
motifs

In the context of networks, the term motif may refer to di↵erent

notions.
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G

M

{ }

2



subgraph motifs

3



motifs

Find ”interesting” patterns in a network.
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definition

Definition (Graph isomorphism)

Two graphs G = (V,E) and G0 = (V 0, E0) are said to be isomor-

phic if there exists a bijection f : V ! V 0 such that for all u, v in

V , uv 2 E () f(u)f(v) 2 E0.

Let G,H be two graphs with |V (H)|  |V (G)|. An occurrence of

H in G is a subset V 0 of vertices of G such that H and G[V 0] are

isomorphic.
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definition

• If a graph H has at least an occurrence in a graph G, we say

that G admit H as (induced) subgraph.

• We denote by occG(H) the set of occurrences of H in G.

• The cardinality of occG(H) is called the frequency of H in G
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motifs

• Given a network, most of the time, some subgraphs are

“overrepresented”.

• A connected graph that has many occurrences in a network is

called a motif of the network.
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frequency

When can we say that a graph H is frequent in G?

Näıve way :

Define a threshold. All graphs that have a frequency larger than

the threshold are called frequent.

The threshold usually depends on the size of H and G.
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frequency

When can we say that a graph H is frequent in G?

Alternative way :

Compute the probability that occN (H) � occG(H) for a random

network N .

H is said to be frequent in G is this probability is small enough.

To compute this probability, we need to have a distribution over

networks.
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example: gene regulation network

A gene regulation network is an oriented graph. The vertices

correspond to genes and there is an arc from g1 to g2 if the protein

that g1 encodes acts to alter the rate of expression of gene g2.
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example: gene regulation network

Among all possible directed subgraphs of size three, one of them

has a significant higher frequency than the others.
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example: gene regulation network

Among all possible directed subgraphs of size three, one of them

has a significant higher frequency than the others.

It is called the “feed-forward loop”
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feed-forward loop

The gene X regulates Z by two di↵erent ways.
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feed-forward loop

In a Gene regulation network we can label the arcs to precise if the

g1 regulates g2 positively or negatively.

A feed-forward loop may correspond to several patterns
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related problems

Problem: Subgraph isomorphism

Input: Two graphs H and G

Question Does H has at least one occurrence in G?

The problem is NP-complete. Indeed, determining if a graph

contains a clique of size k is already NP-complete

Problem: Occurrences counting

Input: Two graphs H and G

Output Determine occG(H).

This problem is #P -complete.
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related problems

Enumeration problems

Problem: Occurrences enumeration

Input: Two graphs H and G.

Output: occG(H).

The problem is NP-hard since its associated decision problem is

NP-complete.

Problem: Motifs enumeration

Input: A graph G.

Output The set of maximal frequent subraphs of G.

The problem is NP-hard.
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coloured motifs
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coloured graph

A colouration c of a graph G = (V,E) is a map from V to a set of

colours C.
For a subset of vertices V 0 we denote by col(V 0) the multiset of

colours of V 0.
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definition

Coloured motif problem

Input: A graph G = (V,E) with a colouration c : V ! C and a

multiset of colours M

Question: Is there a subset of vertices V 0 that induces a

connected subgraph and such that col(V 0) = M?
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colours

The colours model the similarity between vertices.

• In a protein-protein interaction network, two proteins have the

same colours if they are homologous.

• In a metabolic network two reactions have the same colours if

they use similar enzymes.
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notations

Let k be the size of the motif M and let c be the number of

colours in M .

Definition

The motif M is colourful if k = c (each colour appear at most

once in M)
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di�culty

The problem is NP-complete even if:

• The graph is a tree and M is colourful.

• c = 2 and the graph is bipartite.

• M is colourful and the graph is of diameter two.
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tractability

The problem become polynomial if the size of the motif k is

constant.

More precisely, the problem parametrized by k is FPT!. There

exists an algorithm of complexity O(poly(n)f(k)) where poly is a

polynomial and f is a function that depends only on k.
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colourful motifs of bounded size

When the motif is colourful and the size of the motif is bounded,

there is a dynamic programming algorithm of complexity O(n22k).

Main idea of the algorithm :

• Try to construct a tree containing all colours

• Given a vertex u, there exists a tree rooted in u containing all

colours of M if there is a neighbour v of u and a set colours S

such that there exists a tree rooted in u containing all colours of

S and a tree rooted in v containing all colours of M \ S
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dynamic programming algorithm

• Given a vertex u and a set of colours S ✓ M , we say that

D(u, S) is True if there exists a tree rooted in u colourful on S.

• D(u, S) is True if and only if there exists S0 ( S and a

neighbour v of u such that D(u, S0) = True and

D(v, S \ S0) = True.

• Base cases: If S = {ci} then D(u, S) = True i↵ ci = col(u)

• We build an |V |⇥ 2|M | M where the value of the cell Mi,j

contains the value of D(v, S) where v is the ith vertex of the

graph and S is the jth subset of M .
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dynamic programming algorithm

Decide if D(u, S) is True.

u

v

S0
S \ S0
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dynamic programming algorithm

{1} {2} {3} {1, 2} · · · {2, 3} {1, 2, 3}
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