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Most current models of sequence evolution assume that all sites of a protein evolve under the same substitution process,
characterized by a 20 X 20 substitution matrix. Here, we propose to relax this assumption by developing a Bayesian
mixture model that allows the amino-acid replacement pattern at different sites of a protein alignment to be described by
distinct substitution processes. Our model, named CAT, assumes the existence of distinct processes (or classes) differing
by their equilibrium frequencies over the 20 residues. Through the use of a Dirichlet process prior, the total number of
classes and their respective amino-acid profiles, as well as the affiliations of each site to a given class, are all free
variables of the model. In this way, the CAT model is able to adapt to the complexity actually present in the data, and it
yields an estimate of the substitutional heterogeneity through the posterior mean number of classes. We show that
a significant level of heterogeneity is present in the substitution patterns of proteins, and that the standard one-matrix
model fails to account for this heterogeneity. By evaluating the Bayes factor, we demonstrate that the standard model is
outperformed by CAT on all of the data sets which we analyzed. Altogether, these results suggest that the complexity of
the pattern of substitution of real sequences is better captured by the CAT model, offering the possibility of studying its

impact on phylogenetic reconstruction and its connections with structure-function determinants.

Introduction

Probabilistic methods are widely used in phyloge-
netic reconstruction. Their main advantage, compared
to methods such as maximum parsimony, is to make all
assumptions underlying the reconstruction explicit, while
providing powerful and general techniques for validating
those assumptions (Swofford et al. 1996; Sullivan and
Swofford 2001). Given a stochastic model of evolution,
these methods allow computation of the probability of
observing the available data, conditional on a phylogenetic
hypothesis (specified by a topology, branch lengths plus
some other parameters). This probability is used as
a measure of the likelihood of the corresponding hy-
pothesis, and one then invokes the maximum likelihood
(ML) principle, choosing the hypothesis for which the
probability of observing the data is maximal.

Maximum likelihood is intuitively appealing, and
mathematical theorems guarantee the asymptotic consis-
tency of the method (Wald 1949). However, when applied
to models that are too rich in parameters, ML can lead to
over-fitting artifacts. This is true, for instance, when models
with site-specific parameters are considered, a problem
sometimes referred to as the “infinitely many parameter
trap” (Felsenstein 2004). In practice, this limitation on the
number of parameters restricts the range of models that the
phylogeneticist, seeking more realism, would like to
explore. An alternative probabilistic paradigm, the Bayes-
ian method, has been introduced recently in the field of
molecular phylogeny (Li 1996; Yang and Rannala 1997,
Larget and Simon 1999; Huelsenbeck and Ronquist 2001).
It was initially proposed as a practical alternative to ML,
mainly on the grounds that it offers a natural measure of
uncertainty, thereby avoiding the costly method of
bootstrap resampling (Larget and Simon 1999). However,

Key words: phylogeny, Bayes, Dirichlet process mixtures, amino-
acid replacement, Bayes factor, posterior predictive resampling.

E-mail: nicolas.lartillot@lirmm.fr

Mol. Biol. Evol. 21(6):1095-1109. 2004
DOI:10.1093/molbev/msh112
Advance Access publication March 10, 2004

another advantage of Bayes, which is in our opinion much
more fundamental, lies in its greater flexibility with respect
to the model’s dimensionality (Huelsenbeck et al. 2002;
Rannala 2002). In contrast to ML, and through a different
treatment of the nuisance parameters which are not directly
estimated but integrated away, Bayes is able to deal with
much higher dimensional models while offering several
methods to test these models in the light of available data
(Jeffreys 1935; Jaynes 2003). This flexibility opens new
avenues of investigation, as it makes it possible to build
more realistic models of sequence evolution by adjusting
the dimensionality so that it reflects the complexity actually
displayed by the data, rather than the limitations inherent in
the method.

One of the ways by which restrictions are tradition-
ally imposed on model dimensionality is by assuming that
sites of an alignment are independent and identically
distributed: that is, they are considered as independent
realizations of the same substitution process, running
along the branches of the underlying evolutionary tree
(Felsenstein 1981). In certain circumstances, as in the case
of pseudogenes, this assumption might be valid, but more
often different nucleotides or different codons of a gene
will evolve under very different selection pressures. The
assumption of identical distribution is partially relaxed in
the “rates across sites” models (Yang 1993, 1994), where
the rate of evolution at each site is a random variable
drawn from a gamma distribution. Such models yield
a major improvement in statistical adequacy over the
uniform rate model when applied to both nucleotide and
protein data sets (Yang 1996). However, they still assume
that all the remaining parameters of the model of
evolution—i.e., the equilibrium frequencies and the
relative rates of substitution among nucleotides or amino
acids—are the same at all sites.

In practice, all these parameters are summarized into
a4 X 4 or 20 X 20 rate matrix. In the case of amino-acid
alignments, empirical matrices are generally used, which
have first been obtained by counting pairs of amino acids
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at homologous positions in large sets of aligned proteins
(Dayhoff, Eck, and Park 1972; Dayhoff, Schwartz, and
Orcutt 1978; Jones, Taylor, and Thornton 1992). Matrices
optimized by ML have also been proposed for mitochon-
drial (Adachi and Hasegawa 1996), chloroplast (Adachi
et al. 2000), and nuclear (Whelan and Goldman 2001)
proteins. More recently, an alternative, faster method of
optimization has been introduced (Muller, Spang, and
Vingron 2002), and a new method generalizing the use of
empirical matrices has been proposed (Goldman and
Whelan 2002).

A number of models for possible heterogeneity in the
substitution pattern at distinct sites have already been
proposed, both for nucleotide data and amino-acid data. In
the case of nucleotides, the transition/transversion ratio
was modeled as a site-specific random variable (Huelsen-
beck and Nielsen 1999). As for proteins, a first approach
has been proposed, in which substitutional heterogeneity
is introduced through a set of eight to ten predefined
categories, based on secondary structure and solvent
accessibility considerations (Goldman, Thorne, and Jones
1996; Thorne, Goldman, and Jones 1996; Goldman,
Thorne, and Jones 1998; Lio and Goldman 1999). Each
category has its own rate matrix, optimized by ML on real
data sets. This model was shown to be significantly
supported by real sequences, yet it does not address the
question of the extent of heterogeneity actually present in
the data. Furthermore, it makes specific hypotheses about
its determining factors. An alternative method has been
proposed in which no prior constraints are specified
between the substitution processes and other features of
the protein, like the secondary structure (Koshi and
Goldstein 1998; Koshi, Mindell, and Goldstein 1999;
Koshi and Goldstein 2001). However, the substitution
processes themselves are constrained to conform to a prior
biochemical model. Although this approach was general-
ized (Dimmic, Mindell, and Goldstein 2000; Soyer et al.
2002), the total number of categories is predetermined and
is kept small, still for dimensionality reasons. A more
radical approach was taken by Bruno (Bruno 1996;
Halpern and Bruno 1998), through a model in which the
equilibrium frequencies of the 20 amino acids are distinct
at each site of the data set. The resulting model seems to
capture important features of the substitution process
along protein sequences, but it requires a large number of
taxa in order for the statistics at each column to be
significant.

As mentioned above, the flexibility of the Bayesian
paradigm with respect to model dimensionality makes it
possible to build models assuming high levels of
heterogeneity. Yet, this does not tell how the number of
parameters can be adjusted properly to match the signal
present in the data. A possibility is to use mixture models
in which the dimensionality is not fixed a priori and is
itself a free parameter of the inference. Such mixture
models are being introduced in many fields of applied
statistics (Escobar and West 1995; Green and Richardson
1998), including bioinformatics (Eskin, Grundy, and
Singer 2001; Broet, Richardson, and Radvanyi 2002),
but they have not yet been applied to molecular
phylogenetics.

