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zoo of problems

For a problem A and an instance X of A we denote by A(X) the

set of solutions of A on X.

• Decision problem: decide whether A(X) = ∅
• Optimisation problem: find y ∈ A(X) with optimal cost ω(y) for

a given cost function ω

• Counting problem: compute |A(X)|
• Enumeration problem: Output A(X)
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example

A clique C of a graph is said to be maximal if it is not included in

any other clique.

Problem: Maximal Cliques Enumeration

Input: A graph G

Output: All maximal cliques of G
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complexity

• The number of outputs of an enumeration problem may be

exponential in the size of the input.

• For instance: the number of maximal cliques of a graph can be

exponential on n (a graph can have 3n/3 maximal cliques)

• We cannot hope to have a algorithm whose running time is

polynomial in the input (you need at least one operation per

output).
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dilemma

• What is an efficient enumeration algorithm?

• How to define tractability for enumeration problems?

• How to measure the complexity of an enumeration algorithm.
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two schools
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two schools

Two points of view

Input sensitive

• The complexity is measured in

term of the input size only.

• For most of problems the

complexity are exponential.

Output sensitive

• The complexity is measured in

term of the input size and the

output size.

• We then can talk about

”polynomial” algorithm even if

the number of solutions can be

exponentially large in the input

size.
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two schools

Two points of view

Input sensitive

• The goal is to find an

exponential algorithm with the

smallest complexity

• Typical example is to find an

algorithm of complexity αn

with alpha as small as possible

(usually smaller than 2)

Output sensitive

• We try to find an algorithm

polynomial in the input size

and output size

• ideally we want a complexity

linear in the output size.
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exemple

Exemple

Input sensitive

Given a graph G with n vertices,

there exists an algorithm that

enumerates all maximal cliques in

O(3
n
3 ) ∼ O(1.442n).

Output sensitive

Given a graph G with n vertices,

there exists an algorithm that

enumerates all maximal cliques in

O(n3|C|) where |C| denotes the

number of maximal cliques of G.
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input sensitive

Input sensitive

Pros

• We know in advance the

running time of the algorithm.

• The complexity of the

algorithm gives a combinatorial

bound on the number of

possible solutions

• The algorithm gives an exact

exponential algorithm for the

optimisation problem

Cons

• We don’t know the relative

efficiency of the algorithm. Is

it far to be optimal or not?

• The complexity measure

depends on the number of

solutions that one instance can

have.

• We don’t know the behavior of

the algorithm on instances

with few solutions.
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output sensitive

Output sensitive

Pros

• The efficiency does not depend

on the problem.

• We can see if an algorithm is

far from the (theoretical)

optimal complexity.

• We can classify enumeration

problems by their output

sensitive complexity.

Cons

• We don’t know in advance

how many times the algorithm

will run.

• Doesn’t give any information

on the maximal number of

solutions an instance can have.
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input sensitive enumeration
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input sensitive algorithm

Comes from exact exponential algorithm community

Methods used:

• Branch and reduce algorithm

• Measure and conquer algorithm

• Classical dynamic programming algorithm.
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branch and reduce algorithm

A branch and reduce algorithm is a recursive algorithm that divides

the instance in some smaller instances based on a set of rules.

There are two kinds of rules:

• Reduction rules: They just reduce the size of the instance.

They are usually based on easy observations.

• Branching rules: The rules that effectively divide the problem

in smaller sub-problems.
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toy example

Enumeration of maximal independent sets of a graph G of

maximum degree 2

• S: The current set of vertices taken in the solution.

• F : The set of ”free vertices”; the vertices that are allowed to be

taken in the solution.
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toy example

Enumeration of maximal independent sets of a graph G of

maximum degree 2

• S: The current set of vertices taken in the solution.

• F : The set of ”free vertices”; the vertices that are allowed to be

taken in the solution.

