Enumeration problems in RNA-seq data

blerina sinaimeri

The central dogma of molecular biology

The Central Dogma

From DNA to RNA to proteins in eucaryotes

From DNA to proteins in eucaryotes

RNA-splicing in eucaryotes

Modelling and assembling NGS data (III) de Bruijn graph

De Bruijn graph

Given a set of reads R and an integer k we define the de Bruijn graph B(R,k)

- Vertices are substrings of length k (k-mers)
- Arcs are *k-1* suffix-prefix overlaps that appear as a substring in *R*.

Example

R={ACTGAT,TCTGAG}, k=3

de Bruijn graph

De Bruijn graph

Given a set of reads R and an integer k we define the de Bruijn graph B(R,k)

- Vertices are substrings of length k (k-mers)
- Arcs are *k-1* suffix-prefix overlaps that appear as a substring in *R*.

Example

R={ACTGAT,TCTGAG}, k=3

Local assembly

Alternative splicing (AS) in RNA

Assembly: Global vs Local

A gene with 2 alternative transcripts

The corresponding de Bruijn graph

A global assembler will search for maximal walks in the graph.

Assembly: Global vs Local

The corresponding De Bruijn graph

4 possible walks corresponding to:

Assembly: Global vs Local

4 possible walks corresponding to:

But only 2 alternative transcripts

Every transcript corresponds to a walk but not every walk to a transcript. Global assemblers have to choose the "right" walk.

Local assembly

Main idea: To find an AS event consider only the region of

the graph "near" the skipped part (cycle-like pattern)

The problem

Our goal

Identify in RNA-seq data alternative splicing events, without a reference genome. We will only locally assemble them.

Input: A set of reads **R**

Output: The set of AS events

AS Events in de Bruijn graph

AS events will correspond to sequences, **awb**, **ab**. What will these correspond in the de Bruijn graph?

Example

ab=CTGCTT awb=CTGATCTT

The strings **awb** and **ab** will correspond to a **bubble**, i.e. a pair of internally vertex-disjoint paths, in the de Bruijn graph.

AS Events in de Bruijn graph

Example

ab=CTGCTT awb=CTGATCTT

|a| ≥ k, |b| ≥ k. What characteristics has a bubble generated by an AS event?

AS events in de Bruijn graph

Example

ab=CATCTGCGCA awb=CATCTGCTCGGCGCA

AS events in de Bruijn graph

Example

ab=CATCTGCGCA awb=CATCTGCTCGGCGCA

The shortest path has length <k-1 (vertices) as **w** and **b** share a prefix.

AS Events in de Bruijn graph

Question:

 What is the length of the shorter path for a bubble generated by the pattern awb and ab?

SNPs events in de Bruijn graph

Example

x=CATCTACGCAG y=CATCTCCGCAG

Two paths of the same length k (vertices).

Approximate repeats in de Bruijn graph

Example

Inexact repeats may generate bubbles with a similar path length as bubbles generated by AS events.

x=CATCTTAGGA y=CATCTCATCATAGGA CATCTCATCA is an inexact repeat.

This can be easily identified: the longer path contains an inexact repeat. it is sufficient to compare the shorter path with one of the ends of the longer path.

AS Events in de Bruijn graph

Example

- Every AS event generates a bubble.
- Not every bubble with a shorter path with at most k-1 vertices correspond to an AS event.
 - Repeat-associated bubbles: "similar" paths (small edit distance)

Listing all the bubbles

The problem

Given R, k list all the bubbles in the de Bruijn graph B(R,k)

The number of bubbles can be exponential in the size of the graph.

A good algorithm: polynomial delay (polynomial time between two outputs).

The problem

Given a directed graph **G** list all the (s,t)-paths in **G**.

Idea: Partition the set of solutions

The set of paths $s \rightsquigarrow t$ in G can be partitioned in:

- paths that use (s, a);
- \triangleright paths that use (s, b);
- \triangleright paths that use (s, c).

The problem

Given a directed graph **G** list all the (s,t)-paths in **G**.

Idea: Recursively partition the set of solutions

The set of paths $s \rightsquigarrow t$ in G can be partitioned in:

- ▶ (s,a) plus $a \rightsquigarrow t$ in G s;
- ▶ (s,b) plus $b \rightsquigarrow t$ in G-s;
- ▶ (s,c) plus $c \rightsquigarrow t$ in G s.

The problem

Given a directed graph **G** list all the (s,t)-paths in **G**.

Idea: Recursively partition the set of solutions

The set of paths $s \rightsquigarrow t$ in G can be partitioned in:

- ▶ (s,a) plus $a \rightsquigarrow t$ in G s;
- ▶ (s,b) plus $b \rightsquigarrow t$ in G s;
- ▶ (s,c) plus $c \rightsquigarrow t$ in G s.

The problem

Given a directed graph **G** list all the (s,t)-paths in **G**.

Idea: Explore only non-empty partitions

- There is no $s \rightsquigarrow t$ path using (s, a).
- Before exploring a partition, test if it contains at least one solution.