Here we propose a mixture model, CAT, which
generalizes most of the previous approaches (Bruno 1996;
Koshi and Goldstein 1998; Dimmic, Mindell, and Gold-
stein 2000). The model allows for a number K of classes,
each of which is characterized by its own set of
equilibrium frequencies, and lets each site “choose” the
class under which its substitutional history is to be
described. The model can be constrained, with the number
of classes fixed to one, as in the standard one-matrix
model, or such that each site is described by its own class.
Alternatively, we can use a Dirichlet process prior
(Ferguson 1973; Antoniak 1974) on the space of
equilibrium frequencies, to let the total number of classes
be a free variable of the inference. The posterior mean
value is then a measure of the substitutional heterogeneity
actually present in the alignment. We have implemented
this model in a Markov chain Monte Carlo (MCMC)
framework, allowing joint inference to be performed
simultaneously on all the parameters of the model,
including the mixture parameters, the rates at each site,
the branch lengths, and the topology of the underlying
phylogenetic tree. Using this model, we have conducted
inferences on large real data sets and found that, in all
cases, the level of heterogeneity is much higher than has
been accounted for by previous mixture models. In
addition, we show that the standard model based on one
single empirical matrix conditioning the substitution
process at all sites is outperformed by CAT.

Materials and Methods
Data and Trees

We used three alignments of amino-acid sequences as
follows:

EF30-627

These data were obtained as a subset of a larger
alignment of eukaryotic elongation factor 2 sequences.
Thirty taxa were chosen to represent the diversity of the
eukaryotic lineages, and their aligned sequences were
retrieved. We removed all columns for which gaps were
present or data were missing, leaving a total of 627 sites. A
phylogenetic reconstruction under the JTT+F model,
performed with the implementation described below,
yielded a tree which we used as the fixed topology under
which the most time-consuming inferences were con-
ducted. This tree was identical to the posterior consensus
tree obtained with the MrBayes 3.0 program (Huelsenbeck
and Ronquist 2001) using the JTT matrix, a Dirichlet prior
with a concentration parameter of 1 on the equilibrium
frequencies, and an Invariant + I" rate prior modeled by
16 discrete rate categories.

Ek55-1525

These data are a concatenation of the sequences of
four cytoplasmic proteins (actin, EF-1a, o and B tubulins),
sampled across 55 eukaryotic species (Baldauf et al. 2000).
The alignment was kindly provided by Sandra Baldauf.
We removed the diplomonads and trichomonads from our



analysis because of their long branches. When constrained,
the topology was fixed as in Baldauf et al. (2000).

Mt45-3596

The complete coding sequences of the mitochondrial
genomes of 45 mammals were aligned with each other,
and the ambiguous regions of the alignment were
removed, yielding a data matrix of 45 X 3,596 amino
acids. The MrBayes program was run on this alignment,
using the MTREV empirical matrix, with four discrete I'-
categories. The resulting majority-rule consensus (using
the allcompat option) was used as the fixed topology.

Notation and Parameters

The available data are in the form of an alignment of
P amino-acid sequences, of length N. Let i index the
columns C;, or sites, and j the branches. All of the models
used in this work assume that the sequences are related by
an unknown, unrooted phylogenetic tree ¢, with branch
lengths ;> 0,j=1,2,...,2P — 3. Sltes have their own
rates of substitution r; > 0 such that NZ, , 1i=1. Gaps
are treated as missing data.

Markovian Model of Amino-Acid Replacement

For all models, substitutions occur according to
a Markov process running along the branches of the tree.
Such a Markov process is characterized by a rate matrix
0 = [0;,,] that can be expressed in terms of 20 stationary
probablhtles or equilibrium frequencies, (;), 1 </ < 20,
E, , 7= 1 and a set of relative rates, or exchangeability
parameters, (p;,,), 1 <1, m < 20, according to the relation

le :Zplmnmﬂ [ # m (1)
Qll = - Zle- (2)
m#l

The process is assumed to be reversible, p;,, = p,.., and the
matrix has been scaled so that the substitution rate is one,
using the normalization constant

Z Pim T TCm- (3)

1<I<m<20

Z=2X

With this scaling, branch lengths are measured in expected
number of substitutions per site. From Q, one obtains the
transition probability matrix P(v) = [P,,,(v)], specifying the
probability that amino-acid / changes into m over an
evolutionary distance of v, as P(v) = e"?

Mixture Modeling

We proposed a model that is site-heterogeneous with
respect to the substitution process, and which we called
CAT (because in effect, it classifies sites into categories).
Under the CAT model, sites are distributed according to
a mixture of K distinct classes. Each class is characterized
by its own substitution matrix Qk, and the class to which
each site belongs is specified by an allocation variable z; €
[1..K]. The vector z = (z;);c;1.n 1S called the allocation
vector.
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For simplicity, we consider only mixtures of matrices
{Qk}kzan having all the same set of relative rates p, but
different stationary probabilities 7, so that the mixtures
are actually defined on the space of stationary probabilities
(the m-space):

le - k p]m fn? l 7/: m (4)
==Y 0}, (5)
m#l

where, in order to constrain the substitution rate, we
invoke a normalization constant

Z plmnj(n/riz . (6)

1<I<m<?20

ZF=2x

With this normalization, the branch lengths have the same
meaning under all classes; i.e., they are measured in
expected number of substitutions. Because a class is
entirely characterized by its m-vector, we call the latter its
profile.

The relative rates p;, can be fixed to pre-specified
values, allowing different models to be specified. The
mathematically simplest model is obtained by setting all
the relative rates equal to unity: sites are described by
a mixture of Poisson processes. Alternative models were
also considered, based on the relative rates of known
empirical matrices: JTT (Jones, Taylor, and Thornton
1992) and MTREV (Adachi and Hasegawa 1996), depend-
ing on the data set under study. The corresponding models
were called CAT-PoissoN, CAT-JTT, and CAT-MTREV,
respectively.

The relative rates can as well be considered as free
parameters of the inference (CAT-GTR model). Because
they are defined up to a multiplicative constant, which
cancels out upon normalization of the rate matrix, we
impose the formal constraint that

Z Pm = 1. (7)

1<I<m<K

Once site-specific rates, substitution matrices, and
allocation variables are known, the likelihood at each site
is computed using Felsenstein’s pruning algorithm
(Felsenstein 1981). In the case where the processes are
Poisson, it is possible to perform mathematically
equivalent computations by recoding the process at each
site in such a way that all nonobserved amino acids at
a given column are collectively considered as one single
state. The stationary probability of this new state is the
sum of the stationary probablhtles of all non- observed
amino acids. Felsenstein’s pruning algorithm is in S°P,
where § is the number of states, and P the number of
taxa. For amino-acid data without the recoding, S = 20.
Under the recoding, S will be in general less than 20, and
for highly conserved alignments it can often be as low as
2 or 3, which yields a significant increase in computa-
tional speed (up to a 50-fold increase in speed was
observed in the case of the eukaryotic data set Ek55-
1525).
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Priors

We used uninformative priors on #, B, r and p, as
follows:

e t ~ Uniform over topologies

hd Bj -~ Uniform[O, Bmax]’ with Bmax =100

e 1 ~ Dirichlet(1, 1, ..., 1)
The resulting marginal distribution at each site is a 7y
distribution, with an o parameter of 1.

e p ~ Dirichlet(1, 1, ..., 1)

In addition, we defined a prior on the mixtures, using
a Dirichlet process (DP) (Ferguson 1973; Antoniak 1974).
A DP prior is parameterized by a concentration parameter
a, and a base distribution Go(r) defined on the n-space, the
space of stationary probabilities. It can be described by the
following procedure for randomly drawing a configuration
from the prior (Neal 2000):

e Draw the number of classes K, together with a N-vector
of allocation variables z, according to p(z, K | o).
e Draw K values i.i.d. in the m-space: Vk, m° ~ G,

p(z, K | o) can be expressed as

_ K Hle(m—l)!
PR i)

where 1, stands for the ocupancy number of class k (i.e.,
the number of sites allocated to class k). Integrating this
expression over z yields the marginal prior distribution on
the number of classes, p(K | o), which has a complicated
form, not reported here (Antoniak 1974; Escobar and West
1995). An intuitive formulation of its dependence on o is
that, given o, the marginal prior probability that two
different columns taken at random belong to the same class
is 1/(1 + o) (Neal 2000). Thus, o defines the level of het-
erogeneity a priori assumed, with higher values favoring
a larger number of classes. We considered a as a free pa-
rameter, with a flat prior between two extreme values, and
zero outside.

