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Pentose Phosphate Pathway

Figure adapted from Noor, E et al (2011) Central Carbon Metabolism as a Minimal Biochemical Walk between Precursors for Biomass and Energy, J
Mol Cell 39:809-820 DOI:10.1016/j.molcel.2010.08.031
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A Graph Transformation Framework (for (Bio-)Chemistry)

Molecules, reaction patterns
Stereochemistry

Labelled graphs
Graph transformation rules
Point groups

Reaction networks Directed hypergraphs

Exploration strategies
Rule composition

Pathways
Pathway motifs Integer hyperflows

ILP
Tree search

Pathway realisations

Petri-nets

Atom traces

Atom maps

Rule composition

Category theory
Double Pushout
Rule composition
Mono- and Isomorphisms
Canonicalisation
Automorphisms
Quantum Chemistry

Software package: MØD
C++, Python, Bash, LATEX

Pentose phosphate pathway
Formose
Glycolysis (EMP and ED)
Non-oxidative glycolysis
Citric acid cycle
Enzyme mechanisms
Prebiotic chemistry (HCN)
Eschenmoser’s GLX scenario
DNA templated computinghttps://cheminf.imada.sdu.dk

4/66

https://cheminf.imada.sdu.dk


Graph Transformation Applications - Examples
I Isotope labelling experiments

2

+4+3+2 +1 0 -1 -2 -3

FIG. 2: Here is an old figure of rTCA showing the atom
tracks, with oxidation state also indicated by colors, just for
reference in what follows.

asymmetric, there are two distinct contributions to
each of these pools. We label the acetate pool (aver-
aged over both fragmentations) with distributions
{E,F}, and the oxaloacetate pool with distribu-
tions {G, . . . , J}.

• The acetate pool is converted through anaplerotic
reactions to a second independent oxaloacetate
pool, which inherits the distributions {E,F} from
acetate, and has specific 1 and 2 assignments at the
ends.

• When the two oxaloacetate pools are merged (di-
rect and via acetate), they must jointly reproduce
the starting distributions {A, . . . , D}.

• Branching ratios: In order for the cycle to oper-
ate at steady state, there must be draw-off of amino
acids from different positions around it. A fraction
φ ≤ 1 is preserved from being drawn off between
the total starting OXA pool the total CIT pool. A
further fraction ψ is preserved from being drawn
off from acetate and pyruvate together, so that the
total pool delivered to OXA from the anaplerotic

reactions is ψφ. In order for concentrations to be
preserved, we must therefore have (1 + ψ)φ = 1
(the anaplerotic plus direct pools to OXA).

A. The distribution equivalences

Here are the major mappings by which distributions
are inherited around the cycle:

Symmetrization at succinate:

K =
1

2
(A+D)

L =
1

2
(B + C) (1)

Citrate aldol cleavage

E = J =
1

2
(1 +K) =

1

2
ê1 +

1

4
(A+D)

F = I =
1

2
(K + L) =

1

4
(A+D +B + C)

G = ê2

H = L =
1

2
(B + C) (2)

Quantitative balance around the cycle. Using the fact
that (1 + ψ)φ = 1 for a cycle in steady-state, the balance
conditions when the two acetate pools add to recover the
original pool are:

A =
1

1 + ψ
[ψê1 +G]

B =
1

1 + ψ
[ψE +H ]

C =
1

1 + ψ
[ψF + I]

D =
1

1 + ψ
[ψê2 + J ] . (3)

Some algebra follows, but these can all be solved, and
the results are:

I Mass spectrometry
*

I Hypothetical (prebiotic) chemistries
I Synthesis Planning
I Multi-enzymatic cascades design
I Enzyme design
I Microbiome analysis and design
I . . . anything with an

underlying Chemical Reaction Network
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Modelling and Analysis of Chemical Systems

