeurs stables de ijr . McLachlan et Krishnan (1997)  notent que les 

caractéristiques de la matrice ( )ˆ
r −I J φ  ainsi obtenues sont de bons outils de diagnostic de la 

solution φ̂  obtenue. Ainsi, lorsque cette matrice n’est pas positive définie, on peut en inférer 

que l’algorithme a convergé vers un point selle indétectable par la procédure classique. Il 

conviendra alors de réamorcer une séquence EM à partir de ces valeurs affectées d’une 

perturbation adéquate. 

Une autre façon d’obtenir la précision de l’estimation φ̂  est de repartir de la formule générale 

( ) ( ) ( )ˆ ˆ ˆI ; ; ;c m= −y y yφ φ φI I  et d’utiliser la formule de Louis vue en (49ab) soit 

( ) ( ) ( ) ˆ
ˆ; E ; ' ;m C=   y S x S x

φ=φ
φ φ φI  qu’on peut évaluer par simulation en prenant la moyenne 

sur m  échantillons du produit du score ( ); , jS y zφ  par son transposé (Tanner, 1996). On peut 

aussi avoir recours à des techniques de boostrap classique ou paramétrique.  

1.7.5. PX-EM 

L’algorithme EM fait partie des standards de calcul des estimations de maximum de 

vraisemblance. Il doit son succès à sa simplicité de formulation, à sa stabilité numérique et à 

la diversité de son champ d’application. Toutefois, sa vitesse de convergence peut s’avérer 

lente dans certains types de problème d’où des tentatives pour y remédier. Dans le cas du 

modèle mixte, plusieurs auteurs ont proposé des procédures de « normalisation » des effets 

aléatoires  (Foulley et Quaas, 1995 ; Lindström et Bates, 1988 ; Meng et van Dyk, 1998 ; 

Wolfinger et Tobias, 1998). Ce principe a été repris par Meng et van Dyk (1997) puis 

généralisé par Liu et al. (1998) dans le cadre d’une nouvelle version de l’algorithme qualifiée 

de « Parameter Expanded EM » (PX-EM en abrégé).  

Cette théorie repose sur le concept d’extension paramétrique à un espace plus large ϕ  que 

l’espace d’origine par adjonction d’un vecteur de paramètres de travail α  tel que ( )' , ' '= α∗ϕ φ  

où *φ  joue le même rôle dans la densité des données complètes ( )*p | ,X =  xφ αφ  du modèle 

étendu (noté X) que φ  dans celle ( )p |x φ  du modèle d’origine (noté O). Cette extension doit 

satisfaire les deux conditions suivantes : 

  1) retour à l’espace d’origine sans ambiguïté par la fonction ( )Rφ = ϕ  ;  
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 2) préservation du modèle des données complètes pour α  pris à sa valeur de référence 

0α  c’est-à-dire que pour α= 0α , la loi de x  se réduit à celle définie sous le modèle O soit  

( ) ( )0 0p | p |X= = =x x α α∗φ φ φ, . Autrement dit, si l’on pose ( )= α∗ ∗φ φ  alors ( )0 =α∗φ φ .  

La première condition se traduit par le fait que la logvraisemblance reste inchangée 

( )*L( ; )=L , ;γ y γ α y  quelle que soit la valeur de α  choisie. La deuxième condition est mise à 

profit à la phase E en prenant l’espérance de la logvraisemblance des données complètes par 

rapport à la densité [ ]( )h | , t=z y ϕ ϕ  des données manquantes où [ ]tα est égalé à sa valeur de 

référence 0α  simplifiant ainsi grandement la mise en œuvre de cette étape qui devient 

identique à celle d’un algorithme classique sous le modèle d’origine O (dit EMO).  

L’exemple de Liu et al. (1998) permet d’illustrer ces principes. Il s’agit d’un modèle linéaire 

aléatoire très simple généré par l’approche hiérarchique suivante à deux niveaux : 

 1) ( )| ,1y z z∼ N  où y  désigne la variable observée et z  la variable manquante ;  

 2) ( )2 2| , ,z θ σ θ σ∼ N où l’espérance θ  de la loi de z  est le paramètre inconnu et la 

variance 2σ  est supposée connue.  

Remarquons que cela équivaut à écrire : 1) ( );  0,1y z e e= + ∼ N , et 2) 

( )2;  0,z u uθ σ= + ∼ N  soit encore, marginalement y u eθ= + + , et l’on reconnaît là une 

structure de modèle linéaire aléatoire. Dans l’algorithme classique (dit EMO puisqu’il y 

s’appuie sur le modèle d’origine O) on procède comme suit.  

Phase E : z  étant une statistique exhaustive de θ , on remplace z  par son espérance 

conditionnelle [ ] [ ]( )2E | , ,t tz z yθ σ= . Du fait de l’hypothèse de normalité des distributions, 

cette espérance s’écrit comme l’équation de régression de y  en z ,  

[ ] [ ]( ) ( ) ( ) [ ]( )12 2E | , Cov , var E y | ,t t tz z y z y yθ σ θ σ−  = + −  , soit compte tenu de 1) et 2),  

 [ ] [ ] [ ]( )
[ ]2 2

2 21 1

t
t t t yz yσ θ σθ θ

σ σ
+

= + − =
+ +

. (68) 

Phase M : On résout l’équation [ ]( ) [ ]( )1 2 2E | , E | , ,t tz z yθ σ θ σ+ =  qui a pour solution 

[ ]
[ ] 2

1
21

t
t yθ σθ

σ
+ +

=
+

, d’où l’expression de l’écart entre cette itération EM0 et l’estimateur 

vrai ( y )  
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[ ]

[ ]
1

21
t

t

EMO ML
yθθ θ

σ
+ −

− =
+

,  (69) 

formule qui indique que la convergence va être d’autant plus lente que 2σ  sera petit.  

Liu et al. (1998) formulent le modèle reparamétré (dit X) en y incluant un décentrage α  : 1) 

( )| ,1y z z α∼ +N  et 2) ( )2 2
* *| , ,z θ σ θ σ∼ N . Pour détailler le raisonnement, on peut 

expliciter la logvraisemblance des données complètes:  

 ( ) ( ) ( )2 22 2 2
* *2 L , , ; , / lny z z y zθ α σ θ σ α σ − = − + − − +  . (70) 

On retrouve alors la propriété selon laquelle z  est une statistique exhaustive de *θ . La phase 

E reste inchangée puisque la loi de 2
*| , 0, ,z yθ α σ=  est identique à la loi de 2| , ,z yθ σ . A la 

phase M, on résout [ ]( ) [ ]1 2
*E | ,t tz zθ σ+ =  soit [ ]

[ ] 2
1

* 21

t
t yθ σθ

σ
+ +

=
+

. Quant à α , on a, eu égard à 

l’expression (70), [ ] [ ]1t ty zα + = −  soit, compte tenu de (68), [ ]
[ ] 2

1
21

t
t yy θ σα

σ
+ +

= −
+

 et 

[ ] [ ] [ ]1 t+1 1
*

t tθ α θ+ += +  c’est-à-dire [ ]1t yθ + =  si bien que la convergence s’obtient dès la 1ère 

itération. On peut expliciter la relation entre les deux algorithmes sous la forme de l’équation 

suivante :  

 
[ ] [ ] [ ]( )1 1 t+1

0

t t

PX EMOθ θ α α
+ +

= + − ,  

que Liu et al. (1998) mettent en avant pour montrer que la phase M de l’algorithme PX est à 

même d’exploiter par régression l’information apportée par la différence [ ]( )t+1
0α α− pour 

ajuster 
[ ]1t

EMOθ
+

. Liu et Wu (1999) ont repris ce même exemple sous une forme légèrement 

différente :1) ( )| , , ,1y w wθ α θ α∼ − +N  et 2) ( )2 2| , , ,w θ α σ α σ∼ N  dans laquelle le 

décentrage porte sur la variable aléatoire manquante w  initialement centrée.  

Des extensions de l’algorithme PX ont été également proposées par Liu et Wu (1999) et van 

Dyk et Meng (2001) à des fins d’inférence bayésienne sur la loi a posteriori | yφ  dans le 

cadre de l’algorithme dit « Data augmentation » de Tanner et Wong (1987).  
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2. Application au modèle linéaire mixte 

2.1. Rappels 

2.1.1. Modèle mixte 

Nous allons considérer maintenant quelques applications de l’algorithme au modèle linéaire 

mixte. Il y a une double justification à cela. En premier lieu, le modèle linéaire mixte offre 

une illustration typique du concept élargi de données manquantes par le biais des effets 

aléatoires qui interviennent dans ce modèle. En second lieu, ce type de modèle suscite 

actuellement un vif intérêt de la part des praticiens de la statistique car c’est l’outil de base 

pour l’analyse paramétrique des données corrélées. En effet, un modèle linéaire mixte est un 

modèle linéaire du type = +y Xβ ε  dans lequel la matrice de variance covariance des 

observations var( )=V ε  est structurée linéairement m mm
= ∑V γ V  en fonction de paramètres 

mγ  grâce à une décomposition de la résiduelle ε  en une combinaison linéaire 
0

K
k kk =

= ∑ε Z u  

de variables aléatoires structurales ku  (Rao et Kleffe, 1988).  

Sous la forme la plus générale, le modèle linéaire mixte s’écrit : = +y Xβ Ζu e+ , où y est le 

vecteur ( )x1N  des observations ; X  est la matrice ( )xN p  des variables explicatives 

(continues ou discrètes) de la partie systématique du modèle auquel correspond, le vecteur 
p∈β R des coefficients dits aussi «effets fixes » ; u  est le vecteur ( )x1q  des variables 

aléatoires « structurales » ou effets aléatoires de matrice d’incidence Z  de dimension ( )xN q  

et e  est le vecteur ( )x1N  des variables aléatoires dites résiduelles.  

Ce modèle linéaire est caractérisé notamment par son espérance et sa variance qui s’écrivent : 

E( ) = =y µ Xβ , Var( ) '= = +y V ΖGZ R où ~( , )u 0 G , ~( , )e 0 R et ( )Cov , ' =u e 0 . 

