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Abstract
The comparative approach is routinely used to test for possible correlations between phenotypic or life-history traits. To
correct for phylogenetic inertia, the method of independent contrasts assumes that continuous characters evolve along the
phylogeny according to a multivariate Brownian process. Brownian diffusion processes have also been used to describe time
variations of the parameters of the substitution process, such as the rate of substitution or the ratio of synonymous to nonsyn-
onymous substitutions. Here, we develop a probabilistic framework for testing the coupling between continuous characters
and parameters of the molecular substitution process. Rates of substitution and continuous characters are jointly modeled
as a multivariate Brownian diffusion process of unknown covariance matrix. The covariancematrix, the divergence times and
the phylogenetic variationsof substitution rates and continuous characters are all jointly estimated in a BayesianMonte Carlo
framework, imposing on the covariance matrix a prior conjugate to the Brownian process so as to achieve a greater compu-
tational efficiency. The coupling between rates and phenotypes is assessed by measuring the posterior probability of positive
or negative covariances, whereas divergence dates and phenotypic variations are marginally reconstructed in the context of
the joint analysis. As an illustration, we apply the model to a set of 410 mammalian cytochrome b sequences. We observe a
negative correlation between the rate of substitution and mass and longevity, which was previously observed. We also find
a positive correlation between ω = dN/dS and mass and longevity, which we interpret as an indirect effect of variations of
effective population size, thus in partial agreement with the nearly neutral theory. The method can easily be extended to any
parameter of the substitution process and to any continuous phenotypic or environmental character.

Key words: comparativemethod, independent contrasts,molecular dating, life-history evolution,Markov chainMonte Carlo,
Bayesian statistics.
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Introduction
Phylogenetic comparative methods are an essential tool
in ecological and evolutionary analyses. One of their es-
sential aims is to empirically investigate the evolutionary
variations of phenotypic characters and life-history traits
and to test hypotheses about the underlying evolutionary
mechanisms. A large diversity of empirical questions can
be addressed, for instance, concerning the existence of spe-
cific trends in the direction of evolution or the shape and
the intensity of the correlations among phenotypic charac-
ters and life-history traits (Harvey and Pagel 1991). When
measuring correlations between characters, the problem is
often reduced to performing linear regressions, possibly af-
ter applying some transformation to the variables under
investigation (e.g., a logarithmic transformation). An im-
plicit assumption behind this approach is that the variables,
once transformed, are linearly correlated. This assumption
either may be justified on empirical grounds, as in the case
of allometric relations between life-history traits and body
mass (Calder 1984), equivalent to linear relations upon log-
arithmic transformation, or may be retrospectively assessed
using goodness-of-fit tests.

Because species are phylogenetically related, the data
obtained in a given set of taxa cannot be considered as inde-
pendent, and therefore simple regression analysis does not
apply. To address this problem, generalmethods accounting

for phylogenetic dependencies have been proposed, the
most popular being the method of independent contrasts
(Felsenstein 1985). The independent contrastmethod is sta-
tistical in essence, relying on a probabilisticmodel assuming
that the continuous characters under studyevolve along the
lineages of the phylogenetic tree according to a multivari-
ate Brownian diffusion process. The framework is generally
used to test the null hypothesis that the characters are not
correlated or to estimate the covariance matrix specifying
the correlation structure among the phenotypic characters,
corrected for phylogenetic inertia. The idea has been refor-
mulated in a generalized linear model framework (Martins
andHansen 1997), revised to account for intraspecificvaria-
tion (Houseworth et al. 2004; Felsenstein2008), extended to
processes other than the Brownian diffusion process (Butler
and King 2004), and extensively applied in ecology and evo-
lution (Harvey and Pagel 1991; Martins and Hansen 1996;
Pagel 1999; Garland et al. 2005).