Model molecules as labelled graphs.
I An old idea: [J. J. Sylvester, Chemistry and Algebra, Nature 1878]
I Molecule: simple, connected, labelled graph.
I Vertex labels: atom type, charge.
I Edge labels: bond type.
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Modelling and Analysis of Chemical Systems
Model molecules as labelled graphs.
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Modelling and Analysis of Chemical Systems
2. Model reaction types and graph transformation rules.
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Example: Carbon rearrangement
I Aldolase: ketone + aldehyde −→ ketone
I Aldose-Ketose: aldehyde −→ ketone
I Ketose-Aldose: ketone −→ aldehyde
I Phosphohydrolase: H2O+CnP −→ Cn+Pi
I Phosphoketolase Pi+ketone −→ carbonyl + CnP+water
I Transaldolase: Cn+Cm−→ C(n+3)+C(m-3)
I Transketolase: Cn+Cm−→ C(n+2)+C(m-2)
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Chemical Reactions (Educts → Products)
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Chemical Reactions (of the Same Type)
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Chemical Reaction Patterns
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We get a precise atom map!
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Chemical Reaction Patterns
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Chemical Reaction Patterns
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Grammar Example: The Formose Chemistry

Formaldehyde:
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Modelling and Analysis of Chemical Systems
3. Generate a reaction network.
dg = dgRuleComp ( inputGraphs ,

addSubset ( inputGraphs ) >> rightPredicate [
lambda d: all( countCarbon (a) <= 5 for a in d. right )

]( repeat ( inputRules ) )
)
dg.calc ()
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Generic Strategies for Chemical Space Exploration Jakob L. Andersen, Christoph Flamm, Daniel Merkle, and Peter F. Stadler. International Journal of
Computational Biology and Drug Design, 7(2/3):225-258, 2014.
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Reaction Network for Formose

Initial State
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Reaction Network for Formose

r_0

Generation 1
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Reaction Network for Formose
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Reaction Network for Formose
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Reaction Network for Formose
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Another Example of a Search Space (Catalan)
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Modelling and Analysis of Chemical Systems
4. Setup pathway model and formulate pathway question.

Example: i.) Given 2 formaldehyde and 1 glycolaldehyde, how can 2 glycolaldehyde be
produced? ii.) Or more genral: Is there autocatalysis?
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(Demonstration 1)
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Modelling and Analysis of Chemical Systems
5. Enumerate many alternate pathways.

Example (Formose):
Network: all molecules with at most 9 carbon atoms.

Maximum #C

Reactions used 4 5 6 7 8 9 Sum

6 0 0 1 1 1 2 5
7 0 0 0 0 0 2 2
8 1 5 7 17 37 68 135
9 0 0 12 12 37 69 130
10 0 12 50 274 849 — ≥ 1185
11 0 5 41 190 738 — ≥ 974

≥ 2431
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Pentose Phosphate Pathway
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Pentose Phosphate Pathway — Another View
Simplified visualisation (from Integer-Hyperflow to Petri Net analysis)

“no borrowing needed”

C5P C5P C5P C5P

TK TK

C3P C7P C7P C3P

TA TA

C6P C4P C5P C5P C4P C6P

TK TK

C6P C3P C3P C6P

AL

C6P
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Pentose Phosphate Pathway with Borrowing

C5P C6P C5P
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borrowed molecule

(Demonstration 2)
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Another Example: Eschenmoser’s Glyoxylate Scenario

I Prebiotic Chemistry
I Cascade of autocatalytic pathways from HCN to glyoxylate to oxaloglycolate
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Albert Eschenmoser. On a hypothetical generational relationship between HCN and con- stituents of the reductive citric acid cycle. Chem. Biodivers.,
4:554–573, 2007.
In silico Support for Eschenmoser’s Glyoxylate Scenario Jakob L. Andersen, Christoph Flamm, Daniel Merkle, and Peter F. Stadler. Israel Journal of
Chemistry, 55(8):919-933, 2015.
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Eschenmoser’s Glyoxylate Scenario - ILP solution
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Overview
Molecules, reaction patterns

Stereochemistry

Labelled graphs
Graph transformation rules
Point groups

Reaction networks Directed hypergraphs

Exploration strategies
Rule composition

Pathways
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Pathway realisations
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Outline
I Switch of Abstraction Levels: Rule Composition