2.1.2. Maximum de vraisemblance 

L’estimation des paramètres de position β  et de dispersion { }mγ=γ  (intervenant dans la 

matrice de variance covariance V ) s’effectue naturellement dans le cadre gaussien 

~ ( , )y Xβ VN  par la méthode du maximum de vraisemblance (Hartley et Rao, 1967) 

soit ( ) ,
ˆ ˆ', ' ' arg max L( , ; )= β γβ γ β γ y , où  

 ( ) ( ) ( ) ( )1L ; ½ ln 2 ln 'N π − = − + + − − β, γ y V y Xβ V y Xβ . 
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Afin de corriger le biais d’estimation de γ  lié au maximum de vraisemblance classique (ML), 

Patterson et Thompson (1971) considèrent une vraisemblance de résidus =v Sy  où 

( ' ) 'N
−= −S I X X X X  qui, par construction, ne dépend pas des effets fixes β . Par 

maximisation de cette fonction par rapport aux paramètres, on obtient un maximum de 

vraisemblance restreinte ou mieux résiduelle (REML en anglais). Harville (1977) propose de 

ne prendre que r( )N − X éléments linéairement indépendants de v  (notés 'K y ) qu’il appelle 

«contrastes d’erreur». En définitive, on montre que moins deux fois la logvraisemblance de γ  

basée sur 'K y  peut se mettre sous la forme (Foulley et al.,2002),  

 ( ) 12L ; ' ln ln ' 'C −− = + + +γ K y V X V X y Py ,  

où C  est une constante égale dans sa forme la plus simple à [ ]r( ) ln 2N π− X , X  correspond 

à toute matrice formée par r( )X  colonnes de X  linéairement indépendantes et 

[ ]1
N

−= −P V I Q  où 1 1( ' ) '− − −=Q X X V X X V  est le projecteur des moindres carrés 

généralisés.  

En outre, il importe de souligner que REML peut s’interpréter et se justifier très simplement 

dans le cadre bayésien comme un maximum de vraisemblance marginale 

p( ) p( , )d= ∫y γ y β γ β  après intégration des effets fixes selon un a priori uniforme (Harville, 

1974). 

2.2. Modèle à un facteur aléatoire 

2.2.1. EM-REML 

Nous nous placerons au départ pour simplifier dans le cadre du modèle linéaire à un facteur 

aléatoire = + +y Xβ Zu e  avec ( )E =y Xβ , ( )x1 ( , )q ∼u 0 GN , ( )x1 ( , )N ∼e 0 RN , 

( )Cov , ' =u e 0  avec ici  2
1 qσ=G I , 2

0 Nσ=R I  et  2 2
1 0Var( ) ' Nσ σ= = +V y ZZ I .  

Les données observables (ou données incomplètes dans la terminologie EM) sont constituées 

du vecteur y . Le vecteur des données manquantes ( )', ' '=z β u  est choisi comme la 

concaténation de β  et de u . Ici, à l’instar de Dempster et al. (1977) et Searle et al. (1992, 

page 303), β  n’est pas considéré comme un paramètre, mais comme une variable aléatoire 

parasite dont la variance tend vers une valeur limite infinie. Cette façon de procéder renvoie à 
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l’interprétation bayésienne de la vraisemblance résiduelle. Ce faisant, β  sera éliminé par 

intégration d’où l’obtention de REML. Cette interprétation a également l’avantage de 

dépasser l’interprétation stricte de REML comme vraisemblance de contrastes d’erreur, ce qui 

peut s’avérer très utile dans le cas non linéaire notamment (Liao et Lipsitz, 2002).  

Dans ces conditions, ( )2 2
1 0, 'σ σ=φ  et ( )', ', ' '=x y β u si bien que la densité de x  se factorise 

en  

( ) ( ) ( )2 2
0 1p | p | , , p |σ σ∝x y β u uφ . Dans le cas gaussien, on obtient immédiatement : 

 ( ) ( ) ( )2 2 2 2
0 0 0 0ln p | , , ln p | ½ ln 2 Nln ' /Nσ σ π σ σ= = − + +y β u e e e , (71a) 

 ( ) ( )2 2 2
1 1 1ln p | ½ ln 2 ln ' /q qσ π σ σ= − + +u u u . (71b) 

En désignant par ( ) ( )2 2
0 0 0L ; ln p | , ,σ σ=e y β u , la logvraisemblance de 2

0σ  basée sur e , et par 

( ) ( )2 2
1 1 1L ; ln p |σ σ=u u , celle de 2

1σ  basée sur u , la logvraisemblance de φ  basée sur x  se 

partitionne ainsi en deux composantes qui ne font intervenir chacune qu’un des deux 

paramètres : 

 ( ) ( ) ( )2 2
0 0 1 1L ; L ; L ; csteσ σ= + +x e uφ . (72) 

Cette propriété de séparabilité de la logvraisemblance va pouvoir être mise à profit à la phase 

E lors de l’explicitation de la fonction [ ]( ) [ ] ( )Q E L ;t t
c=   xφ;φ φ  qui , eu égard à (72), se 

décompose de façon analogue en : 

 [ ]( ) [ ]( ) [ ]( )2 2
0 0 1 1Q Q Qt t tσ σ= +φ;φ ;φ ;φ , (73) 

où  

 [ ]( ) [ ] ( ) [ ] ( )2 2 2 2
0 0 0 0 0 0Q E L ; ½ ln 2 Nln E ' /t t t

c cNσ σ π σ σ  = = − + +   e e e;φ , (74a) 

 [ ]( ) [ ] ( ) [ ] ( )2 2 2 2
1 1 1 1 1 1Q E L ; ½ ln 2 ln E ' /t t t

c cq qσ σ π σ σ  = = − + +   u u u;φ , (74b) 

[ ] ( )E .t
c  désignant comme précédemment une espérance prise par rapport à la loi conditionnelle 

de [ ]| , tz y φ = φ .  

La phase M consiste en la maximisation de [ ]( )Q tφ;φ  par rapport à φ , soit , compte tenu de 

(73), en la maximisation de [ ]( )2
0 0Q tσ ;φ  par rapport à 2

0σ  et en celle de [ ]( )2
1 1Q tσ ;φ  par 

rapport à 2
1σ . Les derivées premières de ces fonctions s’écrivent : 
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 ( ) [ ] ( )0
2 2 4
0 0 0

2Q E 't
cN

σ σ σ
∂ −

= −
∂

e e
, (75a) 

 ( ) [ ] ( )1
2 2 4
1 1 1

2Q E 't
cq

σ σ σ
∂ −

= −
∂

u u
. (75b) 

Leur annulation conduit immédiatement à : 

 [ ] [ ] ( )2 1
0 E ' /t t

c Nσ + = e e , (76a) 

 [ ] [ ] ( )2 1
1 E ' /t t

c qσ + = u u , (76b). 

Ce développement a été effectué de façon complète, étape par étape, pour des raisons 

pédagogiques. En fait, ces résultats extrêmement simples auraient pu être obtenus directement 

en se référant :  

 1) à une autre définition des données complètes n’incluant pas explicitement les données 

observées mais ( )', ', ' '=x β u e  (cf. §1.3 « formulation de l’algorithme); 

 2) aux statistiques exhaustives 'e e  de 2
0σ  et 'u u  de 2

1σ , puis en égalant les espérances 

de celles-ci à leurs espérances conditionnelles respectives soit [ ]( ) [ ] ( )2 1
0E ' | E 't t

cσ + =e e e e  et  

[ ]( ) [ ] ( )2 1
1E ' | E 't t

cσ + =u u u u .  

Sur la base des formules (76ab), on note dès à présent que les itérations EM qui font 

intervenir l’espérance de formes quadratiques définies positives, resteront donc à l’intérieur 

de l’espace paramétrique et c’est là une propriété importante de l’algorithme EM. Il reste 

maintenant à expliciter [ ] ( )E 't
c e e  et [ ] ( )E 't

c u u . Commençons donc par cette dernière forme 

qui est la plus simple. Par définition  

 [ ] ( ) [ ]( ) [ ]( ) [ ]( )E ' E | , ' E | , tr var | ,t t t t
c

 = +  u u u y u y u yφ = φ φ = φ φ = φ . (77) 

Or,  

 [ ]( ) [ ]ˆE | , t t=u y uφ = φ  (78) 

est le BLUP9 de u  basé sur [ ] [ ] [ ]( )2 2
0 1, 't t tσ σ=φ  . Par définition, le BLUP a pour expression 

[ ] ( )1 ˆˆ Cov( , ') Var( ) −= −u u y y y Xβ  où β̂  est l’estimateur des moindres carrés généralisés. On 

peut aussi l’obtenir indirectement (et avantageusement) par résolution du système des 

équations du modèle mixte suivant (Henderson, 1973, 1984) 

                                                 
9 Abréviation de « Best Linear Unbiased Prediction » 
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 [ ]

[ ]

[ ]

ˆ' ' '
'' ' ˆ

t

t t
qλ

    
=    +        

X X X Z β X y
Z yZ X Z Z I u

, (79) 

où [ ] [ ] [ ]2 2
0 1/t t tλ σ σ= .  

De même, 

 [ ]( ) [ ]( ) [ ] [ ]2
0ˆvar | , vart t t t

uuσ= − =u y u u Cφ = φ ,  (80) 

où [ ]t
uuC  est le bloc relatif aux effets aléatoires dans l’inverse de la matrice des coefficients des 

équations d’Henderson soit 

 [ ]
[ ] [ ]

[ ] [ ] [ ]

_' '

' '

t t
ut

tt t
qu uu

ββ β

β λ

   
= =   

+     

X X X ZC C
C

Z X Z Z IC C
. (81) 

En reportant (78) et (80) dans (77) puis dans (76b), il vient : 

 [ ] [ ] [ ] [ ]( ) [ ]2 1 ' 2
1 0ˆ ˆ tr /t t t t t

uu qσ σ+  = + u u C . (82) 

Le même raisonnement s’applique à l’expression de [ ] ( )E 't
c e e , soit 

 [ ] ( ) [ ]( ) [ ]( ) [ ]( )E ' E | , ' E | , tr var | ,t t t t
c

 = +  e e e y e y e yφ = φ φ = φ φ = φ . 

Posons ( ),=T X Z  et ( )', ' '=θ β u , les moments de la distribution conditionnelle de e  

s’écrivent : 

 [ ]( ) [ ]( ) [ ]ˆE | , E | ,t t t= − = −e y y T θ y y Tθφ = φ φ = φ , (83a) 

 [ ]( ) [ ]( ) [ ] [ ]2
0var | , var | , ' 't t t tσ= =e y T θ y T TC Tφ = φ φ = φ , (83b) 

où [ ] [ ] [ ]( )ˆ ˆ ˆ', ' 't t t=θ β u est solution du système (79) et [ ]tC  une inverse généralisée (81) de la 

matrice des coefficients.  

On montre par manipulation matricielle (cf. annexe B) que : 

 [ ]( ) [ ]( ) [ ] [ ] [ ] [ ]' 'ˆ ˆ ˆ ˆ ˆ' ' 't t t t t tλ− − = − −y Tθ y Tθ y y θ T y u u , (84a) 

 [ ]( ) [ ] [ ]( )tr ' rang( ) trt t t
uuq λ= + −C T T X C . (84b) 

d’où l’on déduit l’expression de [ ]2 1
0

tσ + , 

 [ ] [ ] [ ] [ ] [ ] [ ] [ ]( ) [ ]{ }2 1 ' ' 2
0 0

ˆ ˆ ˆ' ' rang( ) tr /t t t t t t t t
uuq Nσ λ λ σ+  = − − + + − y y θ T y u u X C . (85) 

On note au passage que cette expression diffère de celle de l’algorithme d’Henderson (1973) 

qui s’écrit simplement [ ] [ ]( ) [ ]2 1 '
0

ˆ' ' / r( )t t Nσ + = − −y y θ T y X , alors que les formules sont 
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identiques pour [ ]2 1
1

tσ + . En fait, les formules d’Henderson peuvent s’interpréter dans le cadre 

EM comme une variante dérivée d’une forme ECME (Foulley et van Dyk, 2000).  