Reduction Rules:

• If F contains a degree 0 vertex, then add it to S and remove it

from F
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toy example

Enumeration of maximal independent sets of a graph G of

maximum degree 2

Branching Rules:

• If F contains a degree 1 vertex u with neighbour v, then branch
in the following ways:

• Add u to S and remove u and v from F .

• Add v to S and remove u, v and all neighbours of v from F .
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toy example

Enumeration of maximal independent sets of a graph G of

maximum degree 2

Branching Rules:

• If F contains a degree 2 vertex u with neighbour v, w, then
branch in the following ways:

• Add u to S and remove u, v and w from F .

• Add v to S and remove u, v and all neighbours of v from F .

• Add w to S and remove u,w and all neighbours of w from F .
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complexity analysis

• To determine the complexity of the previous algorithm, let us

analyse its recursion tree.

• We want to determine the number of leaves of the tree.

• In each internal node of the tree we count the number of

sub-problems we create and how the size of these sub-problems

decreases.
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branching vectors

Branching Rules:

• If F contains a degree 1 vertex u with neighbour v, then branch
in the following ways:

• Add u to S and remove u and v from F . |F | decreases by 2

• Add v to S and remove u, v and all neighbours of v from F .

|F | decreases by 2

We branch in two sub-problems each whose sizes decrease by 2.

It is described by the Branching vector (2, 2)
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branching vectors

Branching Rules:

• If F contains a degree 2 vertex u with neighbour v, w, then
branch in the following ways:

• Add u to S and remove u, v and w from F . |F | decreases by 3

• Add v to S and remove u, v and all neighbours of v from F .

|F | decreases by 3

• Add w to S and remove u,w and all neighbours of w from F .

|F | decreases by 3

We branch in three sub-problems each whose sizes decrease by 3.

Branching vector: (3, 3, 3)
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example of tree with branching vector (3, 3)

n

-3 -3

-3 -3 -3 -3

-3 -3 -3 -3 -3 -3 -3

n-3 n-3

n-6 n-6 n-6 n-6

0

Figure 1: Tree with branching vector (3, 3) at each node
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example of tree with branching vector (3, 3)

n

-3 -3

-3 -3 -3 -3

-3 -3 -3 -3 -3 -3 -3

n-3 n-3

n-6 n-6 n-6 n-6

0

Figure 2: Tree with branching vector (3, 3) at each node

How many leaves has this tree?

Satisfies the recurrence T (n) = T (n− 3) + T (n− 3)

T (n) = 2n/3 ∼ 1.259n
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analysis

Question: What is the number of leaves of a tree with a given

branching vector (x1, x2, ..., xk)

The number of leaves T (n) is the solution of the recurrence

T (n) = T (n− x1) + T (n− x2) + ...+ T (n− xk)

Theorem

A tree with branching vector (x1, x2, ..., xk) has αn leaves where

α is the unique real positive solution of the equation:

xn = xn−x1 + xn−x2 + ...+ xn−xk
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analysis

Theorem

A tree with branching vector (x1, x2, ..., xk) has αn leaves where

α is the unique real positive solution of the equation:

xn = xn−x1 + xn−x2 + ...+ xn−xk

α is called the branching factor of the branching vector

(x1, x2, ..., xk)
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back to our toy example

First Branching Rule:

• If F contains a degree 1 vertex u with neighbour v, then branch
in the following ways:

• Add u to S and remove u and v from F . |F | decreases by 2

• Add v to S and remove u, v and all neighbours of v from F .

|F | decreases by 2

Branching vector: (2, 2)

Branching factor of (2, 2):
√

2 ∼ 1.414
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back to our toy example

Second Branching Rule:

• If F contains a degree 2 vertex u with neighbour v, w, then
branch in the following ways:

• Add u to S and remove u, v and w from F . |F | decreases by 3

• Add v to S and remove u, v and all neighbours of v from F .

|F | decreases by 3

• Add w to S and remove u,w and all neighbours of w from F .

|F | decreases by 3

Branching vector: (3, 3, 3)