(8)

o ~ Uniform{ou , tmax)

We set d,,;, to 0.001, and o, to 1,000. This prior on o
induces a smooth marginal prior distribution on K,
allowing for the posterior mean number of classes to be
determined principally by the data. Finally, we used a flat
Dirichlet prior as the base distribution on the sets of
stationary probabilities:

Go(n) = Dirichlet(1,1,...,1)

In particular cases, one can also dispense with the DP
prior and constrain the value of K. Two cases were
considered:

e The one-matrix model: K = 1. This corresponds to the
usual models: PoissoN, JTT, MTREV and, when the
relative rates p;, are considered as free parameters,
GTR. The stationary probabilities of the single sub-
stitution matrix can be either free or fixed to their
empirical estimates. The models using empirical
estimates are called PoissoN+F, JTT+F, WAG++F, or

MTREV +F, depending on the set of relative rates that
are used (in the case of the GTR model, stationary
probabilities are always considered as free parameters).

e The maximally heterogeneous model: K =N, where N is
the number of sites. Each site evolves under its own
substitution process. The N sets of 20 stationary
probabilities are considered unknown parameters (19N
free parameters). The resulting model is called MAX,
and under equal relative rates is similar to the model
proposed by Bruno (1996).

Implementation and Monte Carlo Sampling
Gibbs Sampling of the Dirichlet Process

To visualize how a DP prior mixture model works,
one can make explicit the probability of all possible
allocations of a given site, conditional on the rest of the
data. For any given site i, we denote collectively by z_;
and m_; the allocation variables and the stationary
probabilities at all other sites. In addition, for any class
k, N.—; stands for the number of sites other than i allocated
to class k (i.e., the number of j € [1..N], j # i such that z;=
k). Then, one has (Neal 2000):

p(zi=z; for some j # i | Ciyzi,m ) = anj,fip(ci | 7).

9)
plz; # ziforallj # i| Ciz_;,m_;)

:Zoc/p(C,-|1t)G0(7c)dn. (10)

Here, Z is the appropriate normalizing constant that
makes these probabilities sum to one. The dependence
of p(C; | m), the likelihood at the ith. column, on all
parameters other than the stationary probabilities © (like
the topology and the branch lengths) has been omitted for
notational simplicity.

These two equations immediately suggest a Gibbs
sampling algorithm, in which each site is taken in turn, and
its allocation variable is reassessed according to these
conditional probabilities. Note that the total number of
classes K can change through this update. Thus, if the site
had a class on its own, but is re-allocated to another
already existing class, K will decrease by one. In the
reverse situation, if site ; were initially allocated to a class
k such that n; —; > 0, and ends up allocated to a new class,
then K will increase. In all other cases, K will remain
constant. Upon iteration, and when combined with other
updates (see below), this algorithm allows K to fluctuate
across the whole range [1..N].

What determines the equilibrium level reached by K?
First, one can see from equation 9 that, not surprisingly,
the choice among alternative allocations of site i to already
existing classes is driven by the relative likelihoods of
these allocations. In contrast, equation 10 shows that the
probability of letting the site have a class on its own is
mainly determined by how the prior expectation of the
site’s likelihood over all possible sets of stationary prob-
abilities compares with likelihoods under already existing
classes. This amounts to comparing the performance of



a non-fitted new profile to the currently available ones,
which have already been fitted to the rest of the data. This
asymmetry makes it difficult for a site to induce the
creation of a new class, unless the pattern at the
corresponding column of the alignment is sufficiently
distinct from all other columns. Finally, the weights (1, —;
in equation 9, or o in equation 10) represent the net
variations of the prior factor P(z, K | o). That the weight is
o in equation 10 makes it apparent that o has a direct
influence on the propensity of proposing new classes, and
thus on the stationary value of K.

In our MCMC sampler, we rely on a slightly modified
version of this update mechanism (Neal 2000), as follows:

e SwircHMoDE: In addition to the K currently existing
classes, K new classes are created, with profiles drawn
from Gg. One site (i) is then chosen at random, and for
every k € [1, K + x], site i is allocated to class k, the
corresponding likelihood for site i (Lf-‘ ) is computed, and
a Gibbs sampling over k is performed based on the
probabilities

Pk :Z*wk*Lf,

(11)

where wf = Ni.—i» if Nz —; > 0, and wk =0t / k otherwise.
Different values of x do not change the stationary
distribution, but they yield faster convergence and better
mixing. We empirically set k to 5.

SwITCHMODE is used in combination with two other
operators, one updating the stationary probabilities of one
class at a time (STATIONARYMOVE) while keeping z and o
constant, and another one proposing a new value for o.

e STATIONARYMOVE: one site is chosen at random, an
update of the profile of the class to which it is allocated
is proposed according to a Dirichlet distribution centered
on the current value, with a tuning parameter of Ag.

e ALPHA: A random real value 6 = A, * (U — 0.5), with
a tuning parameter A, > 0, is added to o, with back-
reflection in [0, Qnarl, if required. The Hastings
ratio equals 1, and the likelihood does not depend on o,
so that the only nontrivial factor involved in this
Metropolis update is the resulting change in P(z, K | o),
yielding the acceptance probability:

K * «xK N _1
— win( 1,PEETEDN (1,2 12—,
p(z,K | o) ok o +i—1

: (12)

where o and o* stand for the current and the proposed
values of o, respectively.

~

Topology and Branch Lengths

We used the GLoBAL and LocaL algorithms proposed
by Larget and Simon (1999). In addition, we also devised
a node-sliding operator, as well as three operators
proposing new values for the branch lengths, while
leaving the topology invariant:

e NODESLIDING: we randomly pick an internal branch of
the unrooted tree and then designate its two nodes « and
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v. The other two neighbors of u are called a and b, and
those of v are called ¢ and d, with equal probability. We
then slide the branch ¢ — u along the segment b — u —
v — d, by a distance [ = Ay * (U — 0.5), where U ~
Uniform(0, 1], and Ay > 0, is a tuning parameter. If [ >
0, the move is made toward d, and toward b otherwise. In
addition, if the move pushes the branch out of the range
defined by b and d, the excess is reflected back into the
required interval. The Hastings ratio for this proposal is 1.

e ONEBRANCH: one branch of the unrooted tree is chosen
at random, and its length is multiplied by a random
factor r= exU(U*O'S), where U ~ Uniform[0, 1], and 1o >
0, is a tuning parameter. The Hastings ratio equals r.

o ALLBraNcH: all branch lengths are updated simulta-
neously, each g} being multiplied by a distinct random
factor r; = ¢*(Ui=5) where L, is a tuning parameter.
The Hastings ratio is [ [ ;.

e HomortHETIC: all branch lengths are updated simulta-
neously, as in ONEBRANCH, all being multiplied by the
same ra31ndom factor 7 = ¢™(U=05) The Hastings ratio
isr .