I Design of Non-Oxidative Glycolysis (Multi-enzymatic Cascade)

I Atom Tracing and Hierarchical Decomposition with Cayley Graphs

I Enzyme Mechanism Design and Analysis

I Future Project: MATOMIC

I Analysis of Enzyme Chemistry (Multi-step, single enzyme)

I Exploring and Evaluating Reaction Mechanisms

I Thermodynamics

I Connection to Quantum Mechanical Methods

I Stochastic Simulations
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Rule Composition



Levels of Abstraction in Programming

Declarative Description ↔ DSL ↔ C++ ↔ Assembler
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Levels of Abstraction in Computer Science

“The psychological profiling [of a Computer Scientist] is mostly the ability to shift
levels of abstraction, from low level to high level. To see something in the small and to

see something in the large.”
Donald Knuth
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Graph Transformation
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Rule Application
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Rule Application
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Rule Application
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Rule Application
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Full Rule Composition

L1 R1 L2 R2
p1 p2

L ∼= L1 R R2
p

p1 = (G ← G → G) G = {{Cyclohexene, Isoprene}} p2 = Diels-Alder reaction
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Demonstration 3 : Rule Composition in Formose
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Levels of Abstraction in Computational Chemistry
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Atom-Tracing Glycolysis Pathways
Glucose −→ 2Pyruvate, two implementations:
I Embden–Meyerhof–Parnas (EMP) pathway.
I Entner–Doudoroff (ED) pathway.

Figure: Embden–Meyerhof–Parnas (EMP) pathway [Wikipedia].
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Atom-Tracing of Glycolysis Pathways
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Atom-Tracing of Glycolysis Pathways

1. Model each reaction as a rule, with correct atom-map:
13 rules.

2. Let G(EMP), G(ED), H(EMP), and H(ED) be
the combined educt and product graphs.

3. Express the pathways as rule composition expressions:

EMP:

ıG(EMP) ◦
Glucose→ 2 G3P︷ ︸︸ ︷

p4 ◦ p1 ◦ p4 ◦ p2 ◦ p13 ◦ p3

◦ (p6 ◦∅ p6) ◦ (p5 ◦∅ p5) ◦ (p7 ◦∅ p7) ◦ (p8 ◦∅ p8) ◦ (p5 ◦∅ p5) ◦ (p9 ◦∅ p9)︸ ︷︷ ︸
2 G3P→ 2 Pyruvate

◦ıH(EMP)

ED:
ıG(ED) ◦ r4 ◦ r10 ◦ r11 ◦ r12 ◦ r13︸ ︷︷ ︸

Glucose→ G3P + Pyruvate

◦ r6 ◦ r5 ◦ r7 ◦ r8 ◦ r5 ◦ r9︸ ︷︷ ︸
G3P + Pyruvate→ 2 Pyruvate

◦ıH(ED)
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Overall EMP Pathway:
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More Applications of Rule Composition
Universal theory of continuous-time Markov chains for stochastic rewriting systems.

Allows for "static analysis" of biochemical (rule-based) models.
Rewriting Theory for the Life Sciences: A Unifying Theory of CTMC Semantics (2021)
Theoretical Computer Science Behr, Krivine, Andersen, Merkle
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Multi-Enzymatic Cascade Design



Central Carbon Metabolism – Alternate Pathways?LETTER
doi:10.1038/nature12575

Synthetic non-oxidative glycolysis enables complete
carbon conservation
Igor W. Bogorad1,2, Tzu-Shyang Lin1 & James C. Liao1,3