Branching factor of (3, 3, 3): 3
√

3 ∼ 1.442
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back to our toy example

To estimate the number of leaves T (n) of the recursion tree (and

then the complexity of the algorithm), we keep the worst branching

factor

• Branching vector: (2, 2) with branching factor
√

2 ∼ 1.414

• Branching vector: (3, 3, 3) with branching factor 3
√

3 ∼ 1.442

T (n) ≤ ( 3
√

3)n = 3n/3 ∼ 1.442n

24
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exercise

Problem: Exact 3-Sat enumeration

Input: A 3-CNF formula with m clauses and n variables

Output: All satisfying assignments of variables with exactly one

true literal per clause

Try to find an algorithm to solve this problem.
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output sensitive enumeration
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Total-Polynomial algorithm
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output sensitive enumeration

Here the goal is to find algorithms whose complexity in term of

input and output size is small.

Definition

An enumeration algorithm is said to be total-polynomial (or

output-polynomial) if its running time is

poly(m+ n)

where poly is a polynomial, n is the size of the input and m is the

size of the output.
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totalp

Definition

We call TotalP the class of enumeration problems that admit

a total-polynomial algorithm.

How to prove that a problem is not in TotalP?
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decision enumeration

To a given enumeration problem A, one can associate a decision

problem called the DecisionEnumeration problem.

DecisionEnumeration problem

input: A set of solutions S := {s1, ..., sk}
Question: Is S the set of all solution?

Theorem

Let A be enumeration problem. If the DecisionEnumeration

problem associated to A is NP -hard, then P /∈ TotalP unless

P = NP .

30
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proof

• Assume that there exists a polynomial P such that A can be

solved in P (n+m). And let S := {s1, ..., sk} be a set of

solutions.

• Run the algorithm for P (n, k) + 1 times.

• If the algorithm stops during this period, answer ”Yes” to the

question, all solutions are in S.

• Otherwise, stop it and answer ”No”.
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decision enumeration

Theorem

Let A be enumeration problem. If the DecisionEnumeration

problem associated to A is NP -hard, then P /∈ TotalP unless

P = NP .

By abuse of terminology, we say sometimes that an enumeration

problem is NP-hard when its associated DecisionEnumeration

problem is so.
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tractability?

Is the TotalP notion a good definition of tractable enumeration

problems?

Issue:

We may wait long time before the output of the first solution.

They may all be given at the end of the algorithm.

Can we refine the class TotalP to solve this issue ?

33



tractability?

Is the TotalP notion a good definition of tractable enumeration

problems?

Issue:

We may wait long time before the output of the first solution.

They may all be given at the end of the algorithm.

Can we refine the class TotalP to solve this issue ?

33



tractability?

Is the TotalP notion a good definition of tractable enumeration

problems?

Issue:

We may wait long time before the output of the first solution.

They may all be given at the end of the algorithm.

Can we refine the class TotalP to solve this issue ?

33



Incremental-Polynomial algorithm
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incremental algorithm

An incremental-polynomial algorithm is a special case of

total-polynomial algorithm.

Definition

An enumeration algorithm is said to be incremental-polynomial if

the delay between the output of the kth solution and the (k+1)th

solution is bounded by poly(n + k) where poly is a polynomial

and n is the input size.
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incremental algorithm

Definition

We call IncP the class of enumeration problems that admit a

incremental-polynomial algorithm.

Proposition

IncP ⊆ TotalP
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proof of the proposition

• If A is an incremental-polynomial algorithm, there exists a

polynomial P such that the delay between the output of the kth

solution and the (k + 1)th solution is bounded by P (n+ k)

• If m is the total number of solutions, the total running time of

the algorithm is

m∑

i=1

P (n+ i) ≤ mP (n+m)

which is polynomial in n+m

37



The classes IncP and TotalP are well separated

Some problems are known to be in TotalP but not in IncP.