The algorithm

```
Algorithm 1.2: stPaths(G, s, t, \pi)

Input: An undirected graph G, vertices s and t, and a path \pi (initially empty).

Output: The paths from s to t in G.

1 if s = t then
2 | output S
3 | return
4 choose an edge e = (s, v)
5 if there is a vt-path in G - s then
6 | stPaths(G - s, v, t, \pi(s, v))
7 if there is a st-path in G - e then
8 | stPaths(G - e, s, t, \pi)
```

The algorithm

```
Algorithm 1.2: stPaths(G, s, t, \pi)

Input: An undirected graph G, vertices s and t, and a path \pi (initially empty).

Output: The paths from s to t in G.

1 if s = t then
2 | output S
3 | return
4 choose an edge e = (s, v)
5 if there is a vt-path in G - s then
6 | stPaths(G - s, v, t, \pi(s, v))
7 if there is a st-path in G - e then
8 | stPaths(G - e, s, t, \pi)
```

The algorithm

```
Algorithm 1.2: stPaths(G, s, t, \pi)

Input: An undirected graph G, vertices s and t, and a path \pi (initially empty).

Output: The paths from s to t in G.

1 if s = t then
2 | output S
3 | return
4 choose an edge e = (s, v)
5 if there is a vt-path in G - s then
6 | stPaths(G - s, v, t, \pi(s, v))
7 if there is a st-path in G - e then
8 | stPaths(G - e, s, t, \pi)
```

Delay: $O((|V| + |E|)^2)$.

Listing bubbles

Listing bubbles

Definition

(s,t,a₁,a₂)-bubble is a pair of vertex disjoint st-paths with lengths bounded by a₁, a₂.

What if we require a lower bound on the length of the paths?

Listing bubbles

- Two paths $p_1 = s_1 \leadsto t_1$ and $p_2 = s_2 \leadsto t_2$ are called compatible if $t_1 = t_2$ and they respect the upper bounds on the lengths.
- Let $\mathcal{P}_{\alpha_1,\alpha_2}(s_1,s_2,G)$ be the set of be the set of all pairs of compatible paths for s_1 and s_2
- $\mathcal{P}_{lpha_1,lpha_2}(s_1,s_2,G) = \mathcal{P}_{lpha_1,lpha_2}(s_1,s_2,G') igcup_{v \in \delta^+(s_2)}(s_2,v) \mathcal{P}_{lpha_1,lpha_2'}(s_1,v,G-s_2)$

$$\alpha_2' = \alpha_2 - w(s_2, v)$$
 $G' = G - \{(s_2, v) | v \in \delta^+(s_2)\}$

Listing all (s,*)-bubbles

The algorithm

```
Algorithm 1: enumerate_bubbles(s_1, \alpha_1, s_2, \alpha_2, B, G)
```

```
1 if s_1 = s_2 then
        if B \neq \emptyset then
 2
             output(B)
 3
             return
 4
         else if there is no (s, t, \alpha_1, \alpha_2)-bubble, where s = s_1 = s_2 then
 5
             return
 6
         end
 7
 8 end
 9 choose u \in \{s_1, s_2\}, such that \delta^+(u) \neq \emptyset
10 for v \in \delta^+(u) do
         if there is a pair of compatible paths using (u, v) in G then
11
             if u = s_1 then
12
                  enumerate_bubbles(v, \alpha_1 - w(s_1, v), s_2, \alpha_2, B \cup (s_1, v), G - s_1)
13
             else
14
                  \texttt{enumerate\_bubbles}(s_1,\alpha_1,v,\alpha_2-w(s_2,v),B\cup(s_2,v),G-s_2)
15
             end
16
         \mathbf{end}
17
18 end
19 if there is a pair of compatible paths in G - \{(u,v)|v \in \delta^+(u)\} then
         enumerate_bubbles(v, \alpha_1, s_2, \alpha_2, B, G - \{(u, v) | v \in \delta^+(u)\})
20
21 end
```

Listing all (s,*)-bubbles

Lemma 1. There exists a pair of compatible paths for $s_1 \neq s_2$ in G if and only if there exists t such that $d(s_1, t) \leq \alpha_1$ and $d(s_2, t) \leq \alpha_2$.

Lemma 2. The test of line 5 can be performed in $O(n(m + n \log n))$.

Lemma 3. The test of line 11, for all $v \in \delta^+(u)$, can be performed in $O(m + n \log n)$ total time.

Theorem 1. Algorithm 1 has $O(n(m + n \log n))$ delay.

everything solved?

Listing all the bubbles: Problems

De Bruijn graph: snapshot

Listing all the bubbles: Problems

De Bruijn graph: snapshot

An alternative splicing event in the SCN5A gene (human) trapped inside a complex region.

Listing all the bubbles: KisSplice

De Bruijn graph: snapshot

An alternative splicing event in the SCN5A gene (human) trapped inside a complex region.

 The complexity comes from highly repeated sequences e.g. TEs in introns of pre-mRNA not yet spliced in RNA-seq data.