Ces expressions se généralisent immédiatement au cas de plusieurs facteurs aléatoires 
2( , )

kk k qσ∼u 0 IN  ; ( )1,2,...,k K=  non corrélés tels que ' 2 2
01

( , )K
k k k Nk

σ σ
=

∼ +∑y Xβ Z Z IN . 

On a alors :  

 [ ] [ ] [ ] [ ]( ) [ ]2 1 ' 2
0ˆ ˆ tr /t t t t t

k k k kk kqσ σ+  = + u u C , (86) 

et 

 
[ ] [ ] [ ] [ ] [ ]

[ ] [ ]( ) [ ]

2 1 ' '
0 1

2
01 1

ˆ ˆ ˆ{ ' '

rang( ) tr }/

Kt t t t t
k k kk

K K t t t
k k kkk k

q N

σ λ

λ σ

+

=

= =

= − −

 + + − 

∑
∑ ∑

y y θ T y u u

X C
.  (87) 

Une des difficultés d’application de cet algorithme réside dans la nécessité de calculer le 

terme [ ]( )tr t
uuC  à chaque itération [ ]t . En fait on peut écrire uuC  sous la forme : 

( ) 1
'uu qλ

−
= +C Z SZ I  où ( )' 'N

−= −S I X X X X  est le projecteur classique sur l’espace 

orthogonal à celui engendré par les colonnes de X . Désignons par ( )iδ B  la ième valeur 

propre de la matrice B , on sait que  

( ) ( )1tr 'uu i qi
δ λ−= +∑C Z SZ I  et que la ième valeur propre de ' qλ+Z SZ I  s’obtient par une 

simple translation de celle correspondante de 'Z SZ  soit ( ) ( )' 'i q iδ λ δ λ+ = +Z SZ I Z SZ , 

d’où ( ) ( ) 1
tr 'uu ii

δ λ
−

= +  ∑C Z SZ . Le calcul des valeurs propres de 'Z SZ  peut donc être 

réalisé une fois pour toutes en ayant recours à une diagonalisation ou une tridiagonalisation 

(Smith et Graser, 1986).  

2.2.2. EM-ML 

Si l’on veut obtenir des estimations ML des composantes de la variance, il va falloir 

considérer β  comme un paramètre et non plus comme une variable aléatoire. On définit ainsi 

le vecteur des paramètres par ( )2 2, , ' 'u eσ σ= βφ et celui z  des données manquantes par =z u . 

On décompose la densité des données complètes ( )', ' '=x y z  comme précédemment de sorte 

que  

 ( ) ( ) ( )2 2
0 0 1 1L ; L , ; L ; csteσ σ= + +x β e uφ , (88) 

avec  
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 ( ) ( ) ( )2 2 2
0 0 0 02 L , ; ln 2 Nln ' /Nσ π σ σ− = + + − − − −β e y Xβ Zu y Xβ Zu ,  

et  

 ( )2 2 2
1 1 1 12 L ; ln 2 ln ' /q qσ π σ σ− = + +u u u .  

L’expression de [ ]( )2
1 1Q tσ ;φ reste formellement inchangée si bien que, comme 

précédemment, [ ] [ ] ( )2 1
1 E ' /t t

c qσ + = u u . En ce qui concerne [ ]( )2
0 0Q ; tσ β, φ , son expression 

s’explicite sous la forme suivante : 
[ ]( )

[ ] [ ]

[ ]( )

2 2
0 0 0

2
0

2
0

2Q ; ln 2 Nln

E( | , ) ' E( | , ) /

tr var | , ' /

t

t t

t

Nσ π σ

σ

σ

− = + +

   − − − −   
 +  

β

y Xβ Z u y y Xβ Z u y

Z u y Z

, φ

φ φ

φ

 (89) 

En dérivant par rapport à β , on obtient : 

 ( ) [ ] 2
0 02Q / 2 ' E( | , ) /t σ ∂ − ∂ = − − − β X y Xβ Z u y φ .  (90) 

Par annulation, l’équation obtenue ne dépend pas de 2
0σ  et on peut résoudre en β  : 

 [ ] [ ]1' ' ' E( | , )t t+ = −X Xβ X y X Z u y φ . (91) 

En fait, [ ]E( | , )tu y φ  correspond dans ce cas à ce qu’on appelle le meilleur prédicteur linéaire 

(BLP selon la terminologie d’Henderson) soit ( )[ ] ( )1E( | , ) Cov , ' Var( ) −= −u y u y y y Xβφ  ou 

encore, dans nos notations (cf. paragraphe 2.2.1), 1E( | , ) ' ( )−= −u y GZ V y Xβφ . Comme 

( ) 11 1 1 1' ' '
−− − − −= +GZ V Z R Z G Z R  (Henderson, 1984), [ ]E( | , )tu y φ  peut s’obtenir 

simplement à partir du système suivant du type « équations du modèle mixte » 

 [ ] [ ]( ) [ ]( )1
E( | , ) ' 't t t

qλ
−

= + −u y Z Z I Z y Xβφ . (92) 

On peut aussi pour simplifier les calculs résoudre ces deux équations simultanément à partir 

des équations du modèle mixte d’Henderson soit 

 [ ]

[ ]

[ ]

1

1

ˆ' ' '
'' ' ˆ

t

t t
qλ

+

+

    
=    +        

X X X Z β X y
Z yZ X Z Z I u

, (93) 

où [ ] [ ] [ ] [ ]1 2 2 1
0 1ˆ E( | , , , )t t t tσ σ+ +=u u y β  et [ ] [ ] [ ]2 2

0 1/t t tλ σ σ= .  

Notons que cela revient à actualiser la phase E sur la base de [ ] [ ] [ ]( )2 2 1
0 1, , ' 't t tσ σ += βφ  avant 

d’avoir terminé la phase M ; il s’agit là d’une variante qui est décrite par Meng et Rubin 

(1993) à propos de l’algorithme ECM.  
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On termine ensuite la phase M, tout d’abord en explicitant :  

 [ ] [ ] [ ] [ ]( )2 1 2 2 1
1 E ' | , , , /t t t t

u e qσ σ σ+ += u u y β  (94) 

Comme on raisonne conditionnellement à [ ]1t+=β β , l’expression de la variance de la loi 

conditionnelle de u  se réduit à  

 [ ] [ ] [ ]( ) [ ]( ) [ ]12 2 1 2
1 0 0var | , , , 't t t t t

qσ σ λ σ
−+ = +u y β Z Z I , (95) 

et, en reportant dans ( )2
1 E ' /c qσ = u u , on a : 

 [ ] [ ] [ ] [ ]( ) [ ]12 1 1 ' 1 2
1 0ˆ ˆ tr ' /t t t t t

q qσ λ σ
−+ + + = + +  

u u Z Z I . (96) 

Par dérivation de (89) par rapport à 2
0σ , et en annulant, il vient :  

 [ ] [ ] [ ] [ ]( ) [ ]{ }12 1 1 ' 1 2
0 0ˆ ˆ tr ' ' /t t t t t

q Nσ λ σ
−+ + +  = + +  

e e Z Z Z I Z  

où [ ] [ ] [ ] [ ] [ ] [ ]1 1 2 2 1 1
1 0

ˆˆ E( | , , , )t t t t t tσ σ+ + + += − − = −e y Xβ u y β y Tθ .  

Cette expression se simplifie à nouveau compte tenu de la relation (84a) et de ce que  

 [ ]( ) [ ] [ ]( )1 1
tr ' ' tr 't t t

q qqλ λ λ
− −   + = − +      

Z Z I Z Z Z Z I , 

d’où 

 [ ] [ ] [ ] [ ] [ ] [ ] [ ]( ) [ ]12 1 1 ' 1 ' 1 2
0 0

ˆ ˆ ˆ{ ' ' tr ' }/t t t t t t t t
qq Nσ λ λ λ σ

−+ + + +   = − − + − +    
y y θ T y u u Z Z I . (97) 

La différence entre ML et REML apparaît donc nettement au niveau de l’algorithme EM ; les 

calculs seront moins pénibles à réaliser avec ML puisqu’il ne faut plus disposer de l’inverse 

complète des équations du modèle mixte mais simplement de la partie aléatoire. Enfin, en ce 

qui concerne ML, d’autres variantes de type ECME ont été décrites par Liu et Rubin (1994). 

2.2.3. « Scaled » EM 

L’idée de base réside dans la standardisation des effets aléatoires. Dans le cas d’un seul 

facteur, cela revient à écrire le modèle sous la forme: *
1σ= + +y Xβ Zu e  où * ( , )q∼u 0 IN , le 

reste étant inchangé. Si l’on définit les données complètes par ( )*'', ', '=x y β u , on a 

( ) ( )p | p |∝x eφ φ  puisque la densité ( )*p ,β u  est non informative vis-à-vis des paramètres. A 

la phase E, la fonction [ ]( )Q tφ;φ  s’écrit donc : 

 [ ]( ) [ ] ( )2 2
0 02Q ln 2 ln E ' /t t

cN Nπ σ σ− = + + e eφ;φ . (98) 
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A la phase M, il vient par dérivation : 

 ( ) [ ] ( )
2 2 4
0 0 0

2Q E 't
cN

σ σ σ
∂ −

= −
∂

e e
, 

 ( ) [ ] ( ) [ ] ( )*

2 2
1 0 1 0

2 E '2Q E '1
tt

cc

σ σ σ σ
∂ − ∂

= = −
∂ ∂

e Zue e
. 

Rien ne change donc formellement pour l’actualisation de 2
0σ . Par contre en ce qui concerne 

1σ , l’annulation de la dérivée conduit à l’expression suivante : 

 [ ]
[ ] ( )

[ ] ( )
*

1
1 *' *

E '

E '

t
ct

t
c

σ +  − =
y Xβ Zu

u Z Zu
, (99) 

dont la forme s’apparente à celle d’un coefficient de régression.  