Rates Across Sites

As in Larget and Simon (1999), we propose a new set
of values according to a Dirichlet distribution centered on
the current parameter value. We found that this Monte
Carlo operator was more efficient if applied only on
a subset of the rate vector. Specifically, a small number g
of sites, iy, i, ..I;, are chosen at random, and a new set of
values, according to a Dirichlet distribution restricted on
i, Iy ... ig, with weights Apr, Apri,, ... , Apri, was
proposed as un update. Ap is a tuning parameter.
Empirically, we found that ¢ = 10 gives a good mixing.

General MCMC Settings

During sampling, the different components of the
hypothesis vector were updated separately, in random
alternation, according to a grid of weights (W,,)1<m<m>
where M is the total number of operators. Specifically,
defining W = M w,,, we call a cycle a series of W
iterations. For each iteration, m is drawn at random,
according to m ~ w,,/W, and the corresponding operator is
called to act on the current state. The weights (w,,) were
determined empirically, like the tuning parameters, to
optimize the mixing of the Markov chain. Both the weights
and the tuning parameters are dependent on the model, as
well as on the data set under which the inference is con-
ducted (see table S1 in the Supplementary Material online).

For each run, the convergence was assessed by
checking for the absence of long-term trends in a series of
key monitor functions. Specifically, we monitored the log
likelihood, the tree length, the entropy of the rate
distribution, the number of classes, and the average profile
entropy (class-occupancy weighted average). In addition,
in most cases, at least two independent runs were
performed, starting from different points of the parameter
space taken at random, and their marginal properties
(majority-rule consensus tree, class number, and compo-
sition) were compared.
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Under CAT-PoissoN, CAT-JTT, CAT-MTREV, and
CAT-GTR, we did a total of 600,000 update cycles. The
first 100,000 points were discarded, and we subsampled
every 50 cycles after burn in. Under JTT+F and
MTREV+F, the only free parameters are the site-specific
rates of substitution and the branch lengths, which makes
convergence much faster, so that we only did a total of
100,000 update cycles, removed the first 20,000, and
subsampled every 10 cycles. Under GTR, we did a total of
200,000 update cycles, removed the first 40,000, and
subsampled every 10 cycles.

Clustering

To identify the classes that are stable across a MCMC
run, we pooled all the classes of all the points of the run
(burn-in discarded), and defined clusters based on the
degree of similarity between the corresponding profiles.
Specifically, for each pair of classes (%, k), we computed
the quadratic distance between their profiles,

d= [Z(n? - nff]'

=1

(13)

and considered that two profiles belong to the same cluster
if the distance separating them is below a predefined
threshold d,,,,. = 0.01.

Note that any given point of the sample may have
several of its classes contained in some clusters, while it
may not be represented in other clusters. A given cluster is
referred to as a stable cluster if one and only one class is
affiliated to this cluster for more than 80% of the points of
the sample. For each stable cluster, one can compute the
following:

e its mean occupancy number: specifically, the sum of all
its classes’ occupancy number divided by the sample
size.

e mean profile: occupancy number weighted average of
its classes’ profiles.

A stable cluster can be interpreted as a class that can be
identified unequivocally across the MCMC sampling, and
thus, we will refer to stable clusters directly as stable
classes.

We developed software for principal component
analysis. Plots were visualized using Gnuplot (http://
www.gnuplot.info). We wrote a program for visualizing
profiles using a representation akin to sequence logos
(Schneider and Stephens 1990), translating sets of
stationary probabilities into PostScript files.

Posterior Predictive Resampling

One of the ways to evaluate the performances of
alternative models is to compare their predictions on real
and simulated data (Gelman, Meng, and Stern 1996). For
instance, in the present context, we wish to compare the
number of classes inferred by CAT on real data with that
obtained on data simulated under CAT itself, or under
a standard model, such as JTT. For these comparisons to
be meaningful, it is important to simulate the replica under
sensible parameter values. In the maximum likelihood

framework, one would choose the ML estimate. In
a Bayesian analysis, it is more customary to sample the
replica from the posterior predictive distribution (Rubin
1984; Gelman, Meng, and Stern 1996; Gelman et al.
2004). Given a data set D, and a model M, parameterized
by h € (), this distribution is defined as:

P(D'" |M,D) = /P(D”’” | h, M)P(h|D,M)dh, (14)
Q

where
P(D|h,M)P(h|M)
PO M) (15)

is the posterior probability distribution over the parame-
ters, induced by the data.

In practice, a collection of R replicas are obtained
using the following procedure: first, run a MCMC under
model M, with data D, discard the burn-in, and take R
points regularly spaced in the remaining part of the chain
(h)1<r<gr- Next, for each r, simulate a replica D, under #,.

P(h|D,M) =

Numerical Evaluation of the Bayes Factor by
Thermodynamic Integration

The most common Bayesian method of model
comparison consists in computing the Bayes factor
(Jeffreys 1935, 1961; Jaynes 2003). The Bayes factor in
favor of model M; against model M, given the data D, is
defined as

_ P(D|M))
 P(D[My)

P(D | M), i =0, 1, is the likelihood averaged over the
prior (or marginal likelihood):

B, (16)

(17)

where h stands for the parameter vector, and ) for the
whole parameter space. Model M| will be supported over
model M, if Bj is greater than 1, which amounts to
choosing the model that has the higher marginal likeli-
hood. To compute Bayes factors, we used a numerical
method based on an analogy with thermodynamics; it is
called thermodynamic integration (Ogata 1989). The
details of this method, also known as path sampling
(Gelman 1998), are explained in the Appendix.

When more than two models are being compared, one
can exploit the additivity property of the logarithm of the
Bayes factor, i.e., VMo, M, M>, In B% =1In B% — In B%.
Therefore, one only needs to compute the Bayes factors of
each of the models with respect to the same reference
model My, and compare their values directly. In the present
study, PoissoNn+F was used as the reference.

All source code files and alignments are available
upon request.

P(O|M) = [ PO |h.M)P(h| M),

Results

We first conducted inferences under the CAT-PoissoN
Model (i.e., a free number of Poisson processes), on the
elongation factor 2 data set, EF30-627. The topology was
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Fic. 1.—Majority rule consensus phylogenies obtained with the models JTT+F (A) and CAT-PoissonN (B). Branch lengths are proportional to the
expected number of substitutions per site. Node support values are equal to the posterior probabilities.

constrained according to the posterior consensus tree
found by running our program on this data set using the
JTT+F model (fig. 1A), while all other parameters (branch
lengths, site-specific rates, class number and profiles, as well
as the allocations of sites to modes) were left unconstrained.

Figure 2A shows the evolution of the value of K, the
number of classes, during the elongation of two inde-
pendent MCMC chains. The chains were initialized at K =
1 and K =N, respectively. Irrespective of the starting point,
K converged to a well-defined interval centered on 28
(28.4 = 3.5). The histograms of the frequencies estimated
from the two independent chains are very similar (fig. 2B),
the corresponding 95% credibility interval being [22,35]
and [21,36]. Substitutional homogeneity across sites is
thus rejected by our model (p(K =1 | D) = 0). On the
other hand, the maximally heterogeneous situation is also
excluded by the present analysis (p(K =N | D) = 0). In
fact, the mean posterior number of classes, as inferred from
CAT-PoissoN, is low, when compared to the total number
of columns of the alignment (an average of one class per
22 sites). It should be stressed that, even with as few as 28
classes, the model is dealing with a relatively high num-
ber of additional parameters, compared to JTT+F (speci-
fically, 28 X 19 = 532 free continuous parameters for
the profiles, and N =627 discrete parameters for the alloca-
tion vector, where N is the length of the alignment).

