—numeration problems in RNA-seq data

blerina sinaimer|




The central dogma of molecular
biology

The Central Dogma

IPANNNNMNNNN

DNA
Transcription:
the synthesis of
an RNA copy of a
segment of DNA

W A W 4 W

RNA

H Translation

Protein




~rom DNA to RNA to proteins In
eucaryotes

From DNA to proteins in eucaryotes RNA-splicing in eucaryotes

DNA

exon A - exon B - exon C - exon D - exon E

l transcription

CYTOPLASM




Modelling and assembling NGS data (l1)
de Bruijn graph

De Bruijn grap

Given a set of reads R and an integer k we R={ACTGAT,TCTGAG}, k=3
define the de Bruijn graph B(R,k)

e \ertices are substrings of length k (k-mers)
e Arcs are k-1 suffix-prefix overlaps that @

appear as a substring in R.




de Bruljn graph

De Bruijn graph

Given a set of reads R and an integer k we
define the de Bruijn graph B(R,k)

e \ertices are substrings of length k (k-mers)

e Arcs are k-1 suffix-prefix overlaps that
appear as a substring in R.

R={ACTGAT,TCTGAG}, k=3



|_ocal assembly



Alternative splicing (AS) in RNA

DNA

exon A - exon B - exon C - exon D - exon E

l transcription

pre-mRNA

alternative splicing / \

exon A exonB exonC exonD exonE exon A exonB exonD exonE

! }

Proteine 1 Proteine 2



Assembly: Global vs Local

The corresponding de
Bruijn graph

A gene with 2 alternative

transcripts

A-IBHCHDHE

CIDIE

>
oo

>
O
m

A global assembler will search for maximal
walks in the graph.

e ————




Assembly: Global vs Local

The corresponding De Bruijn 4 possible walks
graph corresponding to:

A[B|CIDI|E
/WB|C\/EE|E\ AT CTE
A ¢ : A|IB|CIE
\@/\CE/ AICIDIE




Assembly: Global vs Local

But only 2 alternative
transcripts

4 possible walks
corresponding to:

A[BICIDIJE AB—C—DHE
AICIE
A[CIDIE A|C|E

Every transcript corresponds to a walk but not
every walk to a transcript. Global assemblers
have to choose the “right” walk.

R




|_ocal assembply

Main idea: To find an AS event consider only the region of

the graph “near” the skipped part (cycle-like pattern)

A B IC Cl D |E
A/ N \E ATC CTE

C

\AC/\CE/ A|lB]|C C|IDIE




The problem

Identify in RNA-seq data alternative splicing events, without a
reference genome. \We will only locally assemble them.

AS event

Input: A set of reads R

exon B exon C exon D

Output: The set of AS events

exon B exon D




AS Events in de Bruijn graph

AS events will correspond to sequences, awb, ab.
What will these correspond in the de Bruijn graph?

ab=CTGCTT awb=CTGATCTT

The strings awb and ab will correspond to a bubble, i.e. a
pair of internally vertex-disjoint paths, in the de Bruijn graph.




AS Events in de Bruijn graph

ab=CTGCTT awb=CTGATCTT

lal =z k, |b| z k. What characteristics has a bubble
generated by an AS event?




AS events in de Bruijn graph

ab=CATCTGCGCA awb=CATCTGCTCGGCGCA




AS events in de Bruijn graph

ab=CATCTGCGCA awb=CATCTGCTCGGCGCA

The shortest path has length <k-1 (vertices) as w and b
share a prefix.




AS Events in de Bruijn graph

* What is the length of the shorter path for a bubble
generated by the pattern awb and ab?



SNPs events in de Bruijn
grapn

x=CATCTACGCAG y=CATCTCCGCAG

Two paths of the same length k (vertices).




Approximate repeats in de
Bruljn grapn

inexact repeats may generate x=CATCTTAGGA y=CATCTCATCATAGGA
bubbles with a similar path length as

bubbles generated by AS events. CATCT is an inexact repeat.
ATCTCATCATAGG
ATCTTAGG

This can be easily identified: the longer path contains an inexact
repeat. it is sufficient to compare the shorter path with one of the ends
of the longer path.