Comme précédemment, le numérateur et le dénominateur de (99) peuvent s’exprimer à partir 

des ingrédients des équations du modèle mixte d’Henderson soit, en ignorant l’indice t  pour 

alléger les notations :  

 [ ] ( ) ( ) ( )* * 2
0

ˆ ˆE ' ' tr 't
c uβ σ − = − − y Xβ Zu y Xβ Zu X ZC , (100a) 

 [ ] ( ) ( )* * * * 2
0ˆ ˆE ' ' ' ' tr 't

c uu σ= +u Z Zu u Z Zu Z ZC , (100b) 

où β̂  et *û  sont solutions du système : 

 1
2 2 *

1 1 0 1

ˆ' ' '
' ' 'ˆq

σ
σ σ σ σ

    
=    +     

X X X Z X yβ
Z X Z Z I Z yu

,

1
2 2

1 1 0

' '
' '

u

qu uu

ββ β

β

σ
σ σ σ

−
   

= =   +  

X X X ZC C
C

Z X Z Z IC C
. 

On peut aussi résoudre les équations du modèle mixte sous leur forme habituelle (cf. 77) puis 

calculer *
1ˆ ˆ /σ=u u , 1/u uβ β σ=C C  et 2

1/uu uu σ=C C .  

Cet algorithme à effets normalisés se distingue également de l’algorithme classique de forme 

quadratique par ses performances (Thompson, 2002). Cette comparaison a été effectuée par 

Foulley et Quaas (1995) dans le cas d’un modèle d’analyse de variance équilibré à un facteur 

aléatoire (ici la famille de demi-frères). Alors que l’algorithme classique est très lent pour des 

valeurs faibles du rapport ( )2 /R n n α= +  (α  désignant ici le ratio 2 2
0 1/σ σ ) , par exemple 

2 1/ 4R =  ( 5n =  ; 15α = ) et beaucoup plus rapide pour des valeurs élévées, par exemple 
2 0.95R =  ( 285 , 15;  1881 , 99) n nα α= = = = , la tendance est opposée en ce qui concerne 

l’EM normalisé (cf. Fig. 1).  
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Fig1. Vitesse de convergence (nombre d’itérations) pour les algorithmes EM classique (croix) et « Scaled » 

(ronds) dans un dispositif de 100 familles de demi-frères de même taille (n) en fonction du rapport 

( )2 /R n n α= + où 2 2
0 1/α σ σ=  est le ratio de la variance résiduelle à la variance entre familles.  

Ces auteurs ont montré également que, tout comme avec l’EM classique, les itérations restent 

dans l’espace paramétrique. Cette idée de la standardisation des effets aléatoires qui figure 

déjà dans Anderson et Aitkin (1985), a été reprise puis généralisée par Meng et van Dyk 

(1998) au cas où la matrice de variance covariance des effets aléatoires n’est plus diagonale : 

cf. aussi Wolfinger et Tobias (1998). Enfin, l’algorithme précédent peut être adapté 

facilement au cas d’une estimation ML (Foulley, 1997).  

2.2.4. Variances hétérogènes 

Pour le modèle mixte, on fait généralement l’hypothèse d’homogénéité des composantes de 

variance G  et R , mais celle-ci n’est pas indispensable et s’avère d’ailleurs souvent démentie 

par les faits expérimentaux. Ainsi, dans une analyse génétique familiale, la variance entre 

familles ( )2
1σ  tout comme la variance intra-familles ( )2

0σ  dépend fréquemment des 

conditions de milieu dans lesquelles sont élevés les individus. Il en est de même dans une 

analyse longitudinale avec un modèle à coefficients aléatoires où les éléments de la matrice 

G  ( 00g : variance de l’intercept aléatoire; 11g  : variance de la pente ; 01g  : covariance entre la 

pente et l’intercept) vont différer selon certaines caractéristiques des individus (par ex. sexe, 

traitement, type d’activité, etc…).  
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Ce phénomène dit d’hétéroscédasticité peut être pris en compte dans le modèle mixte grâce à 

une formalisation du type suivant : 

 *
1,i i i i iσ= + +y X β Z u e , (101) 

où { }i ijy=y est le vecteur ( )x1in  des observations dans la strate 1,2,...,i I=  ; β  est le 

vecteur ( )x1p  des effets fixes associé à la matrice ( )xin p  de covariables iX . Comme dans 

la formulation de l’EM normalisé, la contribution des effets aléatoires est exprimée sous la 

forme *
1,i iσ Z u  où *u  est un vecteur d’effets aléatoires standardisés, iZ  la matrice ( )xin q  

d’incidence correspondante et 1,iσ  est la racine carrée de la composante u de la variance dont 

la valeur dépend de la strate i  de la population. On fait par ailleurs les hypothèses classiques 

sur les distributions à savoir : * ( , )q∼u 0 IN  (les généticiens remplacent la matrice identité qI  

par une matrice de parenté A ), 2
0,( , )

ii i nσ∼e 0 IN  et * 'E( )i =u e 0 , i∀ .  

Quand la stratification est simple (un seul facteur par exemple), le modèle (101) peut être 

abordé tel que. En fait, dès l’instant où plusieurs facteurs se trouvent mis en cause dans 

l’hétéroscédasticité, il devient souhaitable de modéliser l’influence de ceux-ci sur les 

composantes de variance ( )2 2
0, 1,,i iσ σ . Une des façons les plus simples de procéder est d’avoir 

recours à un modèle structural de type linéaire généralisé impliquant la fonction de lien 

logarithmique (Leonard, 1975 ; Aitkin, 1987 ; Nair et Pregibon, 1988 ; Foulley et al., 1992 ; 

San Cristobal et al, 2002). Comme l’a bien montré Robert (1996) dans l’étude des mélanges, 

il peut être intéressant pour des raisons numériques, de substituer, à une paramétrisation des 

deux variances, une paramétrisation impliquant l’une d’entre elles, la plus facile à estimer (ici 
2
0,iσ ), et le rapport de l’autre à celle-ci (ici on prend le rapport des écarts types 1, 0,/i i iτ σ σ= ). 

On écrit alors, à l’instar de Foulley (1997),  

 2 '
0,ln i iσ = p δ , (102a) 

 'ln i iτ = h λ , (102b) 

où δ  est le vecteur ( )x1r des coefficients réels des r  variables explicatives ip  influençant le 

logarithme de la variance résiduelle relative à la strate i  ; idem pour le vecteur λ  ( )x1s  des 

coefficients des variables explicatives ih  du logarithme du ratio iτ  des écarts types. 

Si l’on pose ( )', ' '= δ λφ  et ( )*', ' '=x β u , la phase E conduit comme précédemment à : 

 [ ]( ) [ ] ( )2 ' 2
0, 0,1 1

2Q ln 2 ln E /I It t
i i c i i ii i

N nπ σ σ
= =

− = + +∑ ∑ e eφ;φ , (103) 
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où 

 *
0,i i i i i iτ σ= − −e y X β Z u . 

En l’absence d’expression explicite des maxima, on a recours à une version « gradient-EM » 

de l’algorithme via, par exemple, la formule de Newton-Raphson (cf. 61) 

 ( ); ] ; ]

] ; 1] ; ] ]Q( ) Q( )t k t k

t t k t k t+− − =
[ [

[ [ [ [

φ=φ φ=φ
φ;φ φ φ φ;φ . 

Ayant calculé les dérivées partielles première et seconde par rapport aux paramètres (cf. 

annexe C), le système des équations à résoudre peut se mettre sous la forme itérative 

suivante : 

 
[ ]

; ] ; ]

, 1' ' '
' ' 't k t k

t k
δδ δλ δ

λδ λλ λ

+
    

=    
    

P W P P W H P v∆δ
H W P H W H H v∆λ[ [φ=φ φ=φ

, (104) 

où  

 [ ] [ ] [ ], 1 , 1 ,t k t k t k+ += −∆δ δ δ  , [ ] [ ] [ ], 1 , 1 ,t k t k t k+ += −∆λ λ λ , 

 ( ) ( )1 2x' , ,..., ,...,i Ir I =P p p p p  , ( ) ( )1 2x' , ,..., ,...,i Is I =H h h h h . 

Les éléments de ,δ λv v  s’écrivent, en ignorant les indices [ ],t k  pour alléger les notations: 

 ( ) ( )( ){ }2
, 0,x1 ½ E 'i i c i i i iI v nδδ σ −= = − −  v y X β e , (105a) 

 ( ) ( ){ }1 * '
, 0,x1 E 'i i i c i iI vλλ τ σ −= =v u Z e . (105b) 

Les matrices de pondération δδW , δλ λδ=W W  et λλW  sont des matrices diagonales 

( )xI I dont les éléments s’explicitent en  

 ( ) ( ) ( ){ }2 *
, 0, 0,½ E ' E ' / 2ii i c i i i i i i c i i iwδδ σ τ σ−  = − − − −    y X β y X β y X β Z u , (106a) 

 ( )1 *
, 0,½ E 'ii i i C i i iwδλ τ σ −  = − y X β Z u , (106b) 

 ( ) ( ){ }* ' * 1 *
, 0,2 E ' E 'ii i i c i i i c i i iwλλ τ τ σ −  = − − u Z Z u y X β Z u . (106c) 

Tous les éléments décrits en (105ab) et (106abc) peuvent s’obtenir aisément à partir des 

ingrédients des équations du modèle mixte d’Henderson soit, en posant 

( ) ( ), 'i i i i iS εε = − −y X β y X β , ( ) *
, 'i u i i iS ε = −y X β Z u  et * ' *

, 'i uu i iS = u Z Z u , 

 ( ) ( ) ( ) ( )'
, ,

ˆ ˆ ˆE ' tri c i i i i i i iS Sεε εε ββ= = − − +y X β y X β X X C , (107a) 

 ( ) ( ) ( )* '
, ,

ˆ ˆ ˆE ' tri u c i u i i i i i uS Sε ε β= = − +y X β Z u Z X C , (107b) 

 ( ) ( )* ' * '
, ,

ˆ ˆ ˆE ' tri uu c i uu i i i i uuS S= = +u Z Z u Z Z C . (107c) 
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Ici les équations du modèle mixte s’écrivent ( )2 ' 2 '
0, 0,1 1

ˆI I
i i i i i ii i

σ σ− − −
= =

+ =∑ ∑T T Σ θ T y  avec 

( )0,,i i i i iτ σ=T X Z , ( )*', ' '=θ β u , 1
−

−

 
=  

 

0 0
Σ

0 A
 et les termes ββC , uβC  et uuC  sont les 

blocs ainsi indicés dans l’inverse de la matrice des coefficients.  

On peut également développer une version des scores de Fisher de cet algorithme en 

exploitant le fait que ( ) ( )E E | , ES S=  y y φ  dont l’expression est particulièrement simple 

dans les cas abordés ici, soit  

 ( )2 '
, ½ tr / 2ii i i i iw nδδ τ = + AZ Z , 

 ( )2 '
, tr / 2ii i i iwδλ τ= AZ Z , 

 ( )2 '
, trii i i iwλλ τ= AZ Z . 

Dans le cas d’un seul facteur aléatoire discret (matrice iZ  formée de 0 et de 1), la matrice 

'
i iZ Z  est diagonale et, A  ayant des éléments diagonaux unité, ( )'tr i i in=AZ Z  si bien que tous 

ces poids se simplifient en ( )2
, ½ 1 / 2ii i iw nδδ τ= +  ; 2

, / 2ii i iw nδλ τ=  et 2
,ii i iw nλλ τ= .  