We performed the same analysis without constraining
the topology. We found a topology (fig. 1B) similar to that
obtained using the JTT+F model (fig. 14). A few
differences are present, however: under CAT-PoISSON,
the choanoflagellate Monosiga is found within the meta-
zoan clade, and not as its sister group. In addition,
Dictyostelium is clustered with diplomonads and tricho-
monads. Finally, stramenopiles became a sister group of
the alveolates, instead of the diplomonads and trichomo-
nads. In spite of these differences, however, the mean
number of classes ((K) = 27.9 * 3.6) is close to that

obtained when the topology is constrained, suggesting that
the analysis performed under CAT-PoissoN is robust
against phylogenetic uncertainty.

Interestingly, the inferred total length of the tree is
strongly model dependent: under the constrained topology,
we observed a posterior mean number of 8.13 = 0.21
substitutions per site under CAT-PoissoNn, versus 7.46 *
0.14 under JTT+F (table 1).

Stable Class Identification

Any two points of a given Markov chain obtained
under the CAT model may differ in all respects (class
number, site to class allocations, class specific profiles, as
well as branch lengths and site-specific rates), and there is
no a priori obvious way of identifying a given class
throughout the sample. On the other hand, there may be
some stable patterns. To identify them, we took 1,000
regularly spaced points from a given run and pooled all the
classes observed at each of these points. Each class is
characterized by its profile, and can be assimilated to
a vector in a 20-dimensional space. A principal component
analysis (PCA) on the set of pooled classes is shown in
figure 3A. Two kinds of patterns can be seen: first, a broad
set of dots scattered more or less homogeneously across
a large region in the center of the projection, and second,
a series of 10 to 12 dense clouds. To further characterize
this distribution, we used a clustering method (see
Materials and Methods), and identified a series of 11
stable classes (i.e., classes that can be unequivocally
identified across the sample). The mean profile and the
mean occupation number of each identified stable class is
shown in figure 3D, and a projection of their profiles back
onto the PCA (fig. 3A, large crosses) clearly shows that
these stable classes correspond to the dense clouds.

The profiles of the stable classes are biochemically
reasonable (fig. 3D). For instance, there are classes with



1102 Lartillot and Philippe

180

>

160

140

120

100

" g0 cBooU

50 100 150 350 400 450 500

200 25 300
Cycoles

Frequency

Fi6. 2.—A. Traceplot showing the evolution of K, the number of modes, during the elongation of two independent MCMCs (only the first 500
cycles are shown). The initial conditions were K =1 (circles) and K =N (squares), with N standing for the number of sites. B. Histograms displaying the
frequencies at which each value of K was observed along the two chains referred to in A, starting from K = 1 (solid lines), and K = N (dashed lines).

negatively charged residues (D and E), with positively
charged residues (K and R), or with aromatic (F and Y)
residues. Note the diversity of alternative classes belong-
ing to the same biochemical category: there are two
hydrophobic classes, one with the amino acids I and V,
and one favoring L and M. Finally, some amino acids
are found in several stable classes, like S, which belongs
to both (A,S) and (S,T) classes; the most extreme exam-
ple is that of alanine (A), which is present in five dif-
ferent classes, (A,S), (A,G), (A,P), (A,C,S,T,V), and
(A,D,E,G,K,Q,N,S,T,V). Thus, according to these results,
the same amino acid can undergo different types of
substitutions depending on the context. The same cluster
analysis was performed without constraining the topology
and gave essentially identical results (see fig. S1, in the
Supplementary Material online).

The CAT-PoissoN model was applied to data sets of
larger size, consisting in the concatenation of four nuclear
proteins from 55 eukaryotes (Ek55-1525), and of the
mitochondrial proteins of 45 mammals (Mt45-3596). We
found significant support in favor of heterogeneity in all
cases (table 1), as shown both by the posterior mean
number of classes (26 and 35) and by the number of stable
classes identified by clustering (14 and 22).

Biochemically reasonable classes are found in all
cases (see figures S2 and S3 in the Supplementary Material
online), and they bear many similarities with each other
across the three data sets, in particular between EF30-627
and Ek55-1525, suggesting that the number and the
composition of the classes inferred by CAT-PoissoN cor-

respond to generic properties of the substitution patterns in
proteins. More significant differences are observed be-
tween mitochondrial proteins and the other two data sets.
This might reflect that mitochondrial proteins are mostly
transmembrane proteins, whereas the proteins included in
the two other data matrices are exclusively cytosolic
factors. This is in agreement with the fact that the MTREV
is markedly different from other empirical substitution
matrices (Adachi and Hasegawa 1996).

Posterior Predictive Checks

We compared the inferences conducted on EF30-627
with the results obtained from data sets of the same size,
but simulated under various conditions. First, for data
simulated under one single Poisson process and analyzed
under CAT-PoissoN, one class was recovered with
significant probability (P = 0.65). Next, we simulated data
under CAT-PoissoN, drawing the parameters of the
simulation from the posterior predictive distribution (10
replica, see Materials and Methods). The posterior mean
number of classes found on the simulated data sets ((K) =
23.1 = 2.7) is slightly lower than the value found on the
real data set ((K) = 28.4 = 3.5), suggesting that, as an
estimate of the number of classes, (K) is biased downward.
However, the number of identified stable classes is very
similar (Kgy, = 11.20 £ 1.08 versus Kg, = 11), as well as
the underlying profiles (not shown). A PCA projection of
the classes obtained in one of these simulations (fig. 3B)
does not display significant differences with the analysis

Table 1

Estimates of Class Number and Tree Length Under CAT-PoissoN, MAX-PoissoN and JTT+F
CAT-PoissoN MAX-PoissoN JTT+F

Data Set ()" (K> Ksu® (TLYcar® (TLYmax" (TLYrr+#

EF30-627 63+ 1.6 284 £ 3.5 11 8.13 £ 0.21 7.06 = 0.14 7.46 = 0.14

Ek55-1525 47 *+ 1.3 26.4 = 3.7 14 5.36 = 0.10 4.82 = 0.07 478 = 0.08

Mt45-3596 54 £ 1.1 353 = 32 22 7.54 = 0.10 5.90 = 0.05 591 = 0.05

# Mean posterior value of the Dirichlet Prior concentration parameter.

® Mean posterior number of classes.

¢ Number of stable classes detected by clustering.
4 Mean posterior tree length under CAT.

¢ Mean posterior tree length under MAX-PolssoN.
f Mean posterior tree length under JTT+F.
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Fic. 3.—A, B, C. Principal Component analysis of the profiles obtained under the CAT model, using A, real sequences (EF30-627); B, data
simulated under CAT (SimuCAT30-627); C, data simulated under JTT (SimuJTT30-627). To make comparison easier, the profiles in B and C are
projected onto the 2-dimensional subspace of R?® defined by the principal components computed in A. First axis accounts for 17.3%, and second axis
for 12.7%, of the total variance in A and B, and 15.3% and 11.3% of the variance in C. D. Profiles of the 11 stable modes obtained with EF30-627. The
one-letter amino-acid code is used. Font height is proportional to the frequency of the corresponding amino-acid. Modes are reported on panels A and B.
E. Profiles of the six stable modes obtained with JTTSimu30-627. Modes are reported on panel C.

performed on the real data set (fig. 3A). Thus, in spite of
a slight bias, the mixtures inferred by CAT-PoissoN appear
to be quite robust to posterior predictive resampling.