Comparative analyses need not only be restricted to
phenotypic and ecological traits but can also be applied to
parameters of the substitution process, such as the substi-
tution rate, the ratio of nonsynonymous to synonymous
substitutions ω = dN/dS , or the nucleotide or amino
acid composition of sequences. The correlations between
substitution parameters and phenotypic or life-history
traits uncovered in this manner may provide fundamental
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empirical clues about the mechanisms of molecular evolu-
tion. For example, the fact that the mitochondrial dN/dS
negatively correlates with body size (and thus indirectly
with population size) in mammals was interpreted as an in-
direct confirmation of the nearly neutral theory (Popadin
et al. 2007). Many other studies have investigated the influ-
ence ofmetabolism, body size, generation time, or longevity
on rate variation in nuclear or mitochondrial DNA in mam-
mals, animals, or plants (Martins and Palumbi 1993; Ohta
1993; Bromham et al. 1996; Li et al. 1996; Gillooly et al. 2005;
Thomas et al. 2006; Fontanillas et al. 2007; Lanfear et al. 2007;
Welch, Bininda-Edmonds, et al. 2008).

Correlations between molecular, phenotypic, and eco-
logical characters can also be extrapolated back in time,
thus allowing inference of the history of phenotypic evolu-
tion based on ancestral sequences reconstructed using phy-
logenetic methods. In this direction, correlations between
temperature and the guanine-cytosine (GC) content of ri-
bosomal RNA stems, or the amino acid composition of the
proteome, were used to infer the history of variations of the
optimal growth temperature along the tree of eubacteria
and archaea (Galtier et al. 1999; Boussau et al. 2008).

All these are but a few examples suggesting that further
development of the comparative method, so as to jointly
analyze morphological traits and substitution parameters
in one single unified statistical framework, would provide
essential empirical leverage for a more global understand-
ing of evolution encompassing the molecular, phenotypic,
and ecological dimensions. However, several methodologi-
cal pointsneed to be addressed so as to optimizepower and
avoid potential pitfalls.

A first issue is how to deal with uncertainty. Proceed-
ing sequentially, first estimating the substitution param-
eters, then assessing their correlation with phenotypic
characters, and finally extrapolating the correlation onto
ancestral nodes, raises a potentially important problem of
error propagation. The estimated correlation coefficients
should ideally integrate the uncertainty about the substitu-
tion parameters and the divergence times. Conversely, the
reconstructed phenotypic histories should account for the
uncertainty about the estimated correlation coefficients
and the substitution parameters. All these problems can
in principle be naturally dealt with in a joint estimation
framework. In this direction, a Bayesian method for esti-
mating covariance between phenotypic characters while ac-
counting for the uncertainty concerning the topology and
the branch lengths of the tree has been developed previ-
ously (Huelsenbeck and Rannala 2003). This method could
be extended to allow for more general covariance analy-
ses including phenotypic characters as well as substitution
parameters. Of note, joint estimation would also have the
advantage of allowing for cross talk between components of
the model, something which would otherwise not be pos-
sible in a sequential method, and which would allow the
reconstruction of phenotypic and molecular histories, or
the estimation of divergence times (Welch and Waxman
2008), to borrow strength from each other via the inferred
covariations.

Second, what should normally be compared with the
phenotypic characters of a given set of species are the
instant values of the rate of substitution in those species at
present time (Welch and Waxman 2008). In practice, what
is often measured is the average substitution rate on the
terminal branches of the phylogenetic tree. In principle,
using sufficiently closely related taxa would allow as high
a time resolution as desired. However, for fixed sequence
length, this would be at the expense of the accuracy of
the estimates of the substitution rates. A more satisfactory
approach to the estimation of instant rates of substitution
is to model rates as continuously evolving parameters. This
has been first proposed in the context of molecular dating
methods, using Brownian diffusion processes (Thorne et al.
1998; Kishino et al. 2001; Thorne and Kishino 2002; Yang
and Rannala 2006; Lepage et al. 2007; Rannala and Yang
2007). Most often, the rate has implicitly been considered as
a nuisance variable, modeled not so much for its own sake,
but rather for integrating out the effects of its variations on
divergence date estimates. Nevertheless, relaxed-clock
models naturally provide, as a by-product, an estimate of
the instant value of the rates, in particular at the leaf nodes
of the tree, and those rates can in principle be used as the
variables to be regressed against the continuousphenotypic
traits of interest.

