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Microarray CGH technology I

- Known effects of big size chromosomal aberrations (ex: trisomy).
—experimental tool: Karyotype (Resolution ~ chromosome).

- Change of scale: what are the effects of small size DNA sequences dele-
tions/amplifications?

— experimental tool: ""conventional” CGH (resolution ~ 10Mb).

- CGH= Comparative Genomic Hybridization : method for the comparative
measurement of relative DNA copy numbers between two samples (normal/disease,
test/reference).

— Application of the microarray technology to CGH : 1997.
—last generation of chips: resolution ~ 100Kb.
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Microarray technology in its principle I
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Interpretation of a CGH profile I
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First step of the statistical analysis I

Break-points detection in a gaussian signal

-Y = (Y4, ...,Y,) arandom process such that Y; ~ N (uy, o).

- Suppose that the parameters of the distribution of the Y's are affected by K-1
abrupt-changes at unknown coordinates 7" = (t1, ..., tx_1).

- Those break-points define a partition of the data into & segments of size ny:
I = {t,t €lty_1, 1]},
YP={v,,t € I}}.
- Suppose that those parameters are constant between two changes:
Vte I, Y ~ N(,LLk,UI%).

- The parameters of this model are :
T = (tl, cens ?fK_1),
O = (91, c ey (9[(), Qk — (,LLk,UI%).
- Break-points detection aims at studying the spatial structure of the signal.



Estimating the parameters in a model of
abrupt-changes detection

Log-Likelihood

K K
Lx(T,0) =Y log f(y*:0:) =D log f(us; 01)
k=1

k=1 tEIk
Estimating the parameters with K fixed by maximum likelihood

- Joint estimation of 7" and © with dynamic programming.

- Necessary property of the likelihood : additivity in K (sum of local likeli-
hoods calculated on each segment).

Model Selection : choice of K
- Penalized Likelihood : K = Argmag (zK _ B x pen(K)).
K

- With pen(K) = 2K.
- 3 1s adaptively estimated to the data (Lavielle(2003)).
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Example of segmentation on array CGH data I
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Considering biologists objective and the need for
a new model
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A new model for segmentation-clustering purposes I

- We suppose there exists a secondary underlying structure of the segments
into P populations with weights my, ..., mp(>_, T, = 1).

- We introduce hidden variables, Z;, indicators of the population of origin of
segment k .

- Those variables are supposed independent, with multinomial distribution:
(Zk1y-- -y Zgp) ~ M1, ..., Tp).
- Conditionnally to the hidden variables, we know the distribution of Y :
Y¥ Zip = 1 ~ N (L, my, s21,).

- It i1s a model of segmentation/clustering.
- The parameters of this model are

T = (t1, .-, tx_1),

O = (m,...,mp;bh,...,0p), avec 6, = (m,, s,).



Likelihood and statistical units of the model I

- Mixture Model of segments
= the statistical units are segments :Y'*,
x the density of Y* is a mixture density:

K P
log Lxp(T,0) = Zlogfy 0) =) logs ¥ mf(y*:6,)
k=1 =1

* If the Y;s are independent, we have:

log Lkp(T,0) = Zlog Zﬂ-pr (y4; 6

= tE[k

- Classical mixture model :
* the statistical units are the Yt

log Lp(© Zlog Hzﬂ-pf (ys; 0

tG]kp 1



An hybrid algorithm for the optimization of the
likelihood

Alternate parameters estimation with X and P known
1 When T is fixed, the EM algorithm estimates ©:
O = Argmaz {log Lip (@, T(@)} .
e

log Lxp(OFV: TOY > log L p(0W; 7))
2 When © is fixed, dynamic programming estimates 7"

T = Argmaz {log £ o+l 7)1
gmaz {log Lcp ( )]
log L5 (é) £+1) (K—I—l)) > log Lx (é) €+1); T(ﬁ))

An increasing sequence of likelihoods:
log L p(OH); TH) > log L p(019); TY)