Glycolysis, or its variations, is a fundamental metabolic pathway in
life that functions in almost all organisms to decompose external or
intracellular sugars. The pathway involves the partial oxidation
and splitting of sugars to pyruvate, which in turn is decarboxylated
to produce acetyl-coenzyme A (CoA) for various biosynthetic pur-
poses. The decarboxylation of pyruvate loses a carbon equivalent,
and limits the theoretical carbon yield to only two moles of two-
carbon (C2) metabolites per mole of hexose. This native route is a
major source of carbon loss in biorefining and microbial carbon
metabolism. Here we design and construct a non-oxidative, cyclic
pathway that allows the production of stoichiometric amounts of
C2 metabolites from hexose, pentose and triose phosphates with-
out carbon loss. We tested this pathway, termed non-oxidative
glycolysis (NOG), in vitro and in vivo in Escherichia coli. NOG
enables complete carbon conservation in sugar catabolism to
acetyl-CoA, and can be used in conjunction with CO2 fixation1

and other one-carbon (C1) assimilation pathways2 to achieve a
100% carbon yield to desirable fuels and chemicals.

The word glycolysis was coined in the late 1800s when researchers
noticed that the concentration of glucose decreased in yeast extracts3. It
was only decades later that scientists understood that native glycolytic
pathways oxidize glucose to form pyruvate, which is then converted to
acetyl-CoA through decarboxylation for either further oxidation or
biosynthesis of cell constituents and products, including fatty acids,
amino acids, isoprenoids and alcohols. Various glycolytic pathways
have been discovered, including the classic Embden–Meyerhof–
Parnas (EMP) pathway, the Entner–Doudoroff (ED) pathway4, and
their variations5,6, which produce acetyl-CoA from sugars through
oxidative decarboxylation of pyruvate mediated by the pyruvate dehy-
drogenase complex or through the anaerobic pyruvate-formate lyase
reaction. Similarly, the Calvin–Benson–Bassham (CBB) and ribulose
monophosphate (RuMP) pathways incorporate C1 compounds, such
as CO2 and methanol, to synthesize sugar phosphates, which then
ultimately produce acetyl-CoA through pyruvate. Although the pyru-
vate route to acetyl-CoA, acetate7 and ethanol8 has been optimized for
various purposes, the carbon loss problem has not been solved owing to
inherent limitations in this pathway. Without using a CO2 fixation
pathway1,9,10, the wasted CO2 leads to a significant decrease in carbon
yield. This loss of carbon has a major impact on the overall economy of
biorefinery and the carbon efficiency of cell growth. On the other hand,
re-fixing the lost CO2 would incur energetic and kinetic costs.

Theoretically, it is possible to split sugars or sugar phosphates into
stoichiometric amounts of acetyl-CoA in a carbon- and redox-neutral
manner. Pathways without excess redox equivalents would be more
efficient and could lead to maximal yields11. However, no such pathway
is known to exist. Here we constructed the cyclic NOG pathway
(Fig. 1a) to break down sugars or sugar phosphates into the theoretical
maximum amount of C2 metabolites without carbon loss.

The metabolic logic of the cyclic NOG pathway can be understood
by breaking it down into three sections (Fig. 1a). First, fructose
6-phosphate (F6P) is the input molecule, and the pathway requires

an additional investment of two F6P molecules. Second, the three F6P
molecules are broken down to three acetyl phosphate (AcP) and three
erythorse 4-phosphate (E4P) molecules by the phosphoketolases.
This irreversible step provides the first driving force for NOG.
Third, these three E4P molecules then undergo carbon rearrangement
to regenerate the two initially invested F6P molecules (Fig. 1b). The
net reaction results in the irreversible formation of three AcP mole-
cules. Phosphoketolases are known to have either F6P activity
(termed Fpk) or xylulose 5-phosphate (X5P) activity (termed Xpk).
Even though the product of Xpk is different from Fpk (glyceraldehyde
3-phosphate (G3P) is formed, as opposed to E4P), both are metabo-
lically equivalent when Xpk is used in combination with transketolase
(Tkt) (Supplementary Fig. 1a).

