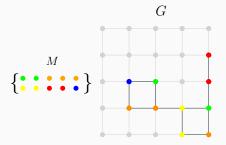
motifs

In the context of networks, the term motif may refer to different notions.

Subgraph motifs

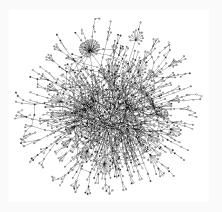
Coloured motifs



subgraph motifs

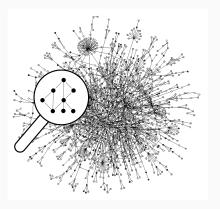
motifs

Find "interesting" patterns in a network.



motifs

Find "interesting" patterns in a network.



definition

Definition (Graph isomorphism)

Two graphs G=(V,E) and G'=(V',E') are said to be *isomorphic* if there exists a bijection $f:V\to V'$ such that for all u,v in $V,\,uv\in E \Longleftrightarrow f(u)f(v)\in E'.$

6

definition

Definition (Graph isomorphism)

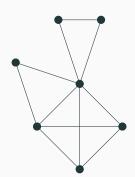
Two graphs G=(V,E) and G'=(V',E') are said to be *isomorphic* if there exists a bijection $f:V\to V'$ such that for all u,v in $V,\,uv\in E \Longleftrightarrow f(u)f(v)\in E'.$

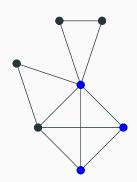
Let G,H be two graphs with $|V(H)| \leq |V(G)|$. An occurrence of H in G is a subset V' of vertices of G such that H and G[V'] are isomorphic.

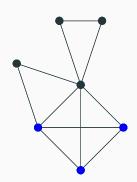
6

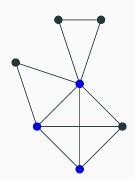
definition

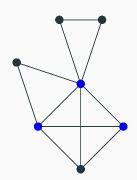
- If a graph H has at least an occurrence in a graph G, we say that G admit H as (induced) subgraph.
- We denote by $occ_G(H)$ the set of occurrences of H in G.
- ullet The cardinality of $occ_G(H)$ is called the frequency of H in G

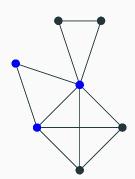


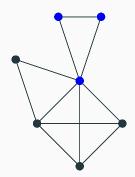












motifs

- Given a network, most of the time, some subgraphs are "overrepresented".
- A connected graph that has many occurrences in a network is called a *motif* of the network.

When can we say that a graph ${\cal H}$ is frequent in ${\cal G}$?

When can we say that a graph H is frequent in G?

Naïve way:

Define a threshold. All graphs that have a frequency larger than the threshold are called frequent.

When can we say that a graph H is frequent in G?

Naïve way:

Define a threshold. All graphs that have a frequency larger than the threshold are called frequent.

The threshold usually depends on the size of H and G.

When can we say that a graph H is frequent in G?

Alternative way:

Compute the probability that $occ_N(H) \ge occ_G(H)$ for a random network N.

When can we say that a graph H is frequent in G?

Alternative way:

Compute the probability that $occ_N(H) \ge occ_G(H)$ for a random network N.

 ${\cal H}$ is said to be frequent in ${\cal G}$ is this probability is small enough.

When can we say that a graph H is frequent in G?

Alternative way:

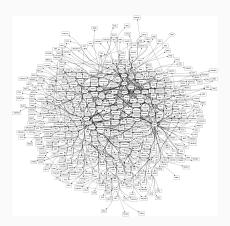
Compute the probability that $occ_N(H) \ge occ_G(H)$ for a random network N.

H is said to be frequent in G is this probability is small enough. To compute this probability, we need to have a distribution over

networks.

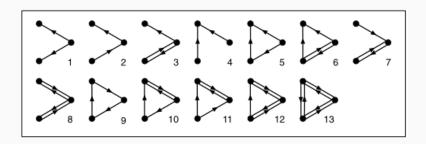
example: gene regulation network

A gene regulation network is an oriented graph. The vertices correspond to genes and there is an arc from g_1 to g_2 if the protein that g_1 encodes acts to alter the rate of expression of gene g_2 .



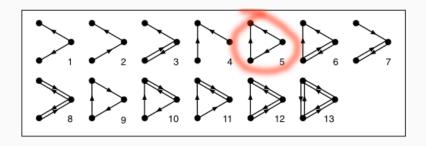
example: gene regulation network

Among all possible directed subgraphs of size three, one of them has a significant higher frequency than the others.



example: gene regulation network

Among all possible directed subgraphs of size three, one of them has a significant higher frequency than the others.



It is called the "feed-forward loop"

feed-forward loop

The gene X regulates Z by two different ways.

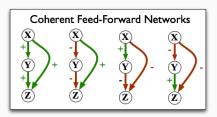
feed-forward loop

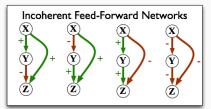
In a Gene regulation network we can label the arcs to precise if the g1 regulates g_2 positively or negatively.

feed-forward loop

In a Gene regulation network we can label the arcs to precise if the g1 regulates g2 positively or negatively.

A feed-forward loop may correspond to several patterns





Problem: Subgraph isomorphism

Input: Two graphs H and G

Question Does H has at least one occurrence in G?

Problem: Subgraph isomorphism

Input: Two graphs H and G

Question Does H has at least one occurrence in G?

The problem is NP-complete. Indeed, determining if a graph contains a clique of size k is already NP-complete

Problem: Subgraph isomorphism

Input: Two graphs H and G

Question Does H has at least one occurrence in G?