Third, unlike phenotypic characters, rates, andmore gen-
erally molecular evolutionary parameters, can be inferred
also at internal nodes of the phylogenetic tree, using non-
stationary models of substitution. For an optimal statisti-
cal power, the correlation between substitution parameters
should therefore be assessed in a more general framework,
which would not exclusively rely on the values estimated at
the leaves. In this direction, Seo et al. (2004) extended the
idea of the Brownian relaxed clock to model the continu-
ous variations of the rates of synonymous and of nonsyn-
onymous substitution. In their analysis, they modeled these
rates as two independent log-normal Brownian diffusion
processes, although they suggested that modeling them
as a general bivariate process would be a straightforward
generalizationof the approach.

In the present article, we develop a model combining
the ideas of Felsenstein (1985), Huelsenbeck and Rannala
(2003), and Seo et al. (2004). In this model, all the molecu-
lar evolutionary parameters of interest (of total number K )
and all the phenotypic characters, environmental variables
or life-history traits (of total number L ), are modeled as one
singlemultivariate diffusion process ofdimensionK+L . The
covariance matrix of this multivariate process and the di-
vergence times of the underlying phylogeny are considered
as unknown. The history of the multivariate process, the
covariancematrix, and the divergence times are jointly esti-
mated in a Bayesian framework, using Monte Carlo estima-
tionmethods.We illustrate themethodby applying it to the
analysisof the correlations between the rate of substitution,
ω = dN/dS , together with several phenotypic characters
and life-history traits (generation time, mass, and longevity)
in a multiple alignment of cytochrome b sequences in
mammals.
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Methods
Definitions and Notations
The method relies on a combination of aligned coding
sequences andphenotypic characters for a set of P taxa. The
alignment D is made of P coding sequences of length 3N
nucleotides (N codon positions), and the phenotypic data
are summarized in an L × P matrix C such that C j

i is the
value taken by phenotypic character i = 1, . . . , L in taxon
j = 1, . . . , P . In the following, taxa, branches, and nodes
will always be referred to using upper indices and pheno-
typic characters using lower indices.

The taxa are related through a rooted bifurcating phy-
logenetic tree. The topology is assumed known and will
never explicitly appear in the equations. Variables associ-
ated to the nodes of the tree are upper indexed by j =
0, . . . , 2P − 2, with the convention that root has index 0,
leaf nodes have index j = 1, . . . , P , and internal nodes have
index j = P + 1, . . . , 2P − 2. If j > 0, we refer to the index
of the node immediately ancestral to node j as jup. Similarly,
upper indices j = 1, . . . , 2P − 2 will be used to refer to
branches, with the convention that branch j is the branch
immediately ancestral to node j . The divergence times are
noted T = (T j )j=0,...,2P−2. They are relative to the age of
the root, that is, T 0 = 1 and T j = 0 for the leaf nodes
(j = 1, . . . , P ). For j > 0, ∆T j = T jup − T j is the time
interval represented by the branch leading to node j .

Codon SubstitutionModel
We consider a codon substitution process, such as originally
proposed by Muse and Gaut (1994). First, a general time-
reversible Markov process is defined at the nucleotide level,
by a 4×4 instant ratematrix R specifying a rate of transition
between any pair (n1, n2) of nucleotides:

Rn1n2 =
1
Z
ρn1n2πn2 ,

where Z is the normalization constant, ρ is the set of rela-
tive exchangeability parameters constrained to sum to 1 (5
degrees of freedom), and π is the set of nucleotide equilib-
rium frequencies (3 degrees of freedom). The rate of substi-
tution between any pair of codons (b1, b2) differing only at
one position and with respective nucleotides n1 and n2 at
that position is then defined to be equal to

Qb1b2 = λSRn1n2 if b1 and b2 are synonymous,

Qb1b2 = λNRn1n2 if b1 and b2 are nonsynonymous.