The regeneration of two F6P from three E4P can occur in several
different ways. Figure 1b shows a fructose 1,6-bisphosphate (FBP)-
dependent network, and Supplementary Fig. 1b shows a sedoheptulose
1,7-bisphosphate (SBP)-dependent network, with carbon rearrange-
ment schemes illustrated by the colour-coded carbon atoms. The FBP-
dependent network involves transaldolase (Tal), FBP aldolase (Fba)
and fructose 1,6-bisphosphatase (Fbp). The SBP-dependent network
does not involve Tal, but requires SBP aldolase and sedoheptulose 1,7-
bisphosphatase. The two bisphosphatases provide the second irrevers-
ible driving force to ensure that carbon rearrangement proceeds towards
the formation of F6P. Analogous systems of carbon rearrangement12

are used in several natural pathways, such as the CBB, RuMP and the
pentose phosphate pathways (see Supplementary Fig. 2).

Because there are two different possible phosphoketolase activities
(Fpk and Xpk, shown in Supplementary Fig. 1a) and two variations of
the carbon rearrangement networks (Supplementary Fig. 1bc), many
combinations can be devised. For each of the carbon rearrangement
networks, three configurations exist that form a basis13,14 to all other
combinations (Fig. 2a–c): (1) NOG using only Fpk; (2) NOG using
only Xpk; and (3) NOG using one Fpk with two Xpk activities but
without the use of one type of Tkt reaction—the reversible conversion
of F6P and G3P to E4P and ribose 5-phosphate (R5P). Figure 2a–c
shows the three modes of NOG using the FBP-dependent carbon
rearrangement network. In these configurations, the carbon
rearrangement network and the phosphoketolase system are inte-
grated such that the pathways appear different from those shown in
Fig. 1b. Similarly, three modes of NOG can be derived for the SBP-
dependent carbon rearrangement network. Combinations of these
modes can generate infinite numbers of variations for NOG. NOG
can be used in combination with other pathways, such as the CBB
and RuMP pathways, which produce F6P from C1 compounds
(Fig. 1a). In addition, NOG can also use pentose or triose sugar phos-
phates as input (Supplementary Fig. 3).

To validate the feasibility of this pathway experimentally, we con-
structed systems to demonstrate NOG both in vitro and in vivo. To
construct an in vitro system, we cloned a putative phosphoketolase
which has both Fpk and Xpk activities (F/Xpk) from Bifidobacterium
adolescentis and Tal, Tkt, Fbp, ribulose-5-phosphate epimerase (Rpe),

1Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, USA. 2Department of Bioengineering, University of California,
Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, USA. 3Institute for Genomics and Proteomics, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, USA.
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ribose-5-phosphate isomerase (Rpi) and acetate kinase (Ack) from E.
coli with a His tag (Supplementary Figs 4 and 5) for one-step purifica-
tion. Other enzymes, namely Fba, triose phosphate isomerase (Tpi),
glycerol-3-phosphate dehydrogenase (Gpd), hexokinase (Glk), glucose-
6-phosphate dehydrogenase (Zwf), phosphoglucose isomerase (Pgi)
and phosphofructokinase (Pfk) were purchased. The His-tag enzymes
were tested for activity (Supplementary Fig. 6 and Supplementary Table
1) and mixed together in a properly selected reaction buffer. This core
system (F/Xpk, Tal, Tkt, Rpe, Rpi, Tpi, Fba, Fbp) was ATP and redox
independent and consisted of eight core enzymes which convert one
F6P molecule to three AcP molecules. The initial 10 mM F6P was com-
pletely converted to stoichiometric amounts of AcP (within error) at
room temperature (25 uC) after 1.5 h (Fig. 3a). To extend the production

further to acetate, Ack, phosphofructokinase (Pfk) and ADP were added
to the in vitro NOG system. By adding a futile ATP-burning cycle15,16

using Pfk and Fbp, the complete conversion to acetate was possible
(Fig. 3b). Similar in vitro NOG systems were tested on R5P and G3P,
which produced nearly theoretical amounts of AcP at a ratio of 2.3 and
1.6, respectively (Fig. 3c). These in vitro results demonstrated the feas-
ibility of NOG and paved the way for in vivo testing.

