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Microarray CGH technology

- Known effects of big size chromosomal aberrations (ex: trisomy).

� experimental tool: Karyotype (Resolution � chromosome).

- Change of scale: what are the effects of small size DNA sequences dele-
tions/amplifications?

� experimental tool: "conventional" CGH (resolution � 10Mb).

- CGH= Comparative Genomic Hybridization : method for the comparative
measurement of relative DNA copy numbers between two samples (normal/disease,
test/reference).

� Application of the microarray technology to CGH : 1997.

� last generation of chips: resolution � 100kb.



Microarray technology in its principle



Interpretation of a CGH profile
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First step of the statistical analysis

Break-points detection in a gaussian signal

-

� � � ������ � � � �	� 


a random process such that

��� � 
 ��� �� � �� 


.

- Suppose that the parameters of the distribution of the

��� are affected by K-1
abrupt-changes at unknown coordinates

� � ��� � �� � � � ��� � � 
 .
- Those break-points define a partition of the data into

�

segments of size �� :�� � � � � � �  � � � ��� � �  ! �

�� � � ��� � � �� !�
- Suppose that those parameters are constant between two changes:"� � �� � �� � 
 � � � � � �� 
�

- The parameters of this model are :� � ��� ���� � � � � � � � 
�# � �$ � �� � � � $ � 
� $ � � ��� � � � �� 
�

- Break-points detection aims at studying the spatial structure of the signal.



Estimating the parameters in a model of
abrupt-changes detection

Log-Likelihood
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Estimating the parameters with

�

fixed by maximum likelihood

- Joint estimation of

�

and

#

with dynamic programming.
- Necessary property of the likelihood : additivity in

�

(sum of local likeli-
hoods calculated on each segment).

Model Selection : choice of

�

- Penalized Likelihood :

� � � ��� � �� �

�

� � �� � ��� �� � � � 
 �

.

- With �� � � � 
 � � �

.
-

�

is adaptively estimated to the data (Lavielle(2003)).



Example of segmentation on array CGH data
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Considering biologists objective and the need for
a new model
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A new model for segmentation-clustering purposes

- We suppose there exists a secondary underlying structure of the segments
into

�

populations with weights � � �� � � � �� �
�

�
�

� � 


.

- We introduce hidden variables,

��
� indicators of the population of origin of

segment

�

.

- Those variables are supposed independent, with multinomial distribution:� �� � �� � � � �� � 
 � � � �	 � ��� � � � �� 
�
- Conditionnally to the hidden variables, we know the distribution of

�

:
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- It is a model of segmentation/clustering.
- The parameters of this model are

� � � � ���� � � � ��� � � 
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Likelihood and statistical units of the model

- Mixture Model of segments :

� the statistical units are segments :

� �

,

� the density of

��

is a mixture density:
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- Classical mixture model :

� the statistical units are the

� �s,
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An hybrid algorithm for the optimization of the
likelihood

Alternate parameters estimation with

�

and

�

known

1 When

�

is fixed, the EM algorithm estimates

#

:

� # � � � � � � � � � � � �
�

� � � � �� �
� #� � � � � � �
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2 When

#

is fixed, dynamic programming estimates
�

:
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An increasing sequence of likelihoods:
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Mixture Model when the segmentation is knwon

Mixture model parameters estimators

����
�

�

� �
�

� �� � 	 �$
�




�
� � � � � �

� �� � 	 �$
�


�

- the estimator the the mixing proportions is:
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- In the gaussian case,
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- Big size vectors will have a bigger impact in the estimation of the parameters,
via the term � ����

�

��



Influence of the vectors size on the affectation (MAP)

- The density of

��

can be written as follows:
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: distance of the mean of vector
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to population �

� � �� �� � �� �� 


: intra-vector

�

variability

- Big size Individuals will be affected with certitude to the closest population
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Segmentation with a fixed mixture

Back to dynamic programming

- the incomplete mixture log-likelihood can be written as a sum of local log-
likelihoods:

�� � � �� # 
 � � �� � �� �	 # 

- the local log-likelihood of segment

�

corresponds to the mixture log-density
of vector

��
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-

��� � �� � � �� # 


can be optimized in
�

with

#
fixed, by dynamix programming.



A decreasing log-Likelihood?
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What is going on?
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Explaining the behavior of the likelihood

Optimization of the incomplete likelihood with dynamic programming:

� � � �� � � �	 # 
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Hypothesis:
1 We suppose that the true number of segments is

� �
and that the partitions are

nested for

� � � �

.

� Segment

��

is cut into

� �� � � �� � 


:
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2 We suppose that if
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An intrinsic penality

Under hypothesis 1-2:

" � � � �� � � � � �
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The log-likelihood is decomposed into two terms

- A term of fit that increases with

�

, and is constant from a certain

� �

(nested
partitions)

� �
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�

� � � � �� � 	 �$
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�
- A term of differences of entropies that decreases with

�

: plays the role of
penalty for the choice of

�
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Choosing the number of segments

�

when

�

is fixed can be done with a
penalized likelihood



Incomplete Likelihood behavior with respect to
the number of segments
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Decomposition of the log-likelihood
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Resulting clusters
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Resulting clusters
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Perspective : simultaneous choice for

�

and

�
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This is the end

Conclusions:
- Definition of a new model that considers the a priori knowledge we have about

the biological phenomena under study.
- Development of an hybrid algorithm (EM/dynamic programming) for the pa-

rameters estimation (problems linked to EM : initializtion, local maxima, de-
generacy).

- Still waiting for an other data set to assess the performance of the clustering.

Perspectives:
- Modeling :

� Comparison with Hidden Markov Models
- Model choice:

� Develop an adaptive procedure for two components.
- Other application field

� DNA sequences (in progress)