In contrast, when the same experiment is performed
on alignments that have been obtained by simulation under
the JTT+F model, a much lower level of heterogeneity is
detected ((K) = 13.7 = 1.6, n = 10 replica). Upon
clustering, an average of Kg;, = 6.8 = 0.8 stable classes is
obtained. The profiles of these stable classes display
significant differences with those observed for real data
(fig. 3C and E): for instance, there is only one class
containing A, S, and T, in place of the two (A,S) and (S,T)
classes found on real sequences, and the (F,Y) class has
disappeared altogether.

CAT Inferences Using Non-Poissonian Rate Matrices

The previous experiment suggests that the informa-
tion contained in the JTT matrix is able to account for only
part of the substitutional heterogeneity across sites present

in real data. To investigate this problem further, we set the
relative rates underlying our mixture model equal to those
of the JTT matrix. (in the case of mitochondrial proteins,
we used the MTREV coefficients instead). Our argument is
that, if one single empirical matrix (JTT) is sufficient to
account for the substitutional heterogeneity of a particular
data set, then an inference conducted under the CAT-JTT
model on this data set should yield a nonvanishing
posterior probability of having one single class.

We performed a CAT-JTT inference both on EF30-
627 and on a data set drawn from the JTT+F induced
posterior predictive distribution. Whereas the probability
of recovering a single class is high in the case of the
simulated data (P = 0.6), it is virtually O for real data (fig.
4, and table 2). Surprisingly, the posterior mean number of
classes is even greater with CAT-JTT ((K) =51.6 * 8.3)
than with CAT-PoissoN ((K)=28.4 = 3.5), although when
a cluster-analysis is performed, a lower number of stable
classes than in CAT is obtained (Kg;; = 5). The same
analysis was conducted on Ek55-1525, and on the
mitochondrial data set Mt45-3596, (in the latter case,
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Fi. 4—Histograms showing the estimated posterior probability
distribution of K, the number of modes under the CAT-JTT for data
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using MTREV as the empirical matrix). In both cases, the
posterior probability of the data being described by one
single class is virtually zero, and the posterior mean
number of classes is also higher under CAT-JTT or CAT-
MTREYV (table 2), than under CAT-PoissoN (table 1).

In a last experiment, the relative rates were
considered as unknown parameters (although they were
still constrained to be the same for all classes). The results
were qualitatively the same as with CAT-JTT or CAT-
MTREV, with a posterior mean number of classes of (K) =
47 = 7 inferred on EF30-627 (fig. 4). Thus, even under
non-uniform relative rates, a significant part of the
heterogeneity among sites has to be further accounted for
by forcing the mixture to contain more than one class. In
other words, models based on one single matrix are far
from capturing the substitutional heterogeneity of real data
to its full extent.

Bayesian Model Comparison

Bayes factor evaluation is the most common method
of model comparison in Bayesian inference (Gelman 1998;
Jaynes 2003), and has already been applied in phyloge-
netics (Suchard, Weiss, and Sinsheimer 2001). Using the
numerical method called thermodynamic integration
(Ogata 1989, see Appendix), we computed the Bayes
factor between PoissoN+F, taken as the reference model,
and CAT-PoissoN, MAX-PoissoN, and a series of
empirical matrix models (JTT+F, WAG+F, and
MTREV +F; table 3). In the case of EF30-627, we also
included the general model GTR in the analysis.

Our results first allow comparison of the one-matrix
models among themselves: as expected (Whelan and
Goldman 2001), WAG+F performs better (and
MTREV+F worse) than JTT+F on cytosolic proteins
(EF30-627 amd Ek55-1525). Interestingly, JTT+F and
WAG+F are better than GTR on EF30-627, suggesting
that the relative rates of known empirical matrices are
close to optimal for this data set. Irrespective of their
relative performances, however, the one-matrix models are

Table 2
Estimates of the Number of Classes Under CAT-JTT and
CAT-mTREV

Data Set PK = 1) (K) Kou
SimuJTT30-627 0.60 1.7+ 1.1 1
EF30-627 0 51.6 = 8.3 5
SimuJTT55-1525 0.64 1.8 + 1.4 1
Ek55-1525 0 457 = 6.0 14
Mt45-3596 0 709 + 6.6 16

all outperformed by CAT-PoissoN. For example, the
support in favor of CAT-PoissonN with respect to WAG+
F on EF30-627 is of 1,932 — 1,760 = 172 natural units of
logarithm, which corresponds to 0.27 natural log units per
site. This means that, on average, each column is 027 =
1.32 times better explained by CAT-PoissoN than by
WAG+F. In contrast to CAT-PoissoNn, MAX-PoissoN
does not seem to be favored over one-matrix models: for
all three data sets, MAX-PoissoN was by far the worst-
performing model after PoissoN+F (table 3).

Discussion
Characterizing Substitutional Heterogeneity Using
a Dirichlet Process Prior Model

We have developed a Bayesian model of sequence
evolution, CAT, that can account for substitutional
heterogeneity across the sites of protein sequences. In
contrast to already existing mixture models designed for
the same purpose (Goldman, Thorne, and Jones 1996;
Thorne, Goldman, and Jones 1996; Goldman, Thorne, and
Jones 1998; Koshi and Goldstein 1998; Koshi, Mindell,
and Goldstein 1999; Lio and Goldman 1999; Dimmic,
Mindell, and Goldstein 2000; Koshi and Goldstein 2001),
all of which have a fixed number of classes, the number of
substitutional classes in CAT is itself a free parameter. In
this way, it will adapt to the substitutional complexity of
the underlying data set, and it provides an estimate of this
complexity through the posterior mean number of classes.

Inferences using the CAT model on real protein data
sets uncover a high level of heterogeneity, much higher
than what is assumed by all other mixture models that have
been proposed thus far. To give a numerical estimate, under
CAT-Poisson, we always found a posterior mean number
of classes greater than 20, whereas in all other models, the
number of classes is always set to a value lower than 10.
Moreover, the difference between the posterior mean
number of classes found upon posterior predictive
resampling and the estimate obtained on the real data set
(23.1 £ 2.7 versus 28.4 *= 3.5) reveals the existence of
a bias, suggesting that the actual level of heterogeneity is
probably even higher than what we have observed.

When looking at the classes’ profiles and occupancy
numbers, one sees that there actually exist markedly
different kinds of classes. On the one hand, using a simple
clustering algorithm, we were able to identify a restricted
set of classes that are stable along a given Markov chain,
and are represented by many sites across the sequences.
The profiles of these classes (fig. 3D) correspond to
reasonable biochemical features, although they are more
diverse and more refined than the basic biochemical
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Model Comparison. Natural Logarithm of the Bayes Factor Between PoissoNn+F and

All Other Models

Data Set JTT+F WAG+F MTREV+F GTR CAT-PoissoN MAX-PoissoN
EF30-627 1,631 1,760 1,374 1,550 1,932 807
Ek55-1525 3,324 3,628 2,848 — 3,808 1,112
Mt45-3596 10,089 8,970 10,943 — 12,389 855

categories generally used. Strikingly, most of them are
markedly peaked, giving a significant weight to only two
or three amino acids, suggesting the presence of a strong,
site-specific, selection pressure at the amino-acid level,
which would be one of the dominant forces shaping the
substitution process. Another feature is that a given amino
acid can belong to several distinct classes, indicating that
context-dependent amino-acid exchangeability is an im-
portant aspect of protein evolution. Note that this property
cannot be accounted for by the standard one-matrix
models. Similar observations have been made previously,
using a parsimony-based approach (Lopez 1997).