The rate of substitution between any two codons differing
atmore than one position is assumed to be equal to 0 (Muse
and Gaut 1994). The parameters λS and λN are the rates of
synonymous and nonsynonymous substitution.

Alternatively, one can defineω = λN/λS and express the
rates of substitution in terms of λS and ω:

Qb1b2 = λSRn1n2 if b1 and b2 are synonymous,

Qb1b2 = λSωRn1n2 if b1 and b2 are nonsynonymous.

Both formulations will be explored in the following, as they
are not strictly equivalent in the context of the present
work. They will be called the (λS,λN) and the (λS,ω)
parameterizations.

Multivariate Process
The L phenotypic characters are assumed to evolve contin-
uously along the lineages of the phylogenetic tree. In ad-
dition, some of the parameters of the substitution process
(hereafter called substitution parameters) also vary contin-
uously along the lineages. In the specific case developed in
this article, there are two such parameters: either λS and ω
or λS and λN. In more general settings, one could consider
the variations of any set of K independent substitution pa-
rameters. The substitution process (which is here homoge-
neous across sites) will then be described by an instant rate
matrix Q, itself depending on the K substitution parame-
ters: Q = Q(y1, . . . , yK ). We wish to model the variations
in time of yk , for k = 1, . . . , K , and to correlate these varia-
tionswith those of the L continuous phenotypic characters.

Accordingly, we define a multivariate diffusion process
X (t ), of dimensionM = K +L , running along the branches
of the tree. The mth component of X (t ) is noted Xm (t ) for
m = 1, . . . ,M . By convention, the first K components of
the process describe the variationsof the K substitution pa-
rameters, and the last L map to the phenotypic characters.
Note that wemight have to impose a transformationon the
phenotypic characters and the substitution parameters. In
the following, the continuous characters that we will con-
sider are life-history traits such as body mass, longevity, and
generation time for which a logarithmic transformation is
justified based on known allometric relations (Calder 1984).
In the case of the synonymous and nonsynonymous substi-
tution rates, we follow Seo et al. (2004) and impose a loga-
rithmic transformation also in their case. Thus,

X1(t) = lnλS(t),

X2(t) = lnω(t),
Xl+2(t) = ln Cl (t), l = 1, . . . , L ,

in the (λS,ω) parameterization or

X1(t) = lnλS(t),

X2(t) = lnλN(t),
Xl+2(t) = ln Cl (t), l = 1, . . . , L ,

in the (λS,λN) formulation.
The stochastic process X (t ) is assumed to be multivari-

ate Brownian. The use of a Brownian motion entails sev-
eral important assumptions. First, it is a Markovian process.
Second, it does not display any trend in the direction of its
variations. And third, the rate of change per unit of time is
constant and is completely determined by anM ×M sym-
metric definite covariance matrix Σ. Between time t and
time t + dt , the process undergoes a random increment
drawn from a normal distribution of mean 0 and variance
Σ dt . The total variation of the process over a finite time t
can be seen as an infinite sum of such normally distributed
random increments and is thus also normally distributed of
mean 0 and varianceΣt (Felsenstein 1985):

X (t)− X (0) ∼ N (0,Σt). (1)

The Brownian motion does not have a stationary
distribution.
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As a way of explicitly referring to the actual meaning of
each entry of the covariance matrix Σ, in the following, we
will use a bra–ket notation (Dirac 1982). For instance, as-
suming that we have onlyK = 1 phenotypic character, and
that we are working under the (λS,ω) parameterization, the
entries of the matrix will be noted

Σ =

( 〈λS, λS〉 〈λS,ω〉 〈λS, C1〉
− 〈ω,ω〉 〈ω, C1〉
− − 〈C1, C1〉

)

.

Strictly speaking, these entries correspond to the covari-
ances between the logarithm of the variations of each pair
of variables. However, for short, we will more simply refer to
them as the covariances between the variables.