Proposition

Unless P = NP , IncP ( TotalP ( IncP 6=TotalP).
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newsolution problem

A classical way to obtain an incremental-polynomial algorithm is to

be able to solve a slightly different version of the

DecisionEnumeration problem.

NewSolution problem

input: A set of solutions {s1, ..., sk}
output: “No” if {s1, ..., sk} contains all solutions

A new solution s /∈ {s1, ..., sk} otherwise
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new solution problem

To obtain a incremental-polynomial algorithm, one can apply

successively the NewSolution problem by adding the new

solution found at each step to the set of already generated

solutions until the answer is ”No”.

Proposition

Let A be an enumeration problem. Then A ∈ IncP if and only if

the NewSolution problem associated to A is polynomial.

Proof: Left as exercise.
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summarize

NewSolution IncP∼

TotalP

DecisionEnumeration

Decision

Figure 3: caption
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example: spanning trees of a graph

Let G be a graph and let T be a spanning tree of G. The

fundamental cycle of T with respect to an edge e ∈ E(G) \ E(T ),

is the unique simple cycle F (T, e) of T ∪ {e}.

Let us denote by F (T ) the set of fundamental cycles of T .

Proposition

A set T is the set of the spanning trees of a graph G, if and only

if for all T ∈ T and for all edge e /∈ T , the tree (T ∪ {e}) \ {y}
belongs to T for all y ∈ F (T, e).
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homework: cycles of a graph

Let G be a graph, T one of its spanning tree and let F (T ) be the

set of fundamental cycles of T .

Algorithm:

• output F (T )

• S = F (T )

• While ∃ C1, C2 ∈ S, C1 ∩ C2 6= ∅ and C1∆C2 /∈ S:

• output C1∆C2

• Add C1∆C2 to S

1. Does this algorithm enumerate all cycles of the graph?

2. Prove or disprove it.

3. Is it total-polynomial? Incremental-polynomial?
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an open problem

• A hypergraph H := (V, E) is a set family E on a ground set V .

• A transversal (or hitting set) of H is a subset T of V that

intersects every E ∈ E . It is minimal, if it does not contain any

other transversal.

Transversal DecisionEnumeration problem

input: A hypergraph H and a set of minimal transversals of H
S := {T1, ..., Tk}
Question: Is S the set of all minimal transversals of H?
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transversal problem

Transversal DecisionEnumeration problem

input: A hypergraph H and a set of minimal transversals of H
S := {T1, ..., Tk}
Question: Is S the set of all minimal transversals of H?

The complexity of the above problem is open.

But we know that the NewSolution problem is quasi-polynomial

(there is an algorithm of complexity N logN where N = k + |H|)
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transversal decisionenumeration problem

Therefore :

• The minimal transversal of a hypergraph can be enumerated in

incremental quasi-polynomial time

• Unless every NP-complete problem can be solved in

quasi-polynomial time, the transversal DecisionEnumeration

problem is not Np-complete.

• Open: Is the transversal (DecisionEnumeration/

NewSolution) problem polynomial?
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example of problems in incp

The enumeration of

• Spanning trees

• (Simple) Cycles

• (maximal) Paths, induced paths ...

• (maximal/maximum) matching

• maximal Independent sets

• maximal cliques/bicliques

• minimal vertex covers

• minimal feedback vertex/arc set

• ...
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example np-hard enumeration problems

The enumeration of

• Minimal dicut of an oriented graph.

• Vertices of a polyhedron given by a set of inequalities.

• Maximal elements of an independent system given by an oracle.

• Any problem for which the (classical) decision problem is

NP-hard.

• ...
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equivalent to minimal transversals enumeration

The enumeration of

• Maximal stable sets of a hypergraph.

• All satisfying assignments of a monotone CNF.

• Minimal dominating sets of a graph.

• Minimal subsets that are not included in any set from a given

family of sets.

• ...
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Polynomial delay algorithm
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issues

Issues of the Incremental algorithms:

• The delay between two consecutive solutions is increasing as

more solutions are outputted.