Une tâche importante va consister à choisir les covariables P  et H  des modèles (107ab) des 

logvariances via par exemple un test du rapport de vraisemblance. Les comparaisons mises en 

œuvre à cet égard doivent se faire à structure d’espérance Xβ  fixée ; celle-ci en retour sera 

sélectionnée à structure de variance covariance fixée, ou mieux à partir d’un procédé robuste 

tel que par exemple celui de Liang et Zeger (1986) en situation de données répétées.  

D’autres sous-modèles des variances peuvent être envisagés et testés. En effet, il importe de 

garder présent à l’esprit la difficulté d’estimer les variances avec précision, notamment les 

composantes u  si l’on ne dispose pas d’un dispositif adéquat et d’un échantillon 

suffisamment grand, d’où l’intérêt voire la nécessité de modèles parcimonieux. On peut citer à 

cet égard un modèle à ratio 1, 0,/i i iτ σ σ=  constant (Foulley, 1997), voire un modèle à 

composante u  constante, ces deux modèles étant des variantes d’un modèle plus général de la 

forme 1, 0,/ csteb
i iσ σ =  (Foulley et al., 1998).  

Par exemple le modèle 2 '
1,ln i iσ = p δ  et 1, csteiσ =  conduit au système (Foulley et al., 1992) :  

 ( )' 'δδ δ=P W P ∆δ P v ,  (108) 

où  
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 ( ) ( ){ }2 '
, 0,x1 ½ Ei i c i i iI v nδδ σ − = = − v e e ,  (109a) 

 ( )2 '
, 0,½ Eii i c i iwδδ σ −= e e , (109b) 

et  

 , ½ii iw nδδ = .  (109c) 

Diverses applications de ces modèles mixtes hétéroscédastiques à la génétique animale sont 

décrits dans Robert et al. (1997), Robert et al. (1999) ainsi que dans San Cristobal et al. 

(2002).  

2.3. Modèle à plusieurs facteurs corrélés 

2.3.1. EM standard (EMO) 

Le cas de plusieurs facteurs aléatoires non corrélés ne pose pas de difficulté particulière et 

découle d’une généralisation immédiate du cas d’un seul facteur (cf. §221). Le modèle 

considéré ici s’écrit : 

 = + +y Xβ Zu e , 

où le vecteur u  des effets aléatoires et la matrice d’incidence Z  sont les concaténations 

respectivement des vecteurs ku  et des matrices d’incidence kZ  relatifs aux K  facteurs 

élémentaires 1,2,...,k K=  :  

 ( ) ( )' ' ' '
1 2x1 , ,..., ,..., 'k Kq+

=u u u u u  ; ( ) ( )1 2x , ,..., ,...,k KN q+
=Z Z Z Z Z . 

Comme à l’accoutumée, ce modèle est tel que ( )E =y Xβ , '= +V ZGZ R  où ( )Var =u G , 

( )Var =e R  et ( )Cov , ' =u e 0 .  

On se restreint ici à la classe des modèles dont les ku  présentent le même nombre d’éléments 

,kq q k= ∀  et dont la matrice de variance covariance G  s’écrit, par exemple pour 2K =  : 

11 121
0

12 222

Var q q
q

q q

σ σ
σ σ

  
= = = ⊗  

   

I Iu
G G I

I Iu
 où 11 12

0
12 22

σ σ
σ σ

 
=  

 
G  et, de façon générale, 

0= ⊗G G A  avec { }0 klσ=G  pour , 1,2,...,k l K=  et q q=A I  si les unités expérimentales 

( 1,2,...,i q=  ; individus, familles) supports des q  éléments de chacun des vecteurs ku sont 

indépendantes.  

Pour chacune d’entre elles, le modèle s’écrit :  

 i i i i i= + +y X β Z u e , (110) 
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où { }; 1,...,i ij iy j n= =y  est le vecteur des in  observations ijy  faites sur l’unité expérimentale 

i .  

Ici ( ) ( )1 21 , ,..., ,..., 'i i ik iKi Kx u u u u=u  et ( ) [ ]1 2, ,..., ,...,
i i i ik iKi n xK =Z Z Z Z Z  si bien que 

0( x1) ~ ( , )i Ku 0 GN  et { } ~ ( , )i ij ie=e 0 RN  avec 1
q
i i== ⊕R R .  

Dans le cas le plus simple de résidus homogènes et indépendants, 2
0 ii nσ=R I , mais d’autres 

structures sont envisageables telle que, par exemple, pour des données longitudinales, une 

structure autorégressive ou de processus temporel continu stationnaire de type exponentiel : 
2
0i iσ=R H  avec ( ), ' 'h ,i jj ij ijf t tρ= − .  

Si l’on pose ( )0 0vech=g G 10, r  le vecteur des paramètres intervenant dans R  par exemple 

2
0σ=r  ou ( )2

0 , 'σ ρ=r , ( )'
0 , ' '= g rφ et ( )', ', ' '=x β u e , on a, comme dans le cas d’un seul 

facteur aléatoire,  

 ( ) ( ) ( )0 1 0L ; L ; L ; cste= + +x r e g uφ , (111) 

et 

 [ ]( ) [ ]( ) [ ]( )0 1 0Q Q Qt t t cste= + +r gφ;φ ;φ ;φ . (112) 

Dans (112),  

 [ ]( ) [ ] ( )1
02Q ln 2 ln tr E 't t

cN π − − = + +  r R R ee;φ , (113a) 

 [ ] ( )[ ] 1
1 02Q ( ; ) ln 2 ln tr E 'tt

cqK π − − = + +  g G G uuφ , 

soit, compte tenu du fait que 0= ⊗G G A  

 [ ] 1 [ ]
1 0 0 02Q ( ; ) ln 2 ln ln tr( )t tqK K qπ −− = + + +g A G G Ωφ , (113b) 

avec  

 ( )
[ ] ( ){ }[ ] ' 1 [ ]

x E | ,tt t
K K kl k lϖ −= =Ω u A u y γ .  (114) 

A la phase M, on maximise (113a) et (113b) par rapport respectivement à r  et g . Par 

application d’un lemme d’Anderson (1984 ; page 62, 3.2.2) cela conduit à : 

 [ ] [ ] ( ) [ ] ( )2 1 '
0 1

E ' / E /Nt t t
c c i ii

N Nσ +

=
 = =  ∑e e e e , (115a) 

 [ ] [ ]1
0 /t t q+ =G Ω .   (115b). 

                                                 
10 vech(X) est la notation de vectorisation d’une matrice, homoloque de vec(X), mais qui s’applique à une 
matrice symétrique, seuls les éléments distinctifs étant pris en compte (Searle, 1982).  
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On s’est limité ici au cas simple où 2
0 Nσ=R I , mais on peut aussi traiter des structures plus 

complexes comme par exemple celle de l’autorégression (Foulley et al., 2000). 

Comme dans le cas monofactoriel, l’espérance des formes quadratriques et bilinéaires 

intervenant en (108ab) peut s’obtenir à partir des équations du modèle mixte d’Henderson soit 

ici, à titre d’exemple pour 2K =  :  

 
1 2

' ' 2 11 1 ' 2 12 1 '
1 1 1 0 1 2 0 1 1
' ' 2 21 1 ' 2 22 1 '
2 2 1 0 2 2 0 2 2

ˆ' ' ' '
ˆ
ˆ

σ σ σ σ
σ σ σ σ

− −

− −

    
    + + =    
 + +       

X X X Z X Z β X y
Z X Z Z A Z Z A u Z y
Z X Z Z A Z Z A u Z y

, (116) 

où 
111 12

11 12
21 22

12 22

σ σσ σ
σ σσ σ

−
   

=   
  

.  

2.3.2. PX-EM 

Pour mettre en œuvre cet algorithme, on introduit des paramètres de travail sous la forme ici 

d’une matrice { }klα=α  carrée ( )xK K  réelle inversible telle qu’au modèle d’origine en 

(110) (dit modèle O) se substitue le nouveau modèle (dit modèle X), 

 i i i i i= + +y X β Z αu e , (117) 

ou encore, avec une écriture par facteur, 
1

K
k kl ll

α
=

= ∑u u . 

Par définition, les iu  sont tels que 0*( x1) ~ ( , )i Ku 0 GN  où 1 1
0* 0( ) '− −=G α G α , la loi des iu  

apparaissant en quelque sorte comme une extension paramétrique de celle des iu . En 

particulier, pour la valeur de référence 0 K=α I , la loi de ( )0iu α se réduit à celle de iu .  

Posons ( )' , vec ' ' =  φ α∗φ  avec ( )' '
0* *, '= g r∗φ  et [ ] [ ] [ ]( ) ( ),0

0', vec vec ' 't t t = = φ α α∗φ = φ . 

L’étape E consiste en l’explicitation de [ ]( ),0Q ; tφ φ . Le fait de travailler conditionnellement 

aux paramètres de la loi des ( )0iu α  offre l’avantage de ne rien changer à l’étape E de l’EM 

standard (EMO).  

La maximisation de [ ]( ),0
1 0*Q ; tg φ par rapport à 0*g  revient à celle de 0g  sous EMO soit  

 [ ] [ ]1
0* /t t q+ =G Ω , (118) 

où [ ]tΩ  est le même qu’en (114). 
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Ensuite, on maximise [ ]( ),0
0 *Q , ; tα r φ  dont les dérivées partielles par rapport aux éléments de 

( )vec α  s’écrivent : 

 ( ) [ ] [ ]2 ' '0
0 01

Q E | , ,I t t
i i i i i ii

kl kl

σ
α α

−
=

 ∂ ∂
= − − = ∂ ∂ 

∑ αu Z y X β Z αu y α α∗φ = φ , 

où ici 2
0 ii nσ=R I .  