The problem is NP-complete. Indeed, determining if a graph contains a clique of size k is already NP-complete

Problem: Occurrences counting

Input: Two graphs H and G

Output Determine $occ_G(H)$.

This problem is #P-complete.

Enumeration problems

Problem: Occurrences enumeration

Input: Two graphs H and G.

Output: $occ_G(H)$.

Enumeration problems

Problem: Occurrences enumeration

Input: Two graphs H and G.

Output: $occ_G(H)$.

The problem is NP-hard since its associated decision problem is NP-complete.

Enumeration problems

Problem: Occurrences enumeration

Input: Two graphs H and G.

Output: $occ_G(H)$.

The problem is NP-hard since its associated decision problem is NP-complete.

Problem: Motifs enumeration

Input: A graph G.

Output The set of maximal frequent subraphs of G.

Enumeration problems

Problem: Occurrences enumeration

Input: Two graphs H and G.

Output: $occ_G(H)$.

The problem is NP-hard since its associated decision problem is NP-complete.

Problem: Motifs enumeration

Input: A graph G.

Output The set of maximal frequent subraphs of G.

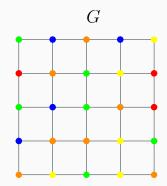
The problem is NP-hard.

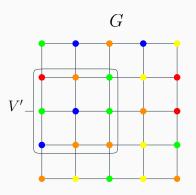
coloured motifs

coloured graph

A colouration c of a graph G=(V,E) is a map from V to a set of colours $\mathcal{C}.$

For a subset of vertices V' we denote by col(V') the multiset of colours of V'.





definition

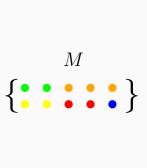
Coloured motif problem

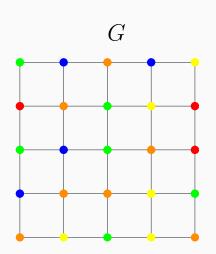
Input: A graph G=(V,E) with a colouration $c:V\to\mathcal{C}$ and a

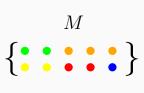
multiset of colours M

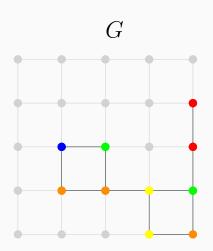
Question: Is there a subset of vertices V' that induces a

connected subgraph and such that col(V') = M?









colours

The colours model the similarity between vertices.

- In a protein-protein interaction network, two proteins have the same colours if they are homologous.
- In a metabolic network two reactions have the same colours if they use similar enzymes.

notations

Let k be the size of the motif M and let c be the number of colours in M.

Definition

The motif M is colourful if k=c (each colour appear at most once in M)

difficulty

The problem is NP-complete even if:

- ullet The graph is a tree and M is colourful.
- c=2 and the graph is bipartite.
- M is colourful and the graph is of diameter two.

tractability

The problem become polynomial if the size of the motif k is constant.

More precisely, the problem parametrized by k is FPT!. There exists an algorithm of complexity O(poly(n)f(k)) where poly is a polynomial and f is a function that depends only on k.

colourful motifs of bounded size

When the motif is colourful and the size of the motif is bounded, there is a dynamic programming algorithm of complexity $O(n2^{2k})$.

colourful motifs of bounded size

When the motif is colourful and the size of the motif is bounded, there is a dynamic programming algorithm of complexity $O(n2^{2k})$. Main idea of the algorithm :

- Try to construct a tree containing all colours
- ullet Given a vertex u, there exists a tree rooted in u containing all colours of M if there is a neighbour v of u and a set colours S such that there exists a tree rooted in u containing all colours of S and a tree rooted in v containing all colours of $M\setminus S$

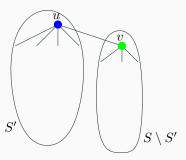
• Given a vertex u and a set of colours $S \subseteq M$, we say that D(u,S) is True if there exists a tree rooted in u colourful on S.

- Given a vertex u and a set of colours $S \subseteq M$, we say that D(u, S) is True if there exists a tree rooted in u colourful on S.
- D(u,S) is True if and only if there exists $S' \subsetneq S$ and a neighbour v of u such that D(u,S')=True and $D(v,S\setminus S')=True$.

- Given a vertex u and a set of colours $S \subseteq M$, we say that D(u, S) is True if there exists a tree rooted in u colourful on S.
- D(u,S) is True if and only if there exists $S' \subsetneq S$ and a neighbour v of u such that D(u,S')=True and $D(v,S\setminus S')=True$.
- Base cases: If $S = \{c_i\}$ then D(u, S) = True iff $c_i = col(u)$

- Given a vertex u and a set of colours $S \subseteq M$, we say that D(u, S) is True if there exists a tree rooted in u colourful on S.
- D(u,S) is True if and only if there exists $S' \subsetneq S$ and a neighbour v of u such that D(u,S')=True and $D(v,S\setminus S')=True$.
- Base cases: If $S = \{c_i\}$ then D(u, S) = True iff $c_i = col(u)$
- We build an $|V| \times 2^{|M|} \mathcal{M}$ where the value of the cell $\mathcal{M}_{i,j}$ contains the value of D(v,S) where v is the i^{th} vertex of the graph and S is the j^{th} subset of M.

Decide if D(u, S) is True.



	{1}	{2}	{3}	$\{1, 2\}$		$\{2, 3\}$	$\{1, 2, 3\}$
v_1							
v_2							
v_3							
:	:	:	:	:	:	:	:
v_{n-1}							
v_n							