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Abstract

With the increasing impact of genomics in life sciences, the inference of high quality, reliable, and complete
genome sequences is becoming critical. Genome assembly remains a major bottleneck in bioinformatics: indeed,
high throughput sequencing apparatus yield millions of short sequencing reads that need to be merged based on their
overlaps. Overlap graph based algorithms were used with the first generation of sequencers, while de Bruijn graph
(DBG) based methods were preferred for the second generation. Because the sequencing coverage varies locally along
the molecule, state-of-the-art assembly programs now follow an iterative process that requires the construction of de
Bruijn graphs of distinct orders (i.e., sizes of the overlaps). The set of resulting sequences, termed unitigs, provide an
important improvement compared to single DBG approaches. Here, we present a novel approach based on a digraph,
the Superstring Graph, that captures all desired sizes of overlaps at once and allows to discard unreliable overlaps.
With a simple algorithm, the Superstring Graph delivers sequences that includes all the unitigs obtained from multiple
DBG as substrings. In linear time and space, it combines the efficiency of a greedy approach to the advantages of
using a single graph. In summary, we present a first and formal comparison of the output of state-of-the-art genome
assemblers.

1 Introduction
Ongoing improvements in DNA sequencing technologies have dramatically increased the throughput of sequencers,
thereby authorising the launch of very large genome projects: the 1000 human genomes for studying natural variations
[15], the 10K vertebrate genomes for phylogenomics issues [11] or the 10,000 rice genomes, which aims at getting
a genomic overview of all wild and cultivated rice varieties. If getting the collections of raw sequencing reads be-
comes easier and cheaper, assembling complex eukaryotic genomes remains one of the major practical and theoretical
challenges in bioinformatics.

With the advent of Next Generation sequencing technologies, most of the sequencing performed yields huge
numbers of short reads. For that reason, the de Bruijn Graph (DBG) approach, also termed as Eulerian sequence
assembly, has been preferred to the Overlap-Layout-Consensus approach, which resorts to an overlap graph and was
used with traditional Sanger sequencing. The DBG encodes each k-mer of the read set as a node and contains an
arc from one node to another if the k+ 1-mer obtained by merging them occurs in at least one read. A path in the
DBG represents the sequence obtained by merging the k-mers along it. Many assemblers infer unitigs by traversing
non branching paths in the DBG, or contigs if the path chooses some extension when it encounters a branching node.
Unitigs, which are the parts of contigs comprised between two branching nodes, represent unambiguous regions of
the target genome. However, the choice of the value of k is critical and difficult in practice. Indeed, the density
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of sequencing reads along the molecule depends on the amount of sequencing and fluctuates for technological and
biological reasons. Some regions have low coverage, while others may collapse the expected number of reads several
times because they contain genomic repeats.

1.1 Related works
Recently, some papers have investigated the power of combining the assembly made successively by several DBG of
different orders, i.e. varying the order k in a user defined range [kmin,kmax]. The goal is to enable the algorithm to find
paths both in tangled and fragmented regions of the graph. More precisely, (1) using larger overlaps to find paths in
tangled regions, where repeats in DNA create bubbles and branching nodes because shared k-mers are collapsed in the
DBG, and (2) to find paths between connected components with shorter overlaps. The algorithms named IDBA and
SPAdes do that by building several DBG with different values of k [13, 1]. Their main problem is the necessity to build
several DBG. Currently, state-of-the-art methods exploit multiple sizes of overlaps and also impose a constraint on the
read coverage (i.e. the density of reads in the sequence region). IDBA [13] builds a DBG of order kmin, computes the
set of unitigs, merges them with the reads, and iterates this procedure for all k until kmax (see Algorithm 2). SPAdes
adopts a slightly different algorithm [1]. For all values of k between kmax and kmin, it computes in parallel the unitigs
of each DBGk, and makes their union. Finally, it builds DBGkmax on this set and outputs its unitigs. The result of the
two approaches are similar. In practice, building that many DBGs is prohibitive, and hence both IDBA and SPAdes
limit themselves to a few (i.e. , ≈ 4) values of k.