• The space used by the algorithm is usually exponential in the

input size.
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polynomial delay algorithm

Definition

A polynomial delay algorithm is an enumeration algorithm such

that the delay between two consecutive outputs is bounded by

poly(n) where poly is a polynomial and n is the input size.
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Supergraph method
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supergraph method

A common way to obtain polynomial algorithms is the so called

supergraph method.

Idea:

• Make small modifications on solutions to obtain new ones.

• Prove that all solutions can be obtained in this way starting

from a special solution (or set of solutions).

• Try to avoid redundancy (output several times the same

solution) using only polynomial space.
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supergraph method

Let S be the set of solutions of a given enumeration problem.

The supergraph method consists on defining a transition function

t : S → 2S .

It defines the arcs of an oriented graph with vertex set S

S1





t(S1)

S2

S3

S4

S5

S6
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S

S

S0
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supergraph method

Assuming that the transition function is such that every solution is

accessible from the starting solution, we would like to explore the

graph (for instance with a DFS or a BFS) to find all solutions.

S

S0
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exemple: spanning trees

For a spanning tree T of a graph G, we define the following

transition function:

t(T ) := {(T ∪ {e}) \ {e′} : e /∈ T, e′ ∈ F (T, e)}
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issues

Issues:

• When you explore a graph, you have to store the set of already

visited vertices.

• Here the number of vertices of a supergraph corresponds to the

number of solutions which is huge in general.
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issues

Solution:

• Restrict the transition function so that it defines an

arborescence.

• The goal is to define a parent-child relation between solutions so

that each solution will be “produced” only by its father

S0
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reverse search

To define an arborescence, we usually use the reverse search

method.

• Define a total ordering over solutions.

• The father P (S) of a solution S is defined as the smallest

solution S′ such that S ∈ t(S′)

Then we restrict the transition function t to t′ :

t′(T ) := {T ′ ∈ t(T ) : P (T ′) = T}
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spanning trees

• Consider an ordering over the edges of G : (e1, ..., ek).

• The ordering over spanning trees is given by the lexicographic

order.

• The father P (T ) of a spanning tree T is the spanning tree

(T ∪ {e}) \ {e′} where e is smallest edge that does not belong to

T and e′ is the largest edge of F (T, e)
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algorithm

We call the algorithm with the starting solution S0.

ReverseSearch(S):

• Output S

• For all S′ ∈ t(S)

• If P (S′) = S

• ReverseSearch(S′)
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Backtracking method
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flashlight

Here we assume that the solutions of the problem are subsets of a

ground set E.

Steps

• The solutions corresponds to

leaves of the tree.

• Each level i corresponds to the

choice of the selection of ei in

the solution.

• All the solutions in the left tree

contain ei and the ones of the

right tree do not contain ei.

e1 e1

e2 e2 e2 e2

e3 e3 e3 e3 e3e3 e3 e3
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extension problem

To use the backtracking method, we need to be able to solve the

following problem.

Extension problem

Input: Two sets X,Y ⊆ E
Question: Is there a solution S such that X ⊆ S and Y ∩S = ∅?

If the extension problem is polynomial, then the enumeration

problem can be solved with polynomial delay.
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algorithm

BacktrackAlgorithm(i,X, Y ):

• if i = n:

• output X

• if there is a solution S such that (X ∪ {ei}) ⊆ S and Y ∩ S = ∅:

• BacktrackAlgorithm(i+ 1, X ∪ {ei}, Y )

• if there is a solution S such that X ⊆ S and (Y ∪ {ei})∩ S = ∅:

• BacktrackAlgorithm(i+ 1, X, Y ∪ {ei})
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exercise

• Why the previous algorithm enumerates all solutions with

polynomial delay (Assuming that the extension problem is

polynomial)?

• Is the Extension problem is polynomial for spanning trees?

• Is it polynomial for the cycles of a graph?
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