In the context of networks, the term motif may refer to different
notions.

Subgraph motifs Coloured motifs
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Find "interesting” patterns in a network.
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Definition (Graph isomorphism)

Two graphs G = (V, E) and G’ = (V', E') are said to be isomor-
phic if there exists a bijection f : V — V' such that for all u, v in
V,u € E < f(u)f(v) € E'.



Definition (Graph isomorphism)

Two graphs G = (V, E) and G’ = (V', E') are said to be isomor-
phic if there exists a bijection f : V — V' such that for all u, v in
V,u € E < f(u)f(v) € E'.

Let G, H be two graphs with |V (H)| < |V(G)|. An occurrence of
H in G is a subset V' of vertices of G such that H and G[V'] are
isomorphic.



e If a graph H has at least an occurrence in a graph G, we say
that G admit H as (induced) subgraph.
e We denote by occi(H) the set of occurrences of H in G.

e The cardinality of occg(H) is called the frequency of H in G
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e Given a network, most of the time, some subgraphs are
“overrepresented” .

e A connected graph that has many occurrences in a network is
called a motif of the network.



When can we say that a graph H is frequent in G7
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When can we say that a graph H is frequent in G7
Naive way :

Define a threshold. All graphs that have a frequency larger than
the threshold are called frequent.
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When can we say that a graph H is frequent in G7

Naive way :

Define a threshold. All graphs that have a frequency larger than
the threshold are called frequent.

The threshold usually depends on the size of H and G.
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When can we say that a graph H is frequent in G7

Alternative way :

Compute the probability that occy (H) > oceq(H) for a random
network N.
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Compute the probability that occy (H) > oceq(H) for a random
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H is said to be frequent in G is this probability is small enough.
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When can we say that a graph H is frequent in G7

Alternative way :

Compute the probability that occy (H) > oceq(H) for a random
network N.

H is said to be frequent in G is this probability is small enough.
To compute this probability, we need to have a distribution over
networks.
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example: gene regulation network

A gene regulation network is an oriented graph. The vertices
correspond to genes and there is an arc from ¢; to g if the protein
that g1 encodes acts to alter the rate of expression of gene gs.
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example: gene regulation network

Among all possible directed subgraphs of size three, one of them
has a significant higher frequency than the others.
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example: gene regulation network

Among all possible directed subgraphs of size three, one of them
has a significant higher frequency than the others.

It is called the “feed-forward loop”
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feed-forward loop

The gene X regulates Z by two different ways.

N << <M
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feed-forward loop

In a Gene regulation network we can label the arcs to precise if the
gl regulates go positively or negatively.
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In a Gene regulation network we can label the arcs to precise if the

gl regulates go positively or negatively.

A feed-forward loop may correspond to several patterns

Coherent Feed-Forward Networks
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Incoherent Feed-Forward Networks

feed-forward loop
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related problems

Problem: Subgraph isomorphism

Input: Two graphs H and G
Question Does H has at least one occurrence in G?
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related problems

Problem: Subgraph isomorphism

Input: Two graphs H and G
Question Does H has at least one occurrence in G?

The problem is NP-complete. Indeed, determining if a graph
contains a clique of size k is already NP-complete
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related problems

Problem: Subgraph isomorphism

Input: Two graphs H and G

Question Does H has at least one occurrence in G?
The problem is NP-complete. Indeed, determining if a graph

contains a clique of size k is already NP-complete

Problem: Occurrences counting

Input: Two graphs H and GG
Output Determine occq(H).

This problem is # P-complete.
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related problems

Enumeration problems

Problem: Occurrences enumeration

Input: Two graphs H and G.
Output: occq(H).
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related problems

Enumeration problems

Problem: Occurrences enumeration

Input: Two graphs H and G.
Output: occq(H).

The problem is NP-hard since its associated decision problem is
NP-complete.
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related problems

Enumeration problems

Problem: Occurrences enumeration
Input: Two graphs H and G.
Output: occq(H).

The problem is NP-hard since its associated decision problem is
NP-complete.

Problem: Motifs enumeration
Input: A graph G.
Output The set of maximal frequent subraphs of G.
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related problems

Enumeration problems

Problem: Occurrences enumeration

Input: Two graphs H and G.

Output: occq(H).
The problem is NP-hard since its associated decision problem is
NP-complete.

Problem: Motifs enumeration

Input: A graph G.

Output The set of maximal frequent subraphs of G.

The problem is NP-hard.

18



coloured motifs
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coloured graph

A colouration ¢ of a graph G = (V, E) is a map from V to a set of
colours C.

For a subset of vertices V/ we denote by col(V’) the multiset of
colours of V.
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Coloured motif problem

Input: A graph G = (V, E) with a colouration ¢: V' — C and a

multiset of colours M
Question: Is there a subset of vertices V' that induces a
connected subgraph and such that col(V') = M?
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colours

The colours model the similarity between vertices.

e In a protein-protein interaction network, two proteins have the
same colours if they are homologous.

e In a metabolic network two reactions have the same colours if
they use similar enzymes.
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notations

Let k& be the size of the motif M and let ¢ be the number of
colours in M.

Definition

The motif M is colourful if & = ¢ (each colour appear at most
once in M)
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difficulty

The problem is NP-complete even if:

e The graph is a tree and M is colourful.
e ¢ =2 and the graph is bipartite.

e M is colourful and the graph is of diameter two.
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tractability

The problem become polynomial if the size of the motif £ is
constant.

More precisely, the problem parametrized by k is FPT!. There
exists an algorithm of complexity O(poly(n)f(k)) where poly is a
polynomial and f is a function that depends only on k.
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colourful motifs of bounded size

When the motif is colourful and the size of the motif is bounded,
there is a dynamic programming algorithm of complexity O(n22¥).
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colourful motifs of bounded size

When the motif is colourful and the size of the motif is bounded,
there is a dynamic programming algorithm of complexity O(n22¥).
Main idea of the algorithm :

e Try to construct a tree containing all colours

e Given a vertex u, there exists a tree rooted in u containing all
colours of M if there is a neighbour v of u and a set colours S
such that there exists a tree rooted in u containing all colours of
S and a tree rooted in v containing all colours of M \ §
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dynamic programming algorithm

e Given a vertex u and a set of colours S C M, we say that
D(u, S) is True if there exists a tree rooted in u colourful on S.
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dynamic programming algorithm

e Given a vertex u and a set of colours S C M, we say that
D(u, S) is True if there exists a tree rooted in u colourful on S.
e D(u,S) is True if and only if there exists S” C S and a
neighbour v of u such that D(u,S") = True and
D(v,S\ S") = True.
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dynamic programming algorithm

e Given a vertex u and a set of colours S C M, we say that
D(u, S) is True if there exists a tree rooted in u colourful on S.

e D(u,S) is True if and only if there exists S” C S and a
neighbour v of u such that D(u,S") = True and
D(v,S\ S") = True.

e Base cases: If S ={¢;} then D(u,S) = True iff ¢; = col(u)
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dynamic programming algorithm

e Given a vertex u and a set of colours S C M, we say that
D(u, S) is True if there exists a tree rooted in u colourful on S.

e D(u,S) is True if and only if there exists S” C S and a
neighbour v of u such that D(u,S") = True and
D(v,S\ S") = True.

e Base cases: If S ={¢;} then D(u,S) = True iff ¢; = col(u)

e We build an |V| x 2IM| M where the value of the cell M, ;
contains the value of D(v, S) where v is the it" vertex of the
graph and S is the ;™" subset of M.
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dynamic programming algorithm

Decide if D(u,S) is True.

Sl
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dynamic programming algorithm
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