Boucher et al. propose to extend the BOSS succinct data structure, which succinctly encodes a DBG, to enable
the dynamic update from k to k+ 1 [2]. Their practical performance allows to navigate between different orders on
bacterial and a Human dataset. However, the question of which size of overlap/order is needed in a given region
remains. In other works, we have shown how to build in linear time a DBG of order k from either a Generalised Suffix
Tree, a Suffix Array, or a Truncated Suffix Tree of the reads and exhibited an algorithm to update k also in linear time
[4].

An alternative and interesting approach, called the manifold de Bruijn graph, which assigns words of arbitrary
length to nodes in the graph, was presented in [9]. This perspective is different from the one we propose here.

Formally, the question of assembling strings is modelled as the Shortest Common Superstring, also termed the
Shortest Linear Superstring. It requires finding a single superstring containing the input words as substrings. This
well-studied problem is known to be NP-hard [7] and APX-hard [12]. Many approximation algorithms have been
proposed, which solve a relaxed problem known as the Shortest Cyclic Cover of Strings (SCCS) – see Section 2 for
a definition of a cyclic cover. SCCS is usually solved in polynomial time with the Hungarian algorithm; we have
recently exhibited a linear time algorithm for SCCS and introduced the Superstring Graph for this sake [5]. To handle
the fact that DNA is double stranded, we have extended this algorithm to the case where either the input word or its
reverse complement (in the biological sense) must appear as a substring in the cyclic cover [3].

1.2 Summary of our contribution
Let P be a set of words on a finite alphabet. The well-known shortest superstring problems ask for a either cyclic or
linear superstring of minimal length, and the Shortest Cyclic Cover problem asks for a collection of cyclic strings of
minimal norm (cumulated length). Here, with the Shortest Mixed Cover of Strings or simply Shortest Mixed Cover, we
relax the requirements and accept a solution made of a collection of strings that can be linear or cyclic. We introduce
a graph that represents all the maximal overlaps between the input words in small space: the Truncated Hierarchical
Overlap Graph (THOG). We show first that the Superstring Graph is embedded in the Truncated Hierarchical Overlap
Graph of P; and second, that it captures the set of Mixed Covers built by a greedy algorithm that agglomerates words
using their largest overlaps ranked in decreasing order.

As mentioned above, Generalised Suffix Tree can also serve to build the DBG of order k for P [4]. However,
classical DBG are limited in the size of overlaps, which must be of length k− 1. This is a strong limitation, and a
natural remedy is to consider overlaps of different sizes, by extending the framework of DBG. Current state-of-the-art
proposals successively build and explore several DBG to compute unitigs with different overlap sizes [13, 1]. Our
proposal is to capture multiple overlap sizes in a single graph and to explore its paths to compute unitigs.
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Finally, we show that unitigs built with the IDBA approach are substrings of those found in our Superstring Graph.
Moreover, we characterise when a unitig from the SG captures an overlap missed in a multiple DBG approach. It
can be proven that IDBA solution is contained in the SG solution. A strong point of the SG algorithm is to retain the
sensitivity of variable order DBG without building several graphs, which remains computationally prohibitive. Indeed,
it is stated in [13] that exploring the whole range of orders [kmin,kmax] is not feasible on large-scale data. In fact, each
iteration in IDBA takes linear time in ||P||, while the SG algorithm takes overall linear time in ||P||. Our contributions
are theoretical, but our solution has a linear space complexity (Thm 3). For simplicity, here we disregard the fact that
one usually does not know from which DNA strand the input reads of an assembly problem come from. Hence, both
the reads and their reverses complement are considered in assembly problem. However, the approach described in [3]
shows that the results developed here can be extended to handle the case of missing information about the DNA strand.
Due to space constraints, the proof of Theorems 1, 2, and 3 are omitted here.