Mixture Model when the segmentation is knwon I

Mixture model parameters estimators

A 7Arzof(yk; ep)
Tkp - P N k ~ .
> o1 e f (Y¥; 60)
- the estimator the the mixing proportions is: m, = Z“"’p
- In the gaussian case, 6, = (m,, s;)
p 2k Thy Zte[k yt
g Zk TkpTlk
9 Dk Thp Zte[k(yt — 1hy)?
S, = — .
>k ThpTk

- Big size vectors will have a bigger impact in the estimation of the parameters,
via the term >, 7p,n



Influence of the vectors size on the affectation (MAP) I

- The density of Y* can be written as follows:

n

f(y*;0,) = exp {—7]“ (log(Zwsz) + Si% [(y_% —ui) + (g — mp)QD }

* (g, — my)? : distance of the mean of vector & to population p

* (y2 — g) © intra-vector k variability

- Big size Individuals will be affected with certitude to the closest population

Im 74, = 1| lim 7 = 0
ng—00 nj—00

lim 74,, = 7| lim7, = =«
nk—>0 P Po nk—>0 p p



Segmentation with a fixed mixture I

Back to dynamic programming

- the incomplete mixture log-likelihood can be written as a sum of local log-
likelihoods:

Lxp(T,0) = 3, tep(y*; ©)

- the local log-likelihood of segment & corresponds to the mixture log-density

of vector Y*
lrp(y*; ©) 1og{z7rpﬂfyt, }

tE[k

- log Lk p(T, ©) can be optimized in 7" with © fixed, by dynamix programming.
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A decreasing log-Likelihood? I
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Evolution of the incomplete log-likelihood with respect to the number of

segments.

f(y*:©) = 0.5M(0,1) + 0.5M(5,1)



What is going on? I
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When the true number of segments is reached (6), segments are cut on the edges.



Explaining the behavior of the likelihood I

Optimization of the incomplete likelihood with dynamic programming:

log Lxp(T;0) = Qgp(T;0) — Hgp(T; 0)

QKPT@ ZZTkplogﬂ'p +ZZTkplogfy (9
HKPT@ ZZTkplongp

Hypothesis:

1 We suppose that the true number of segments is K* and that the partitions are
nested for K > K*.

x Segment Y& is cut into (Y%, V&)
FYH;6,) = F(Y150,) x f(Y5":6,).
2 We suppose that if Y& € pthen (Y£, Y, ) e p:
Tp(Y") = 7(Y]") = 7(V5") = 7.



An intrinsic penality I
Under hypothesis 1-2:

VK > K*,log Lx41).p — log Lk Z tplog(y) — Y 7plog(7,) < 0

The log-likelihood is decomposed into two terms

- A term of fit that increases with K, and is constant from a certain K* (nested

partitions)
> > Faplog f(y
kK p

- A term of differences of entropies that decreases with K plays the role of
penalty for the choice of K

KZWplog 7Tp ZZTkplongp

p

Choosing the number of segments K when P is fixed can be done with a
penalized likelihood



Incomplete Likelihood behavior with respect to
the number of segments
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The incomplete log-likelihood is decreasing from de K = 8

Lip(T:0) = S log {0, 7 (4" 6,) }



Decomposition of the log-likelihood
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Resulting clusters I
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Resulting clusters I
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Perspective : simultaneous choice for K and P I

Incomplete Log-likeliho?)d with respect to K and P.



This is the end I

Conclusions:

- Definition of a new model that considers the a priori knowledge we have about
the biological phenomena under study.

- Development of an hybrid algorithm (EM/dynamlc programming) for the pa-
rameters estimation (problems linked to EM : initializtion, local maxima, de-
generacy).

- Still waiting for an other data set to assess the performance of the clustering.

Perspectives:
- Modeling :
* Comparison with Hidden Markov Models

- Model choice: _
* Develop an adaptive procedure for two components.

- Other application field
* DNA sequences (in progress)