On the other hand, the difference between the
posterior mean number of classes and the number of
stable classes (28.4 £ 3.5 versus 11 in the case of EF30-
627), reveals the existence of a large series of classes
which are not easily identifiable. Closer examination
indicates that most of these classes have a low occupancy
number; some of them appear in a transitory fashion along
a given run, and others, although persistent, do not always
have the same sites affiliated to them. These classes should
be interpreted with caution: they might not correspond to
actual substitutional categories, and they might instead be
considered as formal mathematical objects, relevant only
through their marginal average influence on the sub-
stitution processes operating at the corresponding sites.

The fact that some classes are stable, while some
other are not, offers an interesting insight into the
flexibility of the Bayesian mixture models such as CAT-
Poisson: obviously, the set of unstable classes, meaningful
only through their average influence on the site-specific
substitution processes, is a typically Bayesian feature, and
it does not have an equivalent in existing heterogeneous
models implemented in the ML framework. Incidentally,
this suggests that the level of heterogeneity that these ML
models assume should be compared not to the posterior
mean number of classes found under CAT-PoissoN, but
rather, to the number of stable classes. This number
provides a much more conservative estimate of the level of
heterogeneity; yet, we found it to be consistently higher
than 10, ranging from 11 to 22, confirming that the
heterogeneity has been underestimated thus far.

Comparison with Other Heterogeneous Models

Thorne, Goldman, and co-workers propose to asso-
ciate amino-acid replacement patterns with protein sec-
ondary structure and solvent accessibility (Goldman,
Thorne, and Jones 1996; Thorne, Goldman, and Jones
1996; Goldman, Thorne, and Jones 1998; Lio and
Goldman 1999). In practice, their model implements
a mixture of 10 classes, corresponding to five types of

secondary structure and two levels of solvent accessibility.
Using parametric bootstrap, they show that their mixture
model improves significantly on the standard homoge-
neous model. Their approach is very different from ours, in
that we did not pre-specify what could determine the
variations of the substitution pattern among sites. The
results seem to be accordingly quite distinct: this is
particularly obvious in the composition of the 10 sub-
stitutional classes estimated by Thorne, Goldman, and co-
workers, which are all characterized by very broad
distributions on all 20 amino acids, not as peaked as the
classes proposed by CAT. To further compare the two
approaches, we made a preliminary investigation of the
correlation between the secondary structure and the
substitution profiles inferred by CAT-Poisson at each site
of the elongation factor 2 data set: we identified the sites
that were allocated to one of the stable classes at
a frequency higher than 80%, and we looked at their
distribution across the sequence (see table S2 in the
Supplementary Material online). We found that although
a-helices are enriched in classes such as (K,R) and (D,E),
and B-sheets are enriched in classes like (I,V) and (F,Y),
all of the classes but one are represented in the two kinds
of secondary structure, as well as in the remaining parts of
the sequence. As for solvent accessibility, correlations
were uncovered, but also here, most of the classes are
represented in both buried and exposed categories. Thus,
the heterogeneity uncovered in the present work cannot be
explained only in terms of secondary structure and solvent
accessibility. More generally, it seems that our approach
and that of Thorne, Goldman, and co-workers do not work
at the same level: CAT would focus on local, specific,
biochemical requirements, which can differ widely even
between two adjacent residues, belonging to the same
secondary structure, whereas the model of Thorne, Gold-
man, and co-workers averages over this low-level
heterogeneity, to capture more global modulations of the
amino-acid replacement pattern, correlated to local
secondary structure determinants.

The CAT model is much more closely related to the
model proposed by Koshi and Goldstein (Koshi and
Goldstein 1998; Koshi, Mindell, and Goldstein 1999;
Koshi and Goldstein 2001). In a first version of their
model, these authors imposed restriction on the set of
possible amino-acid profiles, by defining their model
exclusively in terms of hydrophobicity and size. These two
physical-chemical properties probably play an important
role in the shaping of the classes that we have obtained, but
they are not sufficient to account for their diversity. In
particular, we have found classes that are more clearly
defined by the electric charge (D,E), or by the aromaticity
(F,Y) (fig. 3D). This restriction was relieved in subsequent
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work (Dimmic, Mindell, and Goldstein 2000; Soyer et al.
2002), and the resulting model is more similar to CAT,
except for the limitation in the total number of classes,
which was set to 5. Another potentially important
difference is that Koshi and Goldstein’s model assumes
that all sites belonging to the same class have also the same
rate of substitution, while according to the CAT model,
substitutional classes and site-specific overall rates of
substitution are a priori independent variables. The fact
that all stable classes that we observed on real data contain
both fast and slow evolving sites (not shown) tends to give
support to our prior choice.

Evaluation of the Model’s Performance

The models investigated in the present work were
compared through the evaluation of the Bayes factor. Note
that the Bayes factor, as the ratio of the marginal
likelihoods under two alternative models, could seem at
first to be tantamount to a likelihood ratio. However, it is
not equivalent to it. For instance, JTT+F, being nested
within GTR, would necessarily yield a lower maximal
likelihood than GTR. Yet, its marginal likelihood is larger
than that of GTR (In BF = 81 natural log units in favor of
JTT+F; table 3). This illustrates that the Bayes factor
implicitely penalizes higher dimensional models. In fact,
this penalty can be estimated asymptotically, yielding the
Bayesian Information Criterion (Schwartz 1978):

InBF ~ BIC:AlnL—%klnN, (18)
where £ is the difference of the number of parameters of
the two models, and N is the number of columns of the
alignment. This formula is valid only for i.i.d models, and
it cannot be used to compare, for instance, GTR with CAT.
However, in the general case, the Bayes factor can always
be considered as a tradeoff between the relative likelihood
scores of the two models and the informational cost of
their respective parameterization.

The Bayes factor favors CAT-PoissoN over standard
one-matrix models, for all of the data sets which we have
analyzed. It should be emphasized that an empirical matrix
such as JTT has a significant prior advantage over CAT-
Poisson, because it incorporates external information
bearing on biochemical realism. In contrast, the CAT-
PoissoN model is completely naive, in the sense that the
prior is totally uninformative. Nevertheless, this lack of
prior biochemical knowledge does not seem to impair the
performance of CAT-PoissoN, presumably because this
latter model is able to extract a substantial amount of
equivalent knowledge from the data set, as confirmed by
the biochemical relevance of the classes’ profiles. Im-
portantly, JTT+F is rejected even on quite small data sets,
like EF2, which implies that the amount of information
sufficient for CAT to outperform JTT+F is low. To verify
this, we computed the Bayes factor under a smaller data
set, made of the first third of EF30-627 (209 sites), and
with a subset of five species. In this case, we observed that
the Bayes factor was now in favor of JTT+F (In B=—6.9
natural units), indicating that the amount of information

necessary for CAT-PoissoN to be fit is not reached on this
highly reduced data matrix.

In contrast to CAT-Poisson, MAX-PoissoN is rejected
when compared to JTT+F. A plausible explanation is that
MAX is penalized by its very large number of parameters
(19 for each site), which cannot all be correctly determined
by the information contained in the data.