1.3 Notation and basic definitions
About Strings. We consider two kinds of strings: linear and cyclic strings. For a string s, the length of s is |s|. For
a linear string s and i≤ j in {1, . . . , |s|}, s[i, j] is the linear substring of s beginning at the position i and ending at the
position j, s[i] is the substring s[i, i], s[1, j] is a prefix of s and s[i, |s|] is a suffix of s. A prefix (or suffix) s′ of s is proper
if s′ is different of s. For another linear string t, the maximum overlap from s to t, denoted by ov(s, t), is the longest
substring that is a proper suffix of s and a proper prefix of t. The prefix from s to t, denoted by pr(s, t), is such that
s = pr(s, t)ov(s, t) and the suffix from s to t, denoted by suf(s, t), is such that t = ov(s, t)suf(s, t). The merge of s with
t using their maximal overlap is denoted s� t and is equal to pr(s, t)ov(s, t)suf(s, t). Since we consider only maximal
overlaps, we simply use the term overlap. For simplicity, we denote the concatenation of s with t simply by st.

We say that a linear string w is a substring of a cyclic string c if there exists wc a linear permutation of c such that
w is a substring of w∞

c (where w∞
c = wcwc . . .). To ease distinction between linear and cyclic strings, we will denote a

cyclic string c by 〈c〉.
For a set P of finite strings, we define and denote the norm of P by ||P|| := ∑w∈P |w|. For two strings x and y,

we denote by x ⊂sub y the fact that x is a substring of y. We denote the set of factors of P by Fact(P) := {w | ∃si ∈
P, w⊂sub si}. Moreover, for k an integer, we denote by Factk(P) the subset of Fact(P) made of strings of length k.

About permutations. Let E be a finite set. A permutation on E is a bijection from E onto itself. Let σ be a
permutation on E. The partition of E due to σ, which is denoted by Partσ, is a partition (E1, . . . ,Ep) of E of maximal
cardinality, and such that for any i in [1, p] and for any x of Ei and for any integer k, one has σk(x) ∈ Ei. Then, one can
define p permutations on E, (σ1, . . . ,σp), such that for any i in [1, p], for any x in E one has σi(x) := σ(x) if x ∈ Ei,
and σi(x) := x otherwise. Then (σ1, . . . ,σp) is called a decomposition of σ in circular permutations.
Throughout the article let P := {s1, . . . ,sn} be a set of input words, and ||P|| denotes the norm of P. Without loss of
generality, we always assume that P is factor-free, i.e. for any two strings of P, none is a substring of the other.

2 Permutations and Truncated Hierarchical Overlap Graph
Let P = {s1, . . . ,sn} be a finite set of linear strings over a finite alphabet. We can define two types of covers:
• a cyclic cover of strings of P is a set C = {〈c1〉, . . . ,〈cp〉} of cyclic strings such that each string si of P is a

substring of a 〈c j〉 of C, i.e. , si ⊂sub 〈c j〉.

• a mixed cover of strings of P is a set C = {〈c1〉, . . . ,〈cq〉, lq+1, . . . , lp} of cyclic and linear strings such that each
string si of P is a substring of an element of C.

Obviously, one could consider also linear covers of strings. However, by concatenating the strings of a shortest
linear cover one gets a shortest linear superstring. Thus, the problem of finding a shortest linear string cover is as hard
and as difficult to approximate as the shortest linear superstring problem (NP-hard [7] and APX-hard [12]). Another
reason explains our interest in mixed cover of strings: state-of-the-art assemblers like IDBA or SPAdes can yield linear
and cyclic strings. Indeed, the de Bruijn Graph may contain an isolated cycle. Hence, their result is indeed a mixed
cover of strings. Clearly, a cyclic cover is a mixed cover, and the norm of a shortest cyclic cover of P is at most that
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of a shortest mixed cover of P. To our knowledge the problem of finding a shortest mixed cover of strings has not yet
been studied.

