Metabolic networks and minimal precursor sets
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Biological motivation
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Which metabolites are provided by the environment
to a cell so that it can ensure some metabolic
functions ?

Blomass 1 Biomass 2



Intuitive definition of minimal precursor set

Minimal subset of “potential precursors” that can produce the target(s)

‘ Potential
precursor

Target

R6




But first, how to model a metabolic network?
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What are the solutions?

Minimal subset of “potential precursors” that can produce the target(s)
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What are the solutions?

Minimal subset of “potential precursors” that can produce the target(s)
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Without, or with stoichiometry

Changes the complexity of the problem!

reaction

!

R1:
R2:
R3:
R4:
R5:

compound /
metabolite

1A + 2B ->2C + 3D
3D + 1E-> 2F + 2G
2F + 1G -> 2H + 11
31-> 1] + 2K
1A + 3L ->2C

R1 R2 | R3 | R4 | RS
A -1 0 0 0 -1
B ) 0 0 0 0
C +2 0 0 0 +2
D +3 3 0 0 0
E 0 -1 0 0 0
F 0 +2 -2 0 0
G 0 +2 -1 0 0
H 0 0 +2 0 0
I 0 0 +1 -3 0
] 0 0 0 +1 0
K 0 0 0 +2 0
L 0 0 0 0 -3




Here:
Metabolic network modelled as a directed hypergraph
without stoichiometry

Nodes represent metabolites

Hyperarcs represent irreversible reactions

Reversible reactions are modelled by two
hyperarcs of opposite directions

Krebs Cycle



How to identify the sources?

First identify the strongly connected components
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How to identify the sources?

First identify the strongly connected components

AN
O—0—C

Solution




How to identify the sources?

First identify the strongly connected components

Sources are the SCCs at the
boundaries




Finding all strongly connected components

Complexity of the problem?
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Finding all strongly connected components

Complexity of the problem?

Case of a directed graph: O(n +m) where n is number of nodes
and m the number of arcs

Basic idea: DFS
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Of course, this is done in a directed hypergraph

Complexity of the problem in this case?




Of course, this is done in the directed hypergarph

Complexity of the problem?

Almost linear

Allamigeon, 2014

Up to a factor a(n)(=A(n,n)) where o is the inverse of
Ackermann function and n is the number of nodes



Ackermann function

Value grows rapidly, even for small inputs

In algorithm for SCCs, it is the inverse of 4 that influences the complexity

The Ackermann function A (x, y) is defined for integer x and y by

y+ 1

Alx,y)={Ax~-1,1)

Special values for integer x include

AQ,y
Al,Yy
AR,y
AQG,y

A4, y)=

Ax-1,Akx,y~-1)

fx=0
fy=0
otherwise.



Back to (minimal) precursor sets

One possible algorithm, using Forward Propagation (FP)

B ‘A

Romero and Karp, 2001



Forward propagation

Forward propagation of X = {4, B, C}




Forward propagation

Forward propagation of X = {4, B, C}




Forward propagation

Forward propagation of X = {4, B, C}
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Forward propagation

Forward propagation of X = {4, B, C}

X = {4, B, C} is one solution
Is it minimal?



Problem with Forward Propagation approach

Forward propagation of X = {C, D}




Problem with Forward Propagation approach

Forward propagation of X = {C, D}
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X = {C,D} covers all inputs of the hypercycle



Problem with Forward Propagation approach

Forward propagation of X = {C, D}
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Problem with Forward Propagation approach

Forward propagation of X = {C, D}
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Problem with Forward Propagation approach

Forward propagation of X = {C, D}
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Problem with Forward Propagation approach

Forward propagation of X = {C, D}

.......

@ X = {C,D} should be able to produce T

What assumption 1S missing?



Renewable internal supply

Consider X = {C, D} and Z = {F}




Renewable internal supply

Consider X = {C, D} and Z = {F}

FP,(X)= {C,D,EG,H,I, T}



Renewable internal supply

Consider X = {C, D} and Z = {F}

FP,(X)= {C,D,EG,H,I,T}
T and Z should be produced by FPZ(X)



Internal supply (renewable)

A set of sources X 1s a precursor set of a (set of) target T if there exists a set
Z of (internal metabolites) such that T UZ=FP, (X)
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In this case, we say that Z is an
internal supply of the precursor set X



Complexity of finding a minimum precursor set?

The decision problem is in NP




Complexity of finding a minimum precursor set?

It is NP-hard

Reduction from Minimum Hitting Set:
Instance: Collection C of subsets of a finite set §
Solution: A hitting set for C, i.e., a subset § ’C S such that S' contains at
least one element from each subset in C
Measure: Cardinality of the hitting set, i.e., | S’|
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Complexity of finding one minimal precursor set?

B




Complexity of finding one minimal precursor set?

Checking if one set 1s a solution is easy
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Complexity of finding one minimal precursor set?

Checking if one set 1s a solution is easy

The property is monotone, meaning that if X is a solution then any Y such
that X C Y is a precursor set




Complexity of finding one minimal precursor set?

Checking if one set 1s a solution is easy

The property is monotone, meaning that if X is a solution then any Y such
that X C Yis s precursor set

So...? Any 1dea?




Complexity of enumerating all minimal precursor sets?




Complexity of enumerating all minimal precursor sets?

It is NP-hard

Reduction from enumerating all minimal implicants of a boolean A,v-

formula:
Instance: Boolean A,v-formula f (with no negation)
Solution: Enumerate all minimal subsets of variables which, if assigned

true, make ftrue

Instance: f=(pVvVq)A(rV(pAs)) As




Could FP provide a good algorithm?