Sensitivity to the Prior Distribution and to the
Model’s Assumptions

It is known that sensitivity to the prior is an important
issue when dealing with parameter-rich models (Huelsen-
beck et al. 2002; Rannala 2002). In the present work, there
are two main directions along which the prior should be
tested. First, the prior on K, the number of classes, is
currently defined through the prior on o, the mixture
concentration parameter. For o, we have only tried a flat
prior distribution, although we could test other possibilities.
More generally, we could dispense with the Dirichlet
process prior, and work on more general mixture models
that make it possible to work directly with the prior on K
(Green and Richardson 1998). Second, we could also test
the base distribution on the m-space. Thus far, we have
chosen a flat Dirichlet distribution, but this could be gener-
alized to any Dirichlet distribution by varying the center
of the distribution, or by modulating its concentration
parameter.

The assumption that the substitution process at each
site is Poisson is another potential limitation; in particular,
it does not take the codon structure into account. In
principle, it is easy to dispense with this simplifying
assumption. Our current implementation already allows
the use of any predefined set of relative rates. Similarly,
one could imagine a version of the CAT model formulated
at the codon level, and in which a single set of relative
rates of codon substitution would be combined with class-
specific amino-acid acceptance profiles. However, the
computations under unequal relative rates of exchange
between amino acids can be as much as 50 times slower
than under a Poisson process, a factor which is even
greater in the case of the codon models. Further algo-
rithmic development is therefore needed in order to pro-
ceed in this direction.

Impact on Phylogenetic Inference

Inferences about class number and composition
conducted on EF30-627 under a fixed tree are very similar
to those where the phylogeny is also a free parameter (see
fig. S1 in the Supplementary Material online). Likewise,
we observed that the number and the profiles of the classes
inferred for the mitochondrial data set were not very
sensitive to the exact tree used as a constraint (not shown).
This suggests that our analysis is robust with respect to the
phylogeny, a fact which is not surprising, as similar
conclusions have been reached by authors studying the
sensitivity of rate across site parameters (Yang 1995), or of
tests of model comparison (Posada and Crandall 2001), to
the underlying phylogeny.



Conversely, however, the models investigated in this
work differ in some of their predictions, in particular, in
their estimates of the evolutionary distance between
sequences and of the phylogenetic relationships. First,
the tree length under CAT-PoissoN is 10% to 20% higher
than under JTT+F, suggesting that mutational saturation
of the sequences could be better accounted for by CAT-
Poisson than by JTT+F. This would not be completely
surprising (Miyamoto and Fitch 1996). Mutational satura-
tion—i.e., a high number of convergences and reversions
throughout the sequences—will be all the more frequent as
the substitution process at any given site is, on average,
confined to a very restricted set of amino acids. This seems
to be exactly the kind of situation inferred by CAT-
Poisson. Importantly, these homoplasies will be more
easily missed by models that underestimate site-specific
restrictions of the set of admissible residues. It is quite
plausible that JTT+F leads to such an underestimation,
and this would explain the discrepancies observed between
JTT+F and CAT-PoissoN, concerning the number of
substitutions along the tree.

Second, there are a few differences in the phyloge-
netic reconstruction obtained under CAT-PoissoN and
under JTT+F (fig. 1). One of the groupings found under
CAT-Poisson, the monophyly of chromalveolates (stra-
menopiles + alveolates), is reasonable, and has been
advocated by other studies (Baldauf et al. 2000; Fast et al.
2001; Bapteste et al. 2002), whereas others, like the
polyphyly of amoebas and the position of the choano-
flagellate Monosiga within the animal clade, are more
questionable (Bapteste et al. 2002; Lang et al. 2002). More
work is still needed to evaluate the performances of CAT
in phylogenetic reconstruction, an issue we are currently
investigating. The present results already illustrate that
a better statistical fit does not necessarily imply a more
reliable tree (Sullivan and Swofford 2001). In any case,
CAT might allow better inference of evolutionary dis-
tances, and for that reason, it could be used for molecular
datings. In addition, it can be a promising tool for
analyzing the relationships between site-specific substitu-
tion patterns and structure-function determinants.

Appendix: Numerical Evaluation of the Bayes
Factor by Thermodynamic Integration

In what follows, we consider two models, M, and M,
which are defined on the same set of parameters, & € 2
(note that this condition is purely formal, because
parameters specific to one of the models, say M, can be
included in the parameter vector of the other model, even
if they are not involved in the computation of the
likelihood under M,). The Bayes factor in favor of model
M, with respect to model M, is defined as the ratio of the
marginal likelihoods:

P(D|M,)

By = —— 12
“ T P(D[My)

(19)

A parallel can be drawn between Bayesian inference
and statistical physics as follows. Given one of the models,
M;, define an energy function under M; as
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According to Bayes’s theorem
P(D|h,M,)P(/’l|M,) 1 7E£(711)

P(h|D,M;) = =_ ¢ i

(20)

(1)

where kT = 1, and Z; = P(D | M,) plays here the role of
a normalization factor. Thus, the energy is defined so that
the posterior distribution is a Boltzmann distribution at
a “temperature” kT = 1: this distribution can be sampled
from using the classical MCMC methods, and the resulting
Markov chain will thus be equivalent to a physical system
at thermal equilibrium, fluctuating between all its acces-
sible microscopic states. The free energy of such a system
is related to the normalization factor Z;, which is called the
partition function in physics, by the relation

F,= —kTInZ. (22)

Because Z; is identical to the marginal likelihood, one has

V4
log By, = log =~ = Fy — F\. (23)
Zo
Hence, choosing the model of largest marginal likelihood
amounts to choosing that of lowest free energy.
Let us now define the -energy as

Eg(h) = (1 = B)Eo(h) + BE:(h) (24)
and the corresponding B-probability as
1
pp(h) = e B, (25)
Zy
normalized by
Zy = / e 5 dh, (26)
0

Note that for f =0 (B= 1), pg reduces to the posterior
density under M, (M;). Thus, the set (pp)o<p<: defines
a continuous path in the space of probability distributions,
connecting the posterior distributions under M, and M.

As before, we can define

Fﬁ = —11'12[3. (27)
Taking the derivative of Fg with respect to B yields
Iy LB L[y,
B Zy OB Zy )y OB
1
= [ E0) — Ealh) e B0 a
Q ZB
=<E —E =B, (28)

where <->p stands for the expectation with respect to pg
(or B-average).
This yields the integral formula

1
ll'le :Fo —F| = —/ <E| —Eo >ﬁdB’ (29)
0

which suggest a simple method for estimating In By,
(Ogata 1989): for any B € [0, 1], a sample from pg(h) can
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be obtained by running a MCMC. On such a sample, say
(hlﬁ)lg,ﬂ, [B-averages can be computed using the usual
asymptotic relation:

1 L
<f>p ~ le;f(hg). (30)
In particular, an estimate of < E; — E, >p can be
computed in this way for any given value of B. Repeating
this computation for a series of values of B regularly
spaced over the unit interval, and approximating the
integral by the Simpson procedure, yields an estimate of In
By,. Evidently, the quality of the estimate will depend both
on the length of each MCMC run and on the number of
points of the interpolation. In the present work, we found
that six points (B=0, 0.2, 0.4, 0.6, 0.8, 1.0) were sufficient
to give a precision of about 10%. As for the length of the
MCMC run, 100,000 cycles turn out to be sufficient, yield-
ing a precision of 1% on the estimate of < E; — Ey >g.

Supplementary Material

The following materials relevant to this article are
available online: table 1. Settings of the MCMC runs; table
2. Distribution of the sites allocated to stable classes,
according to secondary structure and solvent accessibility;
fig. 1. CAT-PoissoN analysis on the elongation factor data
set EF30-627, under constrained (A,C) and unconstrained
(B,D) topology; fig. 2. CAT-POISSON analysis on the eu-
karyotic data set Ek55-1525. fig. 3. CAT-PoissoN analysis
on the mammal mitochondrial data set Mt45-3596.
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