It is known that for each optimal solution and each greedy solution of SCCS, there exists a permutation such that
this permutation induces this cyclic cover of strings [5]. Figure 1 shows how to build a cyclic cover of strings from a
permutation. Indeed, let P = {s1, . . . ,sn} be a set of strings which is factor-free and let σ be a permutation. We define

CC(P,σ) = {circular(P1,σ1), . . . ,circular(Pm,σm)}
where the decomposition in circular permutation of σ is σ1 . . .σm, Partσ = {P1, . . . ,Pm} is such that for any i in [1,m],
Pi is the element of Partσ corresponding to σi, and for all i between 1 and m where Pi = {si

1, . . . ,s
i
|Pi|}:

circular(Pi,σi) := 〈pr(si
1,s

i
σi(1)).pr(si

σi(1),s
i
σ2

i (1)
). . . . .pr(si

σ
|Pi |−1
i (1)

,si
1)〉.

{ababb, aab, abba, abaa}
P (

1 2 3 4
3 1 2 4

)
+

σ

ababb abba aab abaa

1 3 2 4

pr(1, 3) pr(3, 2) pr(2, 1) pr(4, 4)

CC(P, σ) = ab abb a aba

{
,

}

Figure 1: From a permutation to a cyclic cover. Example with the input set P := {ababb,aab,abba,abaa}. Instance of
a cyclic cover of P obtained with a permutation σ. We obtain the cyclic cover CC(P,σ) = {〈ababba〉,〈aba〉}.

We denote by Overlap(CC(P,σ)) the set of overlaps used by the cyclic cover of strings CC(P,σ), i.e. Overlap(CC(P,σ))=
{ov(si,sσ(i)) | ∀i ∈ {1, . . . ,n}}.

For any cyclic cover of strings w of P, we can map each word of P on w, and create the permutation σw defined so
that on the mapping sσw(i) is just after the string si. Hence, we get that |CC(P,σw)| ≤ |w|. Indeed, CC(P,σw) always
merges the input words using their maximal overlaps, while w can use any overlap. Thus, we can restrict the problem
SCCS to consider only cyclic covers induced by permutations.

Some assemblers consider that a subset of overlaps are unreliable, for example if these are too short [13, 1]. In
fact they forbid this subset of overlaps. We adapt our definitions to this case and introduce a set F representing the
maximal elements among all forbidden overlaps. All substrings of elements of F will be forbidden. We define variants
of shortest cover problems that are constrained by the set of forbidden overlaps (see Definitions 1 and 2).

Definition 1 (Constrained Shortest Cyclic Cover of Strings (CSCCS)). • Input: Two sets of linear strings P and
F.

• Output: A cyclic cover of strings C induced by a permutation of P such that
Overlap(C)∩Fact(F) = /0, which minimises ||C||.

Note that if we assume two elements x,y of F such that y is a substring of x, Overlap(C)∩Fact({x}) = /0 implies
that Overlap(C)∩Fact({y}) = /0. Hence from now on, F is assumed to be factor-free. Unfortunately, some instances
of CSCCS lack solutions, and for other instances, the greedy algorithm (Algorithm 1) does not find any solution (see
Example 1).

So, we define the following problem which is a relaxed formulation of CSCCS.

11th May 2016 4 B. Cazaux, G. Sacomoto & E. Rivals



Definition 2 (Constrained Shortest Mixed Cover of Strings (CSMCS)). • Input: Two sets of linear strings P and
F,

• Output: A mixed cover of strings C induced by a permutation of P such that
Overlap(C)∩Fact(F) = /0, which minimises ||C||.

We denote by CMC(P,F) the set of mixed covers C induced by a permutation of P such that Overlap(C)∩
Fact(F) = /0. Let OPTCMC(P,F) be the set of optimal solutions of CSMCS for (P,F).

This time, we can determine easily whether CMC(P,F) is empty or not (see Proposition 1 and Example 1). We get
the same result as for the greedy solutions of CSMC(P,F) (see Theorem 1 and Example 1).

Proposition 1. CMC(P,F) is empty if and only if Fact(F)∩P is not empty.