Next, NOG was engineered into the model organism E. coli. Xylose,
instead of glucose, was used because it is the second most abundant
sugar on Earth, and it avoids the use of the phosphotransferase system
(PTS) for transport17, which is phosphoenolpyruvate (PEP) dependent
and is associated with complex regulatory mechanisms18. To engineer
NOG for xylose in E. coli, it was necessary to overexpress two enzymes:
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Figure 2 | Three FBP-dependent NOG networks. a–c, NOG using Fpk only
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differ from those shown in Fig. 1 because the Xpk-linked Tkt has been
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irreversible reactions that drive the cycle. Enzyme numbers are defined in Fig. 1
legend, except: 1a, Fpk; 1b, Xpk.
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ribose-5-phosphate isomerase (Rpi) and acetate kinase (Ack) from E.
coli with a His tag (Supplementary Figs 4 and 5) for one-step purifica-
tion. Other enzymes, namely Fba, triose phosphate isomerase (Tpi),
glycerol-3-phosphate dehydrogenase (Gpd), hexokinase (Glk), glucose-
6-phosphate dehydrogenase (Zwf), phosphoglucose isomerase (Pgi)
and phosphofructokinase (Pfk) were purchased. The His-tag enzymes
were tested for activity (Supplementary Fig. 6 and Supplementary Table
1) and mixed together in a properly selected reaction buffer. This core
system (F/Xpk, Tal, Tkt, Rpe, Rpi, Tpi, Fba, Fbp) was ATP and redox
independent and consisted of eight core enzymes which convert one
F6P molecule to three AcP molecules. The initial 10 mM F6P was com-
pletely converted to stoichiometric amounts of AcP (within error) at
room temperature (25 uC) after 1.5 h (Fig. 3a). To extend the production

further to acetate, Ack, phosphofructokinase (Pfk) and ADP were added
to the in vitro NOG system. By adding a futile ATP-burning cycle15,16

using Pfk and Fbp, the complete conversion to acetate was possible
(Fig. 3b). Similar in vitro NOG systems were tested on R5P and G3P,
which produced nearly theoretical amounts of AcP at a ratio of 2.3 and
1.6, respectively (Fig. 3c). These in vitro results demonstrated the feas-
ibility of NOG and paved the way for in vivo testing.

Next, NOG was engineered into the model organism E. coli. Xylose,
instead of glucose, was used because it is the second most abundant
sugar on Earth, and it avoids the use of the phosphotransferase system
(PTS) for transport17, which is phosphoenolpyruvate (PEP) dependent
and is associated with complex regulatory mechanisms18. To engineer
NOG for xylose in E. coli, it was necessary to overexpress two enzymes:
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(a), NOG using Xpk only (b) and NOG using F/Xpk (c). These configurations
differ from those shown in Fig. 1 because the Xpk-linked Tkt has been

integrated with carbon rearrangement. The red arrows in a–c indicate
irreversible reactions that drive the cycle. Enzyme numbers are defined in Fig. 1
legend, except: 1a, Fpk; 1b, Xpk.
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Figure 1 | Structure of oxidative (EMP) and non-oxidative glycolysis
(NOG). a, Simplified schematic of EMP and NOG. b, An example of the
carbon rearrangement network involving FBP. The red arrow indicates the
irreversible phosphoketolase reaction. The carbon colour scheme illustrates

carbon rearrangement. Hydroxyl groups are not shown. Enzyme numbers are
indicated: 1, phosphoketolase; 2, Tal; 3, Tkt; 4, Rpi; 5, Rpe; 6, Tpi; 7, Fba; 8, Fbp.
DHAP, dihyroxyacetone phosphate; Ru5P, ribulose 5-phosphate.
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Non-Oxidative Glycolysis (all 100% carbon yield)

These networks are engineered.
Works in vitro and in vivo.
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Generation of Reaction Network

Expansion strategy: apply rules unless we make too large molecules
Python (using PyMØD):
stratBFS = (

addSubset (water , Pi , AcP , G3P , E4P , moreSugarPhosphates )
>> rightPredicate [

lambda d: all(a. vLabelCount ("C") <= 8 for a in d. right )
](

repeat ( nogRules )
)