The PhylogeneticMultivariate Process
Because we cannot instantiate the process at all times along
the phylogeny, we only consider the values of X (t ) at the
nodes of the tree. We note X j the instant value of the pro-
cess at node j , and X = (X j )j=1,...,2P−2 the set of values at
all nodes except the root. The Brownian process is Marko-
vian, andwe can therefore express the joint probability ofX,
given the initial value X 0 at the root, as follows:

p(X | X 0, T,Σ) =
2P−2∏

j=1

p(X j | X jup ,∆T j ,Σ), (2)

where the finite-time transition probabilities are given by
equation (1).

Conditioning the last L dimensions of the multivariate
process X (t ) on the values observed at leaf nodes (i.e., in
extant species) is straightforward, as it is done by setting:
X j
l+K = ln C

j
l for l = 1, . . . , L and j = 1, . . . , P . To in-

troduce a coupling of the first K components of the multi-
variate process with the substitution process, onewould like
to set: yk (t) = eXk (t) at all times. Doing this would define
a nonstationary substitution process, of instant rate matrix
Q(t) = Q(y1(t), . . . , yK (t)). However, we cannot instan-
tiate the values of X (t ) at all times, but only at the nodes of
the tree, and integrating the likelihood over all possible real-
izations ofX (t ) conditionalon the values at the nodes seems
in most cases completely intractable. Instead, we make the
approximation consisting in assuming a constant value for
y jk along a given branch j , equal to some average of the val-
ues of the process at both ends. Doing this for all k defines
a constant rate matrix on branch j : Qj = Q(y j1, . . . , y

j
K ),

and thus, the substitutionmodel reduces to a set of branch-
specific substitutionmatricesQj .

There are several possible ways the averages over
branches can be computed. First, a very simple approxima-
tion, already used inmost implementationsof relaxed clock
models (Thorne et al. 1998; Lepage et al. 2007), consists of
taking the “arithmetic” average:

y jk =
1
2

(
eX

jup
k + eX

j
k

)
.

An alternative method can be proposed. In the case of the
Brownian process, the most likely path (or geodesic) going

from X jup at time T jup to X j at time T j is the straight line,
and therefore, it would make sense to take the mean value
of eX(t) along this geodesic, which is equal to:

y jk =
eX

jup
k − eX

j
k

X jup
k − X j

k

.

We will refer to this latter averaging method as the
“geodesic” average. Its main advantage, compared with the
arithmetic average, is tomore properly account for the con-
vexityof the exponential function. Both approximationsare
admittedly crude, but because they are quite different in
their formulation, using both of them in turn, and compar-
ing the results, will allow some check of the robustness of
the method to these finite-time approximations.

Priors
We set a uniform prior on relative divergence times. Analy-
ses were performedwith andwithout calibrations.Without
calibrations, divergence dates are simply measured relative
to the root as in Lepage et al. (2007). With calibrations, we
proceed as in Kishino et al. (2001), that is, we use a gamma
density for the age of the root, and conditional on this age,
we impose a uniform density on relative ages, truncated
so as to be compatible with the intervals specified by the
calibrations.

A uniformDirichlet distribution was imposed on the nu-
cleotide frequencies π and the nucleotide exchangeabilities
ρ, a truncated uniform prior defined on [−100, 100] for the
root state X 0, and an inverse Wishart prior distribution on
the covariance matrix Σ, parameterized by Σ0 = κIM ,
where IM is the identity matrix of dimension M , and with
q = M + 1 degrees of freedom. As for κ, we tried two dif-
ferent values, κ = 1 and κ = 10, and we checked that the
results were not sensitive to this choice.

The inverseWishart distribution can bedefinedas follows
(Mardia et al. 1979). If one samples q independent and iden-
tically distributed multivariate normal random variables of
dimension M , Zi ∼ N (0,Σ−10 ) for i = 1, . . . , q and
computes the scatter matrix

M =
q∑

i=1

Zi Z
′
i ,

then,Σ = M−1 is, by definition, distributed according to an
inverseWishart of meanΣ0 and with q degrees of freedom:
Σ ∼ W−1(Σ0, q). The probability density is

p(Σ | Σ0, q) ∝| Σ0 |
q
2 | Σ |−

q+M+1
2 e−

1
2 tr(Σ0Σ

−1