Example 1. 1. Let P = {abba,baab,bab} and F = {b}, Then the set of cyclic covers of P constrained by F is
empty but {〈abba〉,bab} ∈ CMC(P,F),

2. Let P = {abec,bed,cfabe,dgab} and F = {b}, OPTSCCS(P)= {〈ecfabedgab〉} ; however, the greedy algorithm
for CSCCS gives no solution but the greedy algorithm for CSMCS gives {〈cfabe〉,bedgab} as a solution.

From now on, we assume that F ⊆ Fact(P)\P and F is factor-free.
Let P := {s1, . . . ,sn} be a factor-free set of words, and F ∈ Fact(P)\P. For any permutation σ of {1, . . . , |P|}, we

can obtain a cyclic cover of strings. We ask when such a cyclic cover satisfies the constraint of F , i.e. , when it uses a
forbidden overlap. For any circular permutation σc in a decomposition of σ in circular permutations, we define a set
of violations, denoted Violations(P,F,σc). If this set is empty, the induced cyclic cover is a solution of CSCCS and
of CSMCS. If Violations(P,F,σc) contains only one violation, say i, then the cyclic string can be transformed into a
linear string satisfying the constraint of F . The transformation is as follows: the forbidden overlap occurs between si
and sσc(i).

One builds the linear word by cutting the word circular(P,σc) between the words si and sσc(i) to obtain:

linear(P,σc, i) := pr(sσc(i),sσ2
c(i)

) pr(sσ2
c(i)

,sσ3
c(i)

) . . . pr(s
σ

n−1
c (i),si) si

Let F ⊆ Fact(P) and σc be a circular permutation of {1, . . . ,n}. We set
Violations(P,F,σc) := {i ∈ {1, . . . ,n} | ∃ f ∈ F such that ov(si,sσc(i))⊂sub f}. Violations are the overlaps used in the
cyclic cover (induced by σ) that are substrings of an element of F .

We say that a circular permutation σc is coherent with (P,F) if and only if
|Violations(P,F,σc)| ≤ 1. We say that a permutation σ is coherent with (P,F) if each circular permutation in a
decomposition of σ in circular permutations is coherent with (P,F). For any circular permutation σc that is coherent
with (P,F) we define the Mixed Cover (MC) induced by σc on (P,F) as

MC(P,F,σc) :=

{
circular(P,σc) if |Violations(P,F,σc)|= 0,
linear(P,σc, i) if Violations(P,F,σc) = {i}.

and for any permutation σ coherent with (P,F)

MC(P,F,σ) := {MC(P1,F,σ1), . . . ,MC(Pm,F,σm)}

where (σ1, . . . ,σm) is a decomposition of σ in circular permutation, and Partσ = {P1, . . . ,Pm} is such that for any i in
[1,m], Pi is the element of Partσ corresponding to σi. Let PMC(P,F) denote the subset of Mixed Covers induced by a
permutation coherent with (P,F). We obtain the following proposition, which means that (1) if there is a solution to
CSMC, there also exists one solution induced by a coherent permutation, and (2) an optimal solution is induced by a
coherent permutation.

Proposition 2. Let P be a factor-free set of words and let F ⊆ Fact(P). One has
1. PMC(P,F) = /0 if and only if SMC(P,F) = /0.
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2. OPT(P,F)⊆ PMC(P,F)⊆ SMC(P,F),

Let us introduce the Truncated Hierarchical Overlap Graph (THOG), which is a generalised version of the Hierar-
chical Overlap Graph defined in [3].

Let Ov(P) be the set of maximum overlaps from a string of P to another string or the same string of P. Let
Ov∗(P,F) be Ov(P) minus the set of all factors of forbidden overlaps; in other words, Ov∗(P,F) := Ov(P)\Fact(F).
Now, we define the Truncated Hierarchical Overlap Graph (THOG) of (P,F), in which the nodes are either words of
P or allowed overlaps between these words, and an arc links a string to the node representing its maximal suffix or the
maximal prefix of a string with this string. Two examples of THOG are shown in Figure 4a and 4c.