La résolution de ces 2K  équations ne fait pas intervenir 2
0σ  et se réduit, à une itération 

donnée, à celle du système linéaire ec( )v =F α h , soit encore 

 [ ] [ ] [ ]1
,1 1

;  , 1,2,...,K K t t t
kl mn mn klm n

f h k l Kα +

= =
= =∑ ∑  (119) 

où 

 [ ] ( ) [ ],0' '
, tr E | ,t t

kl mn k m n lf  =  Z Z u u y φ , (120a) 

 [ ] ( ) [ ]{ },0' 'tr E | ,t t
kl k lh  = − Z y Xβ u y φ .  (120b) 

Soit '
kl k l=T Z Z , and 

( x1)

' ( ) '
qk k= −v Z y Xβ et E (.)c  désignant l’espérance conditionnelle 

sachant [ ],0, ty φ , le membre de gauche qui est symétrique s’exprime par (exemple de 2K = ): 

 

 11 12 21 22 

11 1 11 1'E ( )c u T u  
1 11 2'E ( )c u T u  

1 12 1'E ( )c u T u  
1 12 2'E ( )c u T u  

12  2 11 2'E ( )c u T u  
2 12 1'E ( )c u T u  

2 12 2'E ( )c u T u  

21   1 22 1'E ( )c u T u  
1 22 2'E ( )c u T u  

22    2 22 2'E ( )c u T u  

 
et celui de droite: 

 
 11 12 21 22 

 1 1E ( ' )c u v  
2 1E ( ' )c u v  

1 2E ( ' )c u v  
2 2E ( ' )c u v  

 

Les calculs correspondants peuvent être effectués en utilisant les équations du modèle mixte 

décrites précédemment en (116), c’est-à-dire (en ignorant les indices supérieurs) 

 ( )' ' 2
, 0ˆ ˆtr

n lkl mn k m n l u uf σ = + Z Z u u C , (121a) 

 ( )' ' ' ' 2
0

ˆˆ ˆtr
lkl l k k l uh βσ = − + u Z y Z X βu C , (121b) 
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où '
k mZ Z  est le bloc relatif aux effets ku  et mu dans la matrice des coefficients ; '

kZ X  est le 

bloc correspondant à ku  et β  ; 
k mu uC  et '

k ku uβ β=C C  sont les blocs homologues dans l’inverse 

de la matrice des coefficients ; '
kZ y  est le sous vecteur du second membre relatif à ku  ; β̂  et 

ˆ ku sont les solutions de β  et ku . 

La matrice des coefficients [ ]1t+α  étant obtenue, on revient à 0G  par  

 [ ] [ ] [ ] [ ]1 1 1 1
0 0* ( ) 't t t t+ + + +=G α G α .  (122) 

Enfin, quant à 2
0σ , la maximisation de [ ]( ),02

0 0Q , | tσα φ  conduit à: 

 [ ]( ),02[ 1]
0 E ' | , /tt Nσ + = e e y φ , (123) 

la résiduelle e  étant ajustée en fonction de ]1[ +tα  via i
t

iii uαZβXy ~]1[ +−− . Un procédé rapide 

consiste en une maximisation conditionnelle basée sur K=α I  ce qui redonne la formule 

classique de l’EM0.  

Quoiqu’il en soit, le nombre d’itérations nécessaires à la convergence à une précision donnée 

s’avère considérablement réduit par rapport à la version standard EM0 de l’algorithme. 

Le nombre d’itérations est réduit d’un facteur de l’ordre de 3 à 4 comme le montre la figure 2 

relative à la variance de l’intercept dans l’analyse de données de croissance (Foulley et van 

Dyk, 2000).  

 
Fig 2 : Séquences typiques d’itérations EMO et PX-EM 

Par ailleurs, on a pu observer que cette version PX permet d’obtenir des estimations REML 

d’une matrice de variance y compris en bordure de l’espace paramétrique alors que les autres 

algorithmes ne convergent pas (Delmas et al., 2002).  
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On peut également combiner la modélisation à plusieurs facteurs aléatoires corrélés et celle de 

variances hétérogènes ; un exemple en est fourni par les modèles à coefficients aléatoires 

hétéroscédastiques (Robert-Granié et al., 2002). D’un point de vue algorithmique, 

l’algorithme EM permet très bien de réaliser cette synthèse sur la base des techniques 

présentées précédemment (Foulley et Quaas, 1995).  

 

Conclusion 

L’algorithme EM trouve dans le calcul des estimateurs du maximum de vraisemblance des 

composantes de la variance du modèle linéaire mixte un terrain d’application privilégié. Il 

permet d’obtenir aussi bien des estimations ML que REML avec dans les deux cas des 

expressions très simples. Un des avantages de l’algorithme - et non des moindres- est qu’il 

assure le maintien des valeurs dans l’espace des paramètres. Sa flexibilité est telle qu’on 

l’adapte facilement à des situations plus complexes telles que celles par exemple de variances 

hétérogènes décrites par des modèles loglinéaires structuraux. On peut également améliorer 

très significativement ses performances par standardisation des effets aléatoires, et plus 

généralement, grâce à la technique d’extension paramétrique qui apparaît très prometteuse y 

compris dans ses prolongements stochastiques. A cet égard, dans le cadre d’un modèle très 

proche de (110),  

 ( )0;  ,i i i i i i= + + ∼y X β Z u e u ξ GN ,  

van Dyk et Meng, (2002) proposent cette fois une transformation affine des effets aléatoires 
1

i i
−= +u α u η  qu’ils introduisent dans un algorithme d’augmentation de données en 

considérant des a priori gaussiens sur vec( )α  et η . Cet algorithme comparé à la procédure 

standard sur quelques exemples s’avère très performant pourvu que la matrice de 

transformation α  soit complète et non pas triangulaire comme cela avait été déjà remarqué 

par van Dyk (2000) et Foulley et van Dyk (2000).  

Enfin, il faut être pleinement conscient que le champ d’application de l’algorithme est 

beaucoup plus vaste que celui abordé ici. Maintes modélisations font appel à des structures 

cachées qui peuvent donner lieu à une inférence ML via l’algorithme EM. Un domaine 

particulièrement propice à cette approche réside dans les modèles de Markov cachés. Ceux-ci 

sont par exemple utilisés dans l’analyse des séquences biologiques comme celles de l’ADN. 

Dans ces modèles, la succession des états cachés représente l’hétérogénéité de la séquence. 

Les paramètres sont trop nombreux et le calcul de la vraisemblance trop complexe pour faire 

l’objet d’une maximisation directe. Diverses approches sont possibles pour contourner ces 
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difficultés, mais l’algorithme EM s’avère encore la méthode à la fois la plus simple à mettre 

en œuvre et la plus efficace (Nicolas et al., 2002).  



 

127

 

REFERENCES 
 

Anderson T.W. (1984), An introduction to multivariate analysis, J Wiley and Sons, New 
York. 
 
Anderson D.A., Aitkin M. (1985), Variance components models with binary response : 

interviewer probability, Journal of the Royal Statistical Society B, 47,203-210. 
 
Aitkin M. (1987), Modelling variance heterogeneity in normal regression using GLIM, 

Applied Statistics, 36, 332-339. 
 
Booth J.G., Hobert J.P. (1999), Maximizing generalized linear mixed model likelihoods with 

an automated Monte Carlo EM algorithm, Journal of the Royal Statistical Society B, 
61,265-285. 

 
Boyles R.A. (1983), On the convergence of the EM algorithm, Journal of the Royal Statistical 

Society B, 45,47-50. 
 
Celeux G., Diebolt J. (1985), The SEM algorithm: a probabilistic teacher algorithm derived 

from the EM algorithm for the mixture problem, Computational Statistics Quaterly, 2, 
73-82. 

 
Celeux G., Diebolt J. (1992), A Stochastic Approximation Type EM Algorithm for the 

Mixture Problem, Stochastics and Stochastics Reports, 41, 119-134. 
 
Celeux G., Govaert G. (1992), A classification algorithm for clustering and two stochastic 

versions. Computational Statistics and Data Analysis, 14, 315-322. 
 
Celeux G., Chauveau D., Diebolt J. (1996), Some stochastic versions of the EM algorithm. 

Journal of Statistical Computation and Simulation, 55, 287-314. 
 
Delmas C., Foulley J.L., Robert-Granié C. (2002), Further insights into tests of variance 

components and model selection, Proceedings of the 7th World Congress of Genetics 
applied to Livestock Production, Montpellier, France, 19-23 August 2002.  

 
Delyon B., Lavielle M., Moulines E. (1999), Convergence of a stochastic approximation 

version of the EM algorithm, Annals of Statistics, 27, 94-128. 
 
Dempster A., Laird N., Rubin R. (1977), Maximum likelihood estimation from incomplete 

data via the EM algorithm, Journal of the Royal Statistical Society B, 39,1-38. 
 
Efron B. (1977), Discussion on maximum likelihood from incomplete data via the EM 

algorithm (by Dempster A., Laird N., Rubin R.), Journal of the Royal Statistical Society 
B, 39,1-38. 

 
Fisher R.A. (1925), Theory of statistical estimation, Proceedings of the Cambridge 

Philosophical Society, 22, 700-725. 
 
Foulley J.L. (1993), A simple argument showing how to derive restricted maximum 

likelihood, Journal of Dairy Science, 76, 2320-2324. 



 

128

 

 
Foulley J.L. (1997), ECM approaches to heteroskedastic mixed models with constant variance 

ratios. Genetics Selection Evolution, 29, 297-318. 
 
Foulley J.L., IM S., Gianola D., Hoeschele I. (1987), Empirical Bayes estimation of 

parameters for n polygenic binary traits, Genetics. Selection Evolution, 19, 127-224. 
 
Foulley J.L., San Cristobal M., Gianola D., Im S. (1992), Marginal likelihood and Bayesian 

approaches to the analysis of heterogeneous residual variances in mixed linear Gaussian 
models, Computational Statistics and Data Analysis, 13, 291-305. 

 
Foulley J.L., Quaas R.L. (1995), Heterogeneous variances in Gaussian linear mixed models, 

Genetics. Selection Evolution, 27, 211-228. 
 
Foulley J.L., Quaas R.L., Thaon d’Arnoldi C. (1998), A link function approach to 

heterogeneous variance components, Genetics. Selection Evolution, 30, 27-43. 
 
Foulley J.L., van Dyk D.A. (2000), The PX EM algorithm for fast fitting of Henderson’s 

mixed model, Genetics Selection Evolution, 32, 143-163. 
 
Foulley J.L., Jaffrezic F., Robert-Granié C. (2000), EM-REML estimation of covariance 

parameters in Gaussian mixed models for longitudinal data analysis, Genetics Selection 
Evolution, 32, 129-141. 

 
Foulley J.L., Delmas C., Robert-Granié C. (2002), Méthodes du maximum de vraisemblance 

en modèle linéaire mixte, Journal de la Société Française de Statistique, 143, 5-52. 
 
Grimaud A., Huet S., Monod H., Jenczewski E., Eber F. (2002), Mélange de modèles mixtes : 

application à l’analyse des appariemments de chromosomes chez des haploïdes de colza, 
Journal de la Société Française de Statistique, 143, 147-153. 

 
Hartley H.O., Rao J.N.K. (1967), Maximum likelihood estimation for the mixed analysis of 

variance model, Biometrika, 54, 93-108. 
 
Harville D.A. (1974), Bayesian inference for variance components using only error contrasts, 

Biometrika, 61, 383-385. 
 
Harville D.A. (1977), Maximum likelihood approaches to variance component estimation and 

to related problems, Journal of the American Statistical Association, 72, 320-340. 
 
Henderson C.R. (1973), Sire evaluation and genetic trends, In: Proceedings of the animal 

breeding and genetics symposium in honor of Dr J Lush. American Society Animal 
Science-American Dairy Science Association, 10-41, Champaign, IL. 