Repeat identification

The problem

- Can we identify in a de Bruijn graph a subgraph corresponding to repeats?
- What characteristics has the subgraph induced by the repeats?

Our case

- no reference genome or repeat database
- no information on the coverage (on RNA-seq this depends also on the expression level of a gene, thus it is not informative)
- high-copy number approximate repeats

Repeats in the de Bruijn graph

Compressed de Bruijn graph

• The arc (CTG,TGA) can be compressed.

An arc (u, v) is compressible if $d^+(u) = d^-(v) = 1$.

Repeats in the de Bruijn graph

Compressed de Bruijn graph

• The arc (CTG,TGA) can be compressed.

Idea: Repeats must induce a subgraph of "few" compressible arcs

Is it a good characteristics?

Random sequences

 Choose a set of m sequences of length n randomly from {A,C,T,G}ⁿ

Repeats

• Let α be the mutation factor, $s_0 \in \{A,C,T,G\}^n$

Is it a good characteristics?

Random sequences

 Choose a set of m sequences of length n randomly from {A,C,T,G}ⁿ

The expected number of compressible edges is **\text{\text{(mn)}}**.

Repeats

• Let α be the mutation factor, $s_0 \in \{A,C,T,G\}^n$

The expected number of compressible edges is **o(mn)**.

Problem (Repeat Subgraph)

Instance: A directed graph G and two positive integers n, t

Decide: If there exists a connected subgraph G'=(V', E') with |V'|≥n and having at most t compressible edges.

Theorem

The Repeat Subgraph Problem is NP-complete even for subgraphs of de Bruijn graphs on an alphabet on 4 symbols.

Sketch of the proof

Problem (STEINER(1,2))

Instance: A complete undirected graph **G**, with edge weights in **{1,2}**, a set of terminal vertices **N** and an integer **B**

Decide: If there exists a connected subgraph **G'=(V', E')** with weight at most **B** containing all terminal vertices in **N**.

Sketch of the proof

Sketch of the proof

Sketch of the proof

N vertices in G -> Nx2|V|2 vertices in H

subgraph **G'** of weight at most **B ->** subgraph **H'** with at most **B** compressible edges.

For local assembly of AS events we can implicitly avoid repeat-associated subgraphs.

Main idea

Avoid paths with "many" branching vertices.

(s,t,a₁,a₂,b)-bubble is a pair of vertex disjoint st-paths with lengths bounded by a₁, a₂ and each one of them containing at most b branching vertices.

- $a_1 = 5$, $a_2 = 6$
- b = 3

Algorithm (Main idea)

(s,t,a₁,a₂,b)-bubble is a pair of vertex disjoint st-paths with lengths bounded by a₁, a₂ and each one of them containing at most b branching vertices.

For every vertex s do

// Generate $B_s(s, *, a_1, a_2, b)$

For every edge **e** outgoing **s** do

// bubbles from B_s that contain edge e.

$$B(p_1 e, p_2, G' - u_1)$$

// bubbles from B_s that do not contain edge e.

$$B(p_1, p_2, G' - u_1)$$

Initially

•
$$U_1 = U_2 = S$$

•
$$p_1 = s -> u_1$$

•
$$p_2 = s -> u_2$$

Algorithm (Main idea)

(s,t,a₁,a₂,b)-bubble is a pair of vertex disjoint st-paths with lengths bounded by a₁, a₂ and each one of them containing at most b branching vertices.

For every vertex s do

// Generate B_s(s, * , a₁, a₂, b)

For every edge **e** outgoing **s** do

// bubbles from B_s that contain edge e.

$$B(p_1 e, p_2, G' - u_1)$$

// bubbles from B_s that do not contain edge e.

$$B(p_1, p_2, G' - u_1)$$

Initially

•
$$u_1 = u_2 = s$$

•
$$p_1 = s -> u$$

•
$$p_2 = s -> u_2$$

$$\bullet$$
 G' = G

decide whether these calls are not empty

 $p'_1 = u_1 -> t$ and $p'_2 = u_2 -> t$ with $|p'_1| <= a_1$; $|p'_2| <= a_2$ and at most b branching vertices.

Algorithm (Main idea)

(s,t,a₁,a₂,b)-bubble is a pair of vertex disjoint st-paths with lengths bounded by a₁, a₂ and each one of them containing at most b branching vertices.

```
For every vertex s do // Generate B<sub>s</sub>(s, * , a<sub>1</sub>, a<sub>2</sub>, b)
```

```
For every edge e outgoing s do

// bubbles from B<sub>s</sub> that contain edge e.

B(p<sub>1</sub> e, p<sub>2</sub>, G' - u<sub>1</sub>)

// bubbles from B<sub>s</sub> that do not contain edge e.

B(p<sub>1</sub>, p<sub>2</sub>, G' - u<sub>1</sub>)
```


Enumerate bubbles with at most **b** branching vertices with polynomial delay **O(b |V|3|E|)**.

What's next?

Third Generation Sequencing