Definition 3. The Truncated Hierarchical Overlap Graph of (P,F), denoted by T HOG(P,F), is the oriented graph
(P∪Ov∗(P,F),R∪B) where:

R = {(x,y) ∈ (P∪Ov∗(P,F))× (P∪Ov∗(P,F)) | y longest suffix of x in P}
B = {(y,x) ∈ (P∪Ov∗(P,F))× (P∪Ov∗(P,F)) | y longest prefix of x in P}

R denotes the set of red arcs, and B the set of blue arcs.

It is known that overlaps between two strings are explicit nodes in the Generalised Suffix Tree of these words [8].
Hence, all nodes of THOG are explicit nodes of the Generalised Suffix Tree of P. Moreover, a blue arc is a contracted
path of edges of the suffix tree, while a red arc is a contracted path of suffix links. Altogether, we can built THOG in
linear time.

Proposition 3. The graph T HOG(P,F) can be built in linear time in ||P||.

Let si and s j be two words of P. We define the RB-path from si to s j, denoted by RB-path(si,s j), as the path in
T HOG(P,F) going from si to ov(si,s j) using only arcs from R, and then from ov(si,s j) to s j using only arcs of B. Let
σ be a permutation of P coherent with (P,F). Then, for any i between 1 and n, the RB-path from si to sσ(i) is well
defined and exists in T HOG(P,F).

THOG construction algorithm We execute Gusfield’s algorithm for finding maximal overlap nodes in the Gener-
alised Suffix Tree (GST) of P [8] and along the way we mark the words of F . This gives an explicit list of the THOG
nodes. We then perform a depth first traversal of the GST (using the suffix tree arcs) to set all blue arcs of the THOG.
Finally, we perform the same using the tree of suffix links to the set of all red arcs. Altogether it takes linear time in
the GST of P.

3 Greedy Algorithm and Superstring Graph
Here, we define the Superstring Graph and introduce the greedy algorithm for the problem Shortest Mixed Cover
of Strings (SMC) of a set P of words. The difference between the norm of the input and the norm of a solution is
the compression achieved by this solution. Finally, we show that a Eulerian multi-path of the SG and the associated
set of words form a solution of SMC, which approximates the optimal compression by a factor 1

2 , as later shown in
Theorem 1.

We define the greedy algorithm for CSMCS (see Algorithm 1).

Algorithm 1: The greedy algorithm for CSMCS

1 Input: P a set of linear words and F ⊆ Fact(P) Output: C′ ∈ PMC(P,F)
2 C := /0

3 while Ov∗(P,F) is not empty do
4 Select u and v of P which have the longest overlap (u can be equal to v)
5 P := P\{u,v}
6 if u = v (i.e. u� v is cyclic) then C :=C∪{u� v} else P := P∪{u� v}
7 return C∪P
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Let Greedy(P,F) denote the set of solutions of algorithm greedy for CSMCS (for simplicity, we say greedy solu-
tions). One has the following theorem, whose third statement gives the 1

2 -approximation ratio of compression of the
greedy algorithm. To prove this ratio, one can define a subset system for CSMCS, which turns out to be 2-extendible.
The ratio of 1

2 follows directly from this 2-extendibility [10] (see [6] for details). Note this greedy approximation ratio
of 1

2 for the compression is the same as for the well-studied Shortest Common Superstring problem [14, 6]. These
considerations support Theorem 1 (omitted proof).

Theorem 1. Let P be a factor-free set of words and let F ⊆ Fact(P). One has
1. Greedy(P,F)⊆ PMC(P,F)∩{σ permutation coherent with (P,F)},

2. Greedy(P,F) = /0 if and only if SMC(P,F) = /0.

3. Let wg ∈ Greedy(P,F) and wo ∈ OPT(P,F). Then ||P||−wg ≥ 1
2 (||P||−wo).

The inclusions of set of solutions are illustrated in Figure 2. Section 3 states how greedy solutions can be found in
linear time.