 
Henderson C.R. (1984), Applications of linear models in animal breeding, University of 

Guelph, Guelph, 1984. 
 
Kuhn E., Lavielle M. (2002), Coupling a stochastic approximation version of EM with a 

MCMC procedure, Rapport technique, Université Paris Sud, 15pages. 
 



 

129

 

Laird N.M. (1982), The computation of estimates of variance components using the EM 
algorithm, Journal of Statistical Computation and Simulation, 14, 295-303. 

 
Laird N.M., Ware J.H. (1982), Random effects models for longitudinal data, Biometrics, 38 

963-974.  
Laird N.M., Lange N., Stram D. (1987), Maximum likelihood computations with repeated 

measures: Application of the EM algorithm. Journal of the American Statistical 
Association, 82, 97-105. 

 
Lange K. (1995), A gradient algorithm locally equivalent to the EM algorithm, Journal of the 

Royal Statistical Society B, 57, 425-437. 
 
Leonard T. (1975), A Bayesian approach to the linear model with unequal variances, 

Technometrics, 17, 95-102. 
 
Leonard T., Hsu JSJ. (1999), Bayesian methods, an analysis for statisticians and 

interdisciplinary researchers, Cambridge University Press, Cambridge, UK. 
 
Liang K.Y., Zeger S.L. (1986), Longitudinal data analysis using generalized linear models, 

Biometrika, 73, 13-22. 
 
Liao J.G., Lipsitz S.R. (2002) A type of restricted maximum likelihood estimator of variance 

components in generalized linear mixed models, Biometrika, 89, 401-409. 
 
Lindley D.V., Smith A.F.M. (1972), Bayes Estimates for the Linear Model, Journal of the 

Royal Statistical Society B, 34, 1-41. 
 

Lindström M.J., Bates D.M. (1988), Newton-Raphson and EM algorithms for linear mixed 
effects models for repeated measures data, Journal of the American Statistical 
Association, 83, 1014-1022. 

 
Liu C., Rubin D.B. (1994), The ECME algorithm: a simple extension of the EM and ECM 

with faster monotone convergence, Biometrika, 81, 633-648. 
 
Liu C., Rubin D.B., Wu Y.N. (1998), Parameter expansion to accelerate EM: the PX-EM 

algorithm, Biometrika, 85, 755-770. 
 
Liu J.S., Wu Y.N. (1999), Parameter expansion scheme for data augmentation, Journal of the 

American Statistical Association, 94, 1264-1274. 
 
Louis T.A. (1982), Finding the observed information matrix when using the EM algorithm, 

Journal of the Royal Statistical Society B, 44, 226-233. 
 
McLachlan G.J., Bashford K.E. (1988) Mixture models: inferences and applications to 

clustering, Marcel Dekker, New York. 
 
McLachlan G.J., Krishnan T. (1997), The EM algorithm and extensions, John Wiley & Sons, 

New York.  
 
McLachlan G.J., Peel D. (2000), Finite mixture models, John Wiley & Sons, New York.  



 

130

 

 
Meng X.L. (2000) Missing data: dial M for ???, Journal of the American Statistical 

Association, 95, 1325-1330. 
 
Meng X.L., Rubin D.B. (1991), Using EM to obtain asymptotic variance-covariance matrices: 

the SEM algorithm, Journal of the American Statistical Association, 86, 899-909. 
 
Meng X.L., Rubin D.B. (1993), Maximum likelihood estimation via the ECM algorithm: a 

general framework, Biometrika, 80, 267-278. 
 
Meng X.L., van Dyk D.A. (1997), The EM algorithm-an Old Folk-song Sung to a Fast New 

Tune, Journal of the Royal Statistical Society B 59, 511-567. 
 
Meng X.L., van Dyk D.A. (1998), Fast EM-type implementations for mixed effects models, 

Journal of the Royal Statistical Society B 60, 559-578. 
 
Nair V.N., Pregibon D. (1988), Analyzing dispersion effects from replicated factorial 

experiments, Technometrics, 30, 247-257. 
 
Nicolas P., Bize L., Muri F., Hoebeke M., Rodolphe F., Ehrlich S., Prum B., Bessières P. 

(2002), 
Mining bacillus subtilis chromosome heterogeneities using hidden Markov models, 
Nucleic Acid Research, 30, 1418-1426. 

 
Nielsen S.F. (2000), The stochastic EM algorithm: estimation and asymptotic results, 

Bernoulli, 6, 457-489. 
 
Patterson H.D., Thompson R. (1971), Recovery of inter-block information when block sizes 

are unequal, Biometrika, 58, 545-554. 
 
Rao C.R. (1973), Linear Statistical Inference and its Applications, 2nd edition. Wiley, New-

York. 
 
Rao C.R., Kleffe J. (1988), Estimation of variance components and applications, North 

Holland series in statistics and probability, Elsevier, Amsterdam. 
 
Robert-Granié C., Ducrocq V., Foulley J.L. (1997), Heterogeneity of variance for type traits 

in the Montbéliarde cattle. Genetics Selection Evolution, 29, 545-570. 
 
Robert-Granié C., Bonaiti B., Boichard D., Barbat A. (1999), Accounting for variance 

heterogeneity in French dairy cattle genetic evaluation, Livestock Production Science, 
60, 343-357. 

 
Robert-Granié C., Heude B., Foulley J.L. (2002), Modelling the growth curve of Maine Anjou 

beef cattle using heteroskedastic random regression models. Genetics Selection 
Evolution, 34, 423-445. 

 
Robert C.P. (1996) Mixtures of distributions: inference and estimation, In Markov Chain 

Monte Carlo in Practice (Gilks W.R., Ricardson S., Spiegelhalter D.J., editors), 
Chapman & Hall, London, 441-464. 



 

131

 

 
Robert C.P., Casella G. (1999), Monte Carlo Statistical Methods, Springer, Berlin. 
 
San Cristobal M., Robert-Granié C., Foulley J.L. (2002), Hétéroscédasticité et modèles 

linéaires mixtes: théorie et applications en génétique quantitative, Journal de la Société 
Française de Statistiques, 143, 155-165. 

 
Searle S.R. (1992), Matrix algebra useful for statistics, J Wiley and Sons, New-York. 
 
Searle S.R., Casella G., Mc Culloch C.E. (1992), Variance components, J Wiley and Sons, 

New-York. 
 
Smith S.P., Graser H.U. (1986), Estimating variance components in a class of mixed models 

by restricted maximum likelihood, Journal of Dairy Science, 69, 1156-1165. 
 
Tanner M.A. (1996), Tools for Statistical Inference: Methods for the Exploration of Posterior 

Distributions and Likelihood Functions, Springer, New York. 
 
Tanner M.A., Wong W.H. (1987), The calculation of posterior distributions by Data 

Augmentation (with discussion), Journal of the American Statistical Association, 82, 
528-550. 

 
Titterington D.M. (1984), Recursive parameter estimation using incomplete data, Journal of 

the Royal Statistical Society B, 46, 257-267. 
 
Titterington D.M., Smith A.F.M., Makov U.E. (1985) Statistical Analysis of Finite Mixture, 

John Wiley & Sons, New York. 
 
Thompson R. (2002), A review of genetic parameter estimation, Proceedings of the 7th World 

Congress of Genetics applied to Livestock Production, Montpellier, France, 19-23 
August 2002.  

 
van Dyk D.A. (2000), Fitting mixed-effects models using efficient EM-type algorithms, 

Journal of Computational and Graphical Statistics, 9, 78-98. 
 
van Dyk D.A, Meng X.L. (2001), The art of data augmentation, Journal of Computational 

and Graphical Statistics 10, 1-50. 
 
Wei G.C.G., Tanner M.A.(1990), A Monte Carlo implementation of the EM algorithm and 

the poor man’s data augmentation algorithms, Journal of the American Statistical 
Association, 85, 699-704. 

 
Weir B.S. (1996), Genetic data analysis II, Sinauer associates, Sunderland, Massachussets. 
 
Wolfinger R.D., Tobias R.D. (1998), Joint estimation of location, dispersion, and random 

effects in robust design, Technometrics, 40, 62-71. 
 
Wu C.F.J. (1983), On the convergence properties of the EM algorithm. Annals of Statistics, 

11, 95-103. 
 



 

132

 

Wu R., Ma C-X., Little R.C., Casella G.(2002) A statistical model for the genetic origin of 
allometric scaling laws in biology, Journal of Theoretical Biology, 219, 121-135. 



 

133

 

ANNEXE A 

 
Score et hessien : résultats de base  

1. Dérivée première 
 
Par définition de la dérivée logarithmique, il vient 

 ( ) ( )
( )

ln g | g | 1
g |

∂ ∂
=

∂ ∂
y y

y
φ φ

φ φ φ
 . (A.1) 

Or la densité marginale correspond à  
 ( ) ( )g | f , | d= ∫y y z zφ φ , 

d’où sa dérivée 

 ( ) ( )g | f , |
d

∂ ∂
=

∂ ∂∫
y y z

z
φ φ

φ φ
 (A.2) 

Le terme sous le signe somme peut de nouveau être développé comme une dérivée 
logarithmique en  

 ( ) ( ) ( )f , | ln f , |
f , |

∂ ∂
=

∂ ∂
y z y z

y z
φ φ

φ
φ φ

, (A.3) 

en explicitant aussi la densité conjointe en fonction des densités marginale et conditionnelle, 
 ( ) ( ) ( )f , | g | h | ,=y z y z yφ φ φ . (A.4) 
En reportant l’expression de (A.4) dans (A.3) puis celle-ci dans (A.2) et (A.1), il vient :  

 ( )
( )

( ) ( ) ( )ln g | ln f , |1 g | h | , d
g |

∂ ∂
=

∂ ∂∫
y y z

y z y z
y

φ φ
φ φ

φ φ φ
, 

soit après simplification, 

 ( ) ( ) ( )ln g | ln f , |
h | , d

∂ ∂
=

∂ ∂∫
y y z

z y z
φ φ

φ
φ φ

, (A.5) 

ou encore, 

 ( ) ( )ln g | ln f , |
Ec

∂ ∂ 
=  ∂ ∂ 

y y zφ φ
φ φ

, (A.6) 

l’espérance notée ( )E .C  étant prise par rapport à la densité de | ,z y φ .  