A better algorithm

First the instance

What are the solutions?




A better algorithm

Build a tree (let’s call it “replacement” tree) doing a backward traversal from T

Expansion stops when source 1s met
or metabolite i1s “repeated”

“Repeated”: metabolite is
substrate or product of an
ancestor reaction that is
not its parent



A better algorithm

Build a tree (let’s call it “replacement” tree) doing a backward traversal from T

Expansion stops when source 1s met
or metabolite i1s “repeated”

Solution?

“Repeated”: metabolite is
substrate or product of an
ancestor reaction that is
not its parent



Replacement tree




Solution

X is a solution if there exists a “one-all” subtree [t of the replacement tree
such that X is the set of the source-leaves of T

Example:




Developing algorithm




Developing algorithm




Developing algorithm




Developing algorithm




Developing algorithm

T

AHEBOEO® © O




Potential problems?

T
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Improvements

Traversing the network without building the tree

Modifying the network while traversing it by introducing shortcuts



Network shortcutting




Network shortcutting




Network shortcutting




Network shortcutting




Network shortcutting




More 1n general

Imagine the following configuration (general, not related to example):
Left:
r, has products m and f and substrates s (which is a source), a and b
R,i.(r,) = minimal sets of reactions producing a and b = [{r,r;}, {r,,r;}]
Right:
r, is replaced by new reactions corresponding to the merge of r, to each
set of reactions of R, ; (7,), thus by reactions r;; and r,;

Notice that the substrates of
ry;; do not include substrates
of r; since they are internally

produced by r,and r,




Another speed-up

Back to the example

Keep only “minimal® reactions T
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Another speed-up

Keep only “minimal® reactions




Another speed-up

Keep only “minimal® reactions




Does it make a difference in practice?

Network (C)/ R) PITUID NS

Target (|C//|R/| after preprocess) All Min
S. muelleri (75/65)

L-Arginine (33/22) 0.017 0.015 0.018
L-Isoleucine (32/21) 0.008 0.015 0.016
1-Lysine (31/20) 0014 0.021 0.016
Carsonella Ruddit (114/126)

1-Leucine (86/56) 0.005 0.035 0.047
L-Isoleucine (83/49) 0.055 0.036 0.040
1-Valine (83/49) 0.037 0.028 0.035
B. cicadeliinicola (236/229)

Octapremy] diphos, (149/160) 0.726 0.221 0.195
Tetrahydrofolate (148/149) 0.337 0.237 0.179
Heme-O (150/161) 1.164 0.217 0.172
B. aphidicola (396/338)

Pyruvate (219/87) 0.082 0.105 0.14
dGTP (206,76) 0.099 0.118 0.101
UTP (219/87) 0.113 0.148 0.104
Yeast (703/1010)

FADH?2 (#44/314) ¢ 7.27 14.55
1-Histidine (415/269) ¢ 5.02 6.62
L-Aspartate (410/ 274) 176.40 4.82 4.66
Human (997/1225)

L-Alanine (710/359) 5038.27 10.76 10.78
Seriapterine (698/329) ¢ 6.85 2.88
1-Cysteina (150/161) 557985 4.22 317
E. coli (1010/1164)

1-Aspartate (714/507) . 10.57 M
L-Mectionine (737/543) ¢ 14.08 14.17

Glycine (706/503) * 11.01 13.90




Stoichiometry




Stoichiometry

It matters! It may also matter to not only reach but also produce T
In some minimum amount (not necessarily optimal)

Target T
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What else?

Metabolic network of organism of interest and (various) omics data of this
organism exposed to some condition, for instance stress

Question: Find cascade of reactions connecting a set of affected metabolites
& identify source(s) & target(s) of cascade

Metabolomics data

& v e & K 3
1
Sy
§
v

MET
L-CITRULLINE

THR
HOMO-SER

Measuring metabolites concentration



What else?

Metabolite(s) of interest and pathway(s) for producing them
Metabolic networks of “easy to manipulate” organisms

Question: What is the best subset of “easy” organisms in which to transplant
(part) of the pathway(s) for metabolite(s) of interest for optimal production

t::m‘im L_P:;"ylahnlm Characterization of Fermentation and
l phenolics synthetic bioprocess
Puemglos& pCoumaricacid +— Cinnamic acid J pathways engineering
' ' oL ' Agrochemical
| PHENYLPROPENES | I products

COUMARINS
"N
LA LIGNIN

pCom\avleuA 1L

« o l' Malony|CoA NJJ
LIONANSJ Chakoone =, {.

e

CHi l kAURONES
- FLAVONOIDS , L
’C(n Flavones = Flavanone ——s lsoflavones = = + Isoflavonoids A 4 ) - _
..«; I LYY | * Biodiversity of « [dentification of * Molecular and modelling  » Optimization of
QCL'IC(" T mmm CQ Q]:LCL, global germplasm biosynthetic genes tools for systems ME fermentation processes
LT . « Metabolite profiling * Characterization of: « Metabolic * Scale-up to
- C( Loucsmacyanians o s glymha;lsfemses optimization of hosts demonstration level
it !. . | /*Bioactive screeni -t R
. ANS l LAR T\X:‘L 4 ng -P450s * Functional he‘emk)gous * |dentification of
‘ '"t;(",f?' R fm«naﬂ' Condensea tnnim * Functional screening * Identification of expression of phenolics markets and barriers
= T;(f oo regulatory proteins biosynthetic pathways for commercialization




And many more!!

If you are interested, contact us: marie-france.sagot(@inria.fr!
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