Let σ be a permutation that is coherent with (P,F) and such that MC(P,F,σ) is a greedy solution for CSMCS. Let
us denote by G(σ) the subgraph that consists of the set of RB-paths from si to sσ(i) for all i in [1,n]. As in [5], one can
show that any two permutations that are coherent with (P,F) and correspond to a greedy solution for CSMCS, yield
the same graph. We call this graph the Superstring Graph (SG) and define it as follows. Two examples of superstring
graphs are shown in Figure 4b and 4d.

Definition 4 (Superstring Graph). The Superstring Graph of (P,F), denoted SG(P,F), is the graph G(σ) where σ is a
permutation that is coherent with (P,F) and corresponds to a greedy solution for CSMCS.

As the Superstring Graph of (P,F) is embedded in THOG of (P,F), it can clearly be built in a time linear in ||P||.

Theorem 2. The Superstring Graph of (P,F) can be built in time O(||P||+ ||F ||).

4 Comparing the Superstring Graph with a multiple order DBG approach
The IDBA assembler iteratively builds DBG basically as depicted in Algorithm 2. The only difference concerns the
step for removing the so-called short dead-ends in the DBG at each iteration. As the name says, a dead-end is a
simple path starting after a branching node and ending in a node having a single neighbour. IDBA removes dead-
ends shorter than 2k, which are likely due to nucleotidic errors [13]. Such a dead-end would make up a very short,
biologically meaningless, unitig. However, for the simplicity of the proofs, we consider a simplified algorithm without
short dead-end removal. As usual, we require that the input set P of words is factor-free.

Algorithm 2: Algorithm IDBA assembler where DBm(P,k) is the de Bruijn Graph of order k (i.e. , dBG+
k ) where

we remove all nodes which represent a k-mer of coverage smaller than m.

1 Input: A set P of reads factor-free Output: A set Ukmax of unitigs
2 for kmin ≤ k ≤ kmax do
3 Hk = DBm(P,k)
4 Uk = Unitigs Hk
5 P = P∪Uk

6 return Ukmax

About IDBA algorithm (Algorithm 2)
Complexity For each k between kmin and kmax, the algorithm needs to look at all the strings of the instance, i.e. ||P||.
At the end, the complexity of Algorithm 2 is at least linear in (kmax− kmin)×||P||.
Theoretical Solution Nothing prevents a unitig of DBm(P,k) from being a cycle. Let w be a string. We denote the
cover of w in P by CovP(w) := {(i, j) | ∃ri ∈ P such that w = ri[ j : j+ |w|]}. Let P(k,m) denote the set of substrings of
P satisfying, for any w ∈ P(k,m): |w| ≤ k, and CovP(w)≥ m, and for all word w′ such that w is a proper substring of
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w′, CovP(w′)< m or |w′|> k. Hence, we have that Ukmax , which is a set of cyclic and linear strings, is in fact a mixed
cover of string of P(kmax +1,m) with the set of (kmin−1)-mers, i.e. Factkmin−1(P), is taken as forbidden overlaps.

We are going to use the Superstring Graph on the Truncated Hierarchical Overlap Graph to build in linear time in
||P|| an improved mixed cover for the same instance, that is for strings of P(kmax+1,m) with the set of (kmin−1)-mers
taken as forbidden overlaps. The mixed cover obtained from the superstring graph is smaller in terms of inclusion, of
cardinality and of norm than Ukmax (see Theorem 3).

Let SG(P,kmax,kmin,m) be the Superstring Graph of (P(kmax +1,m),Factkmin−1(P)). A RB-route of a Superstring
Graph is a sub-path of a sequence of RB-paths.

Proposition 4. We can build SG(P,kmax,kmin,m) in linear time in ||P||.