2. Dérivée seconde 

Dérivons à nouveau l’expression précédente (A.5), il vient : 

 

( ) ( ) ( )

( ) ( ) ( )

2 2ln g | ln f , |
h | , d

' '
ln f , | ln h | ,

h | , d
'

∂ ∂
=

∂ ∂ ∂ ∂

∂ ∂
∂ ∂

∫

∫

y y z
z y z

y z z y
z y z

φ φ
φ

φ φ φ φ

φ φ
+ φ

φ φ

 (A.7) 

Or, par définition de ( )h | ,z y φ ,  

 ( ) ( ) ( )ln h | , ln f , | ln g |∂ ∂ ∂
= −

∂ ∂ ∂
z y y z yφ φ φ
φ φ φ

. 
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En reportant dans (A.7), on obtient 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2ln g | ln f , | ln f , | ln f , |
E E

' ' '

ln g | ln f , |
h | , d

'

C C

 ∂ ∂ ∂ ∂   
= +     ∂ ∂ ∂ ∂ ∂ ∂    

∂ ∂
−

∂ ∂∫

y y z y z y z

y y z
z y z

φ φ φ φ
φ φ φ φ φ φ

φ φ
φ

φ φ

 

et eu égard à (A.5 et 6), on en déduit que :  

 ( ) ( ) ( )2 2ln g | ln f , | ln f , |
E Var

' 'C C

 ∂ ∂ ∂ 
= +   ∂ ∂ ∂ ∂ ∂  

y y z y zφ φ φ
φ φ φ φ φ

. (A.8) 
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ANNEXE B 
 

Eléments de l’expression de la variance résiduelle en EM 

 

1. Démonstration de ( ) ( )ˆ ˆ ˆ ˆ ˆ' ' ' ' 'λ− − = − −y Tθ y Tθ y y θ T y u u , (B.1) 

Partons des équations du modèle mixte sous leur forme condensée 

 ( ) ˆ' '+ =T T Λ θ T y , (B.2) 

où ( ),=T X Z , ( )', ' '=θ β u  et 
qλ

 
=  

 

0 0
Λ

0 I
 

En multipliant le système (B.2) à gauche par ˆ 'θ , il vient : 

 ( )ˆ ˆ ˆ' ' ' '+ =θ T T Λ θ θ T y  

En introduisant cette égalité dans ( ) ( )ˆ ˆ ˆ ˆ ˆ' ' 2 ' ' ' '− − = − +y Tθ y Tθ y y θ T y θ T Tθ , on obtient : 

 ( ) ( )ˆ ˆ ˆ ˆ ˆ' ' ' ' '− − = − −y Tθ y Tθ y y θ T y θ Λθ  

et cela, adjoint au fait que ˆ ˆ ˆ ˆ' 'λ=θ Λθ u u , établit la démonstration de (B.1).  

2. Démonstration de ( ) ( )tr ' rang( ) tr uuq λ= + −CT T X C  (B.3) 

La matrice C  vérifie par définition la relation suivante : 

 ( )' p q++ =C T T Λ I  (B.4) 

On suppose pour simplifier l’écriture que ( )xN pX  est de plein rang. 

Dans ces conditions,  

 ' p q+= −CT T I CΛ  

et, posant u

u uu

ββ β

β

 
=  

 

C C
C

C C
,  

 ( ) ( )tr ' tr uup q λ= + −CT T C , QED 
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ANNEXE C 
 
Variances hétérogènes : dérivées intervenant à la phase M  

La fonction Q à maximiser présente la forme suivante : 

 [ ]( ) ( )2 ' 2
0, 0,1 1

Q ½ ln 2 ln E /I It
i i c i i ii i

N nπ σ σ
= =

 = − + + ∑ ∑ e eφ;φ , (C.1) 

avec 

 2 '
1,ln i iσ = p δ , (C.2) 

 'ln i iτ = h λ , (C.3) 

et, 

 *
0,i i i i i iτ σ= − −e y X β Z u . (C.4) 

1. Dérivée première par rapport à δ  

L’application des dérivées de fonctions en chaîne conduit à : 

 
2
0,

21
0,

lnQ Q
ln

I i
i

i

σ
σ=

∂∂ ∂
=

∂ ∂ ∂∑δ δ
 

Or 

 2
0,2 2

0, 0,

Q Q
ln i

i i

σ
σ σ

∂ ∂
=

∂ ∂
 

 
2
0,ln i

i

σ∂
=

∂
p

δ
 

soit 

 
( ) ( )' '

2 2 4 2 2
0, 0, 0, 0, 0,

E EQ 1 1
2

c i i c i ii

i i i i i

n
σ σ σ σ σ

 ∂∂
= − − + 

∂ ∂  

e e e e
, 

 
( ) ( )' ' '

0,
2 2
0, 0, 0, 0, 0,

E E 1 2 E
2

c i i c i ii i
c i

i i i i i

σ
σ σ σ σ σ

 ∂ ∂  ∂ ∂
= =   ∂ ∂ ∂ ∂   

e e e e e e  

et, 

 *

0,

i
i i

i

τ
σ
∂

= −
∂

e Z u  

D’où 

 
( ) ( )' *' '

2 2 4 3
0, 0, 0, 0,

E EQ 1
2

c i i c i ii
i

i i i i

n τ
σ σ σ σ

 ∂
= − − − 

∂   

e e u Z e
. 
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Soit , 2
0,

Q
lni

i

vδ σ
∂

=
∂

 tel que ,1

Q 'I
i ii

vδ δ=

∂
= =

∂ ∑ p P v
δ

, le terme ,ivδ  s’exprime par : 

 ( )
, 2

0,

E '1
2

c i i i
i i

i

v nδ σ
 −

= − 
 

y X β e
. (C.5) 

2.. Dérivée première par rapport à λ  

En suivant la même démarche que précédemment, on a : 

 
( )'

21
0,

EQ 1 ln
ln

I c i i i i
i

i i i

τ τ
σ τ τ=

∂∂ ∂ ∂
=

∂ ∂ ∂ ∂∑
e e

λ λ
, 

avec 

 
( )' 'E

2 Ec i i i
c i

i iτ τ
∂   ∂

=   ∂ ∂  

e e e e , 

 *
0,

i
i i

i

σ
τ

∂
= −

∂
e Z u  

 
ln

i
i

i

τ τ
τ

∂
=

∂
, 

et 

 ln i
i

τ∂
=

∂
h

λ
. 

D’où 

 ,1

Q 'I
i ii

vλ λ=

∂
= =

∂ ∑ h H v
λ

,  

avec 

 ( )*' '
,

0,

Ei
i c i i

i

vλ
τ

σ
= u Z e . (C.6) 

3. Dérivée seconde par rapport à δ  

Posons 

 
2

'
,1

Q '
'

I
ii i ii

wδδ δδ=

∂
− = =

∂ ∂ ∑ p p P W P
δ δ

, 

où 

 , 2 ,
, 0,2 2

0, 0,ln
i i

ii i
i i

v v
w δ δ

δδ σ
σ σ

∂ ∂
= − = −

∂ ∂
. 

Or 
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 ( ) ( ),
2 4 2 2
0, 0, 0, 0,

E '1 1E '
2 2

c i i ii
c i i i

i i i i

vδ

σ σ σ σ
∂ − ∂  = − − +  ∂ ∂

y X β e
y X β e , 

 

 
( ) ( ) ( ) *

2
0, 0, 0, 0,

E ' 1 E ' E '
2 2

c i i i i i
c i i c i i i

i i i i

τ
σ σ σ σ

∂ −    ∂   = − = − −   ∂ ∂ 

y X β e ey X β y X β Z u , 

et 

 
( )

( ) ( ) ( ) *
2 2
0, 0, 0,

E ' 1 E ' E 'c i i i i
c i i i i c i i i

i i i

τ
σ σ σ
−    = − − − −    

y X β e
y X β y X β y X β Z u , 

d’où 

 ( ) ( ) ( )0, *
, 2

0,

1 E ' E '
2 2

i i
ii c i i i i c i i i

i

wδδ

τ σ
σ

  = − − − −      
y X β y X β y X β Z u . (C.7) 

4. Dérivée seconde par rapport à λ  

De la même façon,  

 
2

'
,1

Q '
'

I
ii i ii

wλλ λλ=

∂
− = =

∂ ∂ ∑ h h H W H
λ λ

 

où 

 , ,
, ln

i i
ii i

i i

v v
w λ λ

λλ τ
τ τ

∂ ∂
= − = −

∂ ∂
, 

 

( )

( ) ( ){ } ( )

*' '
, *' '

0, 0,

*' ' *' ' * *' ' *
0,

0,

E
E

1 E E E

c i ii i i
c i

i i i i

c i i i i i c i i i c i i
i

vλ τ
τ σ σ τ

τ σ τ
σ

 ∂  ∂
= +   ∂ ∂  

 = − − − − 

u Z e eu Z

u Z y X β u Z Z u u Z Z u
 

d’où 

 ( ) ( )*' ' * *' '
,

0,

12 E Eii i i c i i c i i i
i

wλλ τ τ
σ

   = − −    
u Z Z u u Z y X β . (C.8) 

 

5. Dérivée seconde croisée −δ λ  

Soit   
2

'
,1

Q '
'

I
ii i ii

wδλ δλ=

∂
− = =

∂ ∂ ∑ p h P W H
δ λ

, 

où  

 , ,
, ln

i i
ii i

i i

v v
w δ δ

δλ τ
τ τ

∂ ∂
= − = −

∂ ∂
, 
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 ( ),
2
0,

1 E '
2

i i
c i i

i i i

vδ

τ σ τ
 ∂  ∂

= −  ∂ ∂  

ey X β . 

Comme *
0,

i
i i

i

σ
τ

∂
= −

∂
e Z u , 

 ( ) *
, 0,2

0,

1x x E '
2ii i i c i i i

i

wδλ τ σ
σ

 = − − − y X β Z u , 

c’est-à-dire 

 ( ) *
,

0,

E '
2

i
ii c i i i

i

wδλ
τ
σ

 = − y X β Z u . (C.9) 

On vérifie aisément la propriété de symétrie des dérivées, soit 

 ( )
2

'
,1

Q ' ' '
'

I
ii i ii

wλδ λδ δλ=

∂
− = = =

∂ ∂ ∑ h p H W P P W H
λ δ

 avec δλ λδ=W W  

6. Espérances des dérivées secondes 

Soit à expliciter : ( ), ,Eii iiw wδδ δδ= , ( ), ,Eii iiw wαδ αδ=  et ( ), ,Eii iiw wαα αα= .  

Par définition 

 ( ){ } ( )E E ' | , E 'i i i i i i− = −      y y X β e y y X β eφ . 

Comme *u  et ie  ne sont pas corrélés,  

 ( ) ( )' 2
0,E ' Ei i i i i i in σ− = =  y X β e e e . 

De même, 

 ( ) ( ) ( )* *' ' * '
0, 0,E ' E tri i i i i i i i i i iτ σ τ σ − = = y X β Z u u Z Z u Z Z A .  

Dans ces conditions, ,iiwδδ se réduit à 

 ( )2 '
, ½ tr / 2ii i i i iw nδδ τ = + Z Z A .  

De même : ( )2 '
, ½ trii i i iwδλ τ= Z Z A  et ( )2 '

, trii i i iwλλ τ= Z Z A .  

 