)
dg = dgRuleComp ( inputMolecules , stratBFS )
dg.calc ()
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Enumerating NOG Pathways
I/O Constraints:
I 1 F6P as input (the only carbon source)
I AcP as output (the only carbon sink)
I Pi and water as input and output (food/waste molecules)

Python:
flow = dgFlow (dg)
flow. objectiveFunction = edge # implicitly minimised
for a in {Pi , water }:

flow. addSource (a)
flow. addSink (a)

flow. addSource (F6P)
flow. addConstraint ( inFlow (F6P) == 1)
flow. addSink (AcP)
# enumerate solutions ( optimal and optimal +1)
flow. setSolverEnumerateBy ( absGap =1)
flow.calc ()
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Central Carbon Metabolism – Alternate Pathways?
Only FBP Other Bisphosphates

8 Unique React. 7 Unique React. 8 Unique React.

PK Type Reactions Reactions Reactions
X, F, S, O 8 9 10 11 7 8 9 10 8 9 10 11

0, 0, 0, 3 – – – – – – – – – – 4 16
0, 0, 1, 2 – – – – – – – – – 3 2 –
0, 0, 2, 1 – – – – – – – – – 4 – –
0, 0, 3, 0 – – 1 2 – – 1 2 – – 9 20
0, 1, 0, 2 – – – – – – – – – 4 4 –
0, 1, 1, 1 – – – – – – – – 3 – – –
0, 1, 2, 0 – 1 – – – 1 – – – 8 2 –
0, 2, 0, 1 – – – – – – – – – 6 – –
0, 2, 1, 0 – 1 – – – 1 – – – 9 – –
0, 3, 0, 0 – – 2 4a – – 2 4 – – 14 24
1, 0, 0, 2 – – – – – – – – – 2 4 –
1, 0, 1, 1 – – – – – – – – 1 – – –
1, 0, 2, 0 – 1 – – – 1 – – – 6 2 –
1, 1, 0, 1 – – – – – – – – 2 – – –
1, 1, 1, 0 1 – – – 1 – – – 3 – – –
1, 2, 0, 0 – 2 – – – 2 – – – 10 – –
2, 0, 0, 1 – – – – – – – – – 4 – –
2, 0, 1, 0 – 1 – – – 1 – – – 7 – –
2, 1, 0, 0 – 2c – – – 2 – – – 10 – –
3, 0, 0, 0 – – 2b 4 – – 2 4 – – 12 20

(263 solutions)
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Example Pathway: 3 FPK, Only FBP, shortest
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Atom Tracing: Example ANRORC mechanism
Mechanism alternatives and the (right) Cayley Graph
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Atom Tracing: Example Citric Acid Cycle
Cayley graph (of the 4 C atoms of OAA)
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Atom Tracing: Example TCA Cycle
“Components” of the Cayley graph

I Automated analysis of hierarchical structures
I Natural formal approach for isotope labelling design

(ongoing: M/S and NMR spec. prediction)

Cayley Graphs of Semigroups Applied to Atom Tracking in Chemistry (2021), Journal of Computational Biology, Nøjgaard, Fontana, Hellmuth, Merkle 53/66
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Design



Enzymatic Mechanisms - Analysis and Design

I Illustrated: protein-glutamate methylesterase (EC3.1.1)
I Novo Nordisk Foundation Exploratory Synergy Grant

Harvard Medical School (Fontana), University of Vienna (Flamm), 2020-2022
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First step of protein-glutamate methylesterase
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A Proposed New Mechanism
Proposed mechanism for the conversion of choline (i) and sinapoyl-glucose (iv) into
glucose (vii) and sinapoyl-choline (xi) (RHEA:12024 entry)

I Catalytic Mechanism: a
sequence of steps that is cyclical in
the participating amino acids and
whose traversal converts sub-
strate(s) into product(s)

I Input to theozymes and
compuzymes design methods.

Graph transformation for enzymatic mechanisms, Andersen et al., Bioinformatics, ECCB, 2021
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