Proof. With the Generalised Suffix Tree of P, we can build P(kmax +1,m) in linear time in the size of P. We can build
the Superstring Graph of (P(kmax + 1,m),Factkmin−1(P)) in linear time in ||P(kmax + 1,m)||, because in this case, we
can determine the nodes of the tree corresponding to the elements of Factkmin−1(P) during the construction of the GST
of P without reading these strings. Hence, it improves on the complexity of Theorem 2, and show that one can build
the SG in linear time in ||P||.

Let USG be the set of labelled maximal RB-routes (u,v) of the SG(P,kmax,kmin,m) such that (din
R (u) = din

B (u) = 1
or din

R (u)+din
B (u) ≤ 1) and dout

R (v)+dout
B (v) ≤ 1. Here, din

R (u) denotes the in-degree in number of red arcs of node u
in the superstring graph, and dout

R (u) the out-degree of u in number of red arcs. The notation din
B (u) and dout

B (u) are
defined similarly for blue arcs.

Proposition 5. For all c ∈Ukmax , there exists x ∈USG such that c⊂sub x.

Proposition 6. For all x ∈ USG, ∃c1, . . . ,cq ∈ Ukmax such that x = c1� . . .� cq and for all i between 1 and q− 1,
|ov(ci,ci+1)| ≥ kmin.

Theorem 3. We can build a mixed cover that includes a solution of Algorithm 2 in time in O(||P||), and in linear
space in the size of the de Bruijn Graph of order kmax of P.

Now, we know that the words of USG, the solution provided by the SG, contains all unitigs of IDBA as substrings.
Some words of USG are exactly equal to some unitigs of IDBA. However, the remaining words of USG, contain strictly
more than one unitig of IDBA as substring. In other words, they elongate the unitigs of IDBA by capturing an overlap
missed by IDBA. We formalise this result in the next proposition.

Proposition 7. For all x ∈USG, ∃c1, . . . ,cq ∈Ukmax such that x = c1� . . .� cq and for all i between 1 and q−1, there
exists y ∈USG such that ∃c′1 and c′2 ∈Ukmax such that c′1� c′2 ⊂sub y and ov(ci,ci+1) is a strict prefix of ov(c′1,c

′
2).

SMC

PMC

OPTGreedy

Figure 2: Inclusions of sets of solutions of the greedy al-
gorithm for CSMCS.

ci

c′1 c′2

ci+1

Figure 3: Illustration of Proposition 7.

5 Conclusion
State-of-the-art genome assemblers, like IDBA or SPAdes, build multiple DBG with distinct values of k to improve the
quality of assembled unitigs. In a formal manner, we compared the result of IDBA with the sequences obtained using
the Superstring Graph of an input set P of reads. The SG is a recently introduced digraph with labels on its arcs, which
is embedded in a Truncated Hierarchical Overlap Graph (THOG) of P. The SG yields solutions for Constrained Mixed
Cover that greedily merge the input words using their maximal overlaps; hence, we get a 1

2 -approximation ratio for
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Figure 4: Examples of Truncated Hierarchical Overlap Graphs ((a) and (c)) and of associated Superstring Graphs
((b) and (d)) for P := {aacbb,bbdaa,aeb,bfa}. (a) and (b) have instance (P,F) with F := /0. (c) and (d) have instance
(P(2,1),F) with F := Fact1(P); F forbids any overlap of length 1 or 0.

the compression. We show that the unitigs output by IDBA are always substrings of the sequences assembled with the
SG, and that the converse is false. Indeed, some assembled sequences from the SG extend IDBA unitigs by merging
words with smaller overlaps that cannot be incorporated in IDBA. For the first time, a theoretical framework helps
to understand and to characterise formally the output of real-world assembly software that adopts a multiple-order de
Bruijn graph approach. It also provides a way to improve on their results. Moreover the Superstring Graph offers
the possibility to dynamically extend the range of overlap lengths considered without recomputing the unitigs from
scratch. It can be adapted to cope with reverse complement of the reads/k-mers using the approach of [3]. The main
advantage of the SG, which is linear in the input size, over IDBA is to concentrate all overlaps needed to build a similar
assembly in one single graph.
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