AS Events in de Bruijn graph

- Every AS event generates a bubble.

* Not every bubble with a shorter path with at most k-1 vertices
correspond to an AS event.

* Repeat-associated bubbles: “similar” paths (small edit
distance)



Listing all the bubbles

The problem

Given R, k list all the bubbles in the de Bruijn graph B(R,k)

- The number of bubbles can be exponential in the size of the graph.

* A good algorithm: polynomial delay (polynomial time between two outputs).



|isting (s,1)-paths



|isting all (s,t)-paths

The problem

Given a directed graph G list all the (s,t)-paths in G.

ldea: Partition the set of solutions

o 6 e The set of paths s ~~ t in G can be

partitioned in:

» paths that use (s, a);

o e 0 e » paths that use (s, b);

» paths that use (s, ¢).




|isting all (s,t)-paths

The problem

Given a directed graph G list all the (s,t)-paths in G.

|dea: Recursively partition the set of solutions

The set of paths s ~ t in G can be
partitioned in:

» (s,a) plusa~tin G —s;
> (s,b) plus b~ tin G —s;

» (s,c) plusc~ tin G —s.




|isting all (s,t)-paths

The problem

Given a directed graph G list all the (s,t)-paths in G.

|dea: Recursively partition the set of solutions

The set of paths s ~ t in G can be
partitioned in:

> (s,a) plusa~tin G —s;
> (s,b) plus b~ tin G —s;

» (s,c) plusc~tin G —s.




|isting all (s,t)-paths

The problem

Given a directed graph G list all the (s,t)-paths in G.

|dea: Explore only non-empty partitions

» Thereis no s~ t path using
(s, a).

» Before exploring a partition, test
If it contains at least one
solution.




Listing all (s,t)-paths

The algorithm

Algorithm 1.2: stPATHS(G, s,t, )

Input: An undirected graph G, vertices s and ¢, and a path 7 (initially empty).
Output: The paths from s to ¢t in G.
1 if s =1t then

2 output S

3 return

4 choose an edge e = (s,v)

5 if there is a vt-path in G — s then
6 stPATHS(G — s,v,t,m(s,0v))

7 if there is a st-path in G — e then

Qo

stPATHS(G — e, s,t, )




Listing all (s,t)-paths

The algorithm

Algorithm 1.2: stPATHS(G, s,t, )

Input: An undirected graph G, vertices s and ¢, and a path 7 (initially empty).
Output: The paths from s to ¢t in G.
1 if s =1t then

2 output S

3 return

4 choose an edge e = (s,v)

5 if there is a vt-path in G — s then ™. 2 _

6 | stPATHS(G — s,v,t,7(s,v)) O(|V] + |E]) using DFS

if there is a st-path in G — e then
stPATHS(G — e, s,t, )

-3

Qo




Listing all (s,t)-paths

The algorithm

Algorithm 1.2: stPATHS(G, s,t, )

Input: An undirected graph G, vertices s and ¢, and a path 7 (initially empty).
Output: The paths from s to ¢t in G.
1 if s =1t then

2 output S

3 return

4 choose an edge e = (s,v)

5 if there is a vt-path in G — s then ™. 2 _

6 | stPATHS(G — s,v,t,7(s,v)) O(IV] + |E]) using DFS

if there is a st-path in G — e then
stPATHS(G — e, s,t, )

-3

Qo

Delay: O((|V| + |E|)?).



Listing bubbles



Listing bubbles

(s,t,a1,a2)-bubble is a pair of vertex disjoint st-paths with lengths
bounded by a1, as.

What if we require a lower bound on the length of the paths?



Listing bubbles

 [wo paths p1 =81~ &1 and p2 = s3 ~ t2 are
called compatible if t1=t> and they respect the
upper bounds on the lengths.

Let Pai,aa(s1,82,G) be the set of be the set of all
pairs ot compatible paths for s+ and s»

° Pal,az (817327G) — Pal,ag (813827G,) U (82)’U)IPO£1,CM'2 (Sl,'U,G _ 82)

vedt(s2)

oy = a3 —w(ss,v) G =G — {(s,v)[v € 6*(s2)}



Listing all (s,™)-bubbles

The algorithm

Algorithm 1: enumerate_bubbles(s;, a1, S2, az, B, G)

1 if s1 = s2 then
2 if B # () then
3 output(B)
4 return
5 else if there is no (s,t, a1, az)-bubble, where s = s; = s2 then
6 return
7 end
8 end
9 choose u € {s1, 52}, such that 6 (u) # 0
10 for v € §"(u) do
11 if there is a pair of compatible paths using (u,v) in G then
12 if u = s; then
13 | enumerate _bubbles(v,a; — w(s1,v), S2, a2, BU (s1,v),G — s1)
14 else
15 | enumerate_bubbles(s;, a1, v, as — w(s2,v), B U (s2,v),G — 82)
16 end
17 end
18 end
19 if there is a pair of compatible paths in G — {(u,v)|v € 67 (u)} then
20 | enumerate bubbles(v,a, sz, a2, B,G — {(u,v)|v € §"(u)})

end

N
prt




|isting all (s,)-bubbles

Lemma 1. There exists a pair of compatible paths for s1 # so in G if and only
if there exists t such that d(s1,t) < oy and d(so,t) < as.

Lemma 2. The test of line 5 can be performed in O(n(m + nlogn)).

Lemma 3. The test of line 11, for all v € §7(u), can be performed in O(m +
nlogn) total time.

Theorem 1. Algorithm 1 has O(n(m + nlogn)) delay.



everything solved?



Listing all the bubbles: Problems

De Bruijn graph: snapshot




Listing all the bubbles: Problems

De Bruijn graph: snapshot

A,
RO Magn
| séaanala

" o _'_5".\“_"_“" - u:;.u.;ﬂi / / e ( e 3 > II
’;:,i: idz.ﬁ% 3 / "“;: |
x o ]:h.ﬂ:lli? |I s
aﬁ;l.ﬁa ié;m " 5 \ - I
e P
&L 3
1 \ ?. “-r. ] )

2 -

= ;r.a.‘“

ﬂ:l_s.sﬁ ?;l /"Pj'i

A
i

/""--"

An alternative splicing event in the SCN5A gene (human) trapped inside a complex region.



Listing all the bubbles: Kissplice

De Bruijn graph: snapshot

LERFERED

V4 (/ 2\
5 g

5 l:""-ﬂ"'. hom )
%, ¥ v Wy
gt f I‘ 1|‘;“* Y o

I'.-I' i

An alternative splicing event in the SCN5A gene (human) trapped inside a complex region.

e [he complexity comes from highly repeated sequences e.g. TEs in introns of
pre-mRNA not yet spliced in RNA-seq data.



Repeat identification

The problem

e Can we identify in a de Bruijn graph a
subgraph corresponding to repeats?

¢ \What characteristics has the subgraph
induced by the repeats?

Our case

® NO reference genome or repeat database

¢ No information on the coverage
(on RNA-seq this depends also on the
expression level of a gene, thus it is not
informative)

¢ high-copy number approximate repeats



Repeats in the de Bruijn graph

Compressed de Bruijn graph

D et

e The arc (CTG,TGA) can be compressed.

An arc (u, v) is compressible if d*(u) = d-(v) = 1.




Repeats in the de Bruijn graph

Compressed de Bruijn graph

D et

e The arc (CTG,TGA) can be compressed.

Idea: Repeats must induce a subgraph of “few” compressible arcs




s It a good characteristics?

e Choose a set of m sequences of length n e Let a be the mutation factor, so €{A,C,T,G}"
randomly from {A,C,T,G}"

A A CT G T AT C C So

A CC T G T AGC C S

G A CT CAAT C C So

Smno)= A A ¢c T CTATCC s

>
>
>
~
0]
- -
>
~
O
~
=4




s It a good characteristics?

e Choose a set of m sequences of length n e | et a be the mutation factor, so {A,C,T,G}"
randomly from {A,C,T,G}"
The expected number of compressible The expected number of compressible
edges is ©(mn). edges is o(mn).

0 —— B T — EE—




|[dentifying the repeat associated subgraph

Problem (Repeat Subgraph)

Instance: A directed graph G and two positive integers n, t

Decide: If there exists a connected subgraph G’=(V’, E’) with
[V’|=n and having at most t compressible edges.

The Repeat Subgraph Problem is NP-complete even for subgraphs of de
Bruijn graphs on an alphabet on 4 symbols.

o




|[dentifying the repeat associated subgraph

Sketch of the proof

Problem (STEINER(1,2))

Instance: A complete undirected graph G, with edge weights in {1,2}, a set
of terminal vertices N and an integer B

Decide: If there exists a connected subgraph G’=(V’, E’) with weight
at most B containing all terminal vertices in N.




|[dentifying the repeat associated subgraph

Sketch of the proof Capy f)\o
O

O ¢—»

CompreSS|bIe
edge




|[dentifying the repeat associated subgraph

compressible
edge

Sketch of the proof Cayi f)\o no
O
W




|[dentifying the repeat associated subgraph

CompreSS|bIe
edge

Sketch of the proof Capy f)\o
O

O ¢—»

@ — Covf?

N vertices in G -> Nx2|V|? vertices in H Wab S/ \2
O
subgraph G’ of weight at most B -> subgraph
H’ with at most B compressible edges.
Ca CP




—numerating bubbles avoiding repeats

For local assembly of AS events we can implicitly avoid repeat-associated subgraphs.

“%@Q
] A /
RN
\\' M""{q;"' w
4 e\
3 oo A

s
\ g

s %

e

.

Avoid paths with “many” branching vertices.

L ——— B ———_

(s,t,a1,a2,b)-bubble is a pair of vertex disjoint st-paths with lengths bounded by a1, a-
and each one of them containing at most b branching vertices.

e

®31=5 a=0

eb=3 /
6



—numerating bubbles avoiding repeats

Algorithm (Main idea)

(s,t,a1,a2,b)-bubble is a pair of vertex disjoint st-paths with lengths bounded by a1, a-
and each one of them containing at most b branching vertices.

For every vertex s do
// Generate Bs(s, *, a1, az, b)

Initially

For every edge e outgoing s do s

// bubbles from Bs that contain edge e. ®p1=8 —> Ui
B(p1e, p2, G’ - u)

// bubbles from Bs that do not contain edge e.
B(p1, p2, G’ - uv) ¢eG' =G

®*0o=S —> U2




—numerating bubbles avoiding repeats

Algorithm (Main idea)

(S,t,a1,a2,b)-bubble is a pair of vertex disjoint st-paths with lengths bounded by a1, a
and each one of them containing at most b branching vertices.

For every vertex s do
// Generate Bs(s, *, a1, az, b)

Initially

® Ut =U2=3S
For every edge e outgoing s do

// bubbles from Bs that contain edge e.
B(p1e, p2, G’ - u4)

// bubbles from Bs that do not contain edge e.
B(p1, p2, G’ - u4)

decide whether these calls are not empty

p'i=u1 —>t and p’2=u2 —> twith | p’1| <= a1;| p’2| <= a2
and at most b branching vertices.




—numerating bubbles avoiding repeats

Algorithm (Main idea)

(S,t,a1,a2,b)-bubble is a pair of vertex disjoint st-paths with lengths bounded by a1, a
and each one of them containing at most b branching vertices.

For every vertex s do
// Generate Bs(s, *, a1, az, b) P

For every edge e outgoing s do (2
// bubbles from Bs that contain edge e.
B(p1e, p2, G’ - u4)
// bubbles from Bs that do not contain edge e. O
B(p1, p2, G’ - u4)

Enumerate bubbles with at most b branching vertices with polynomial
delay O(b |V[3|E)).




What's next”



Third Generation
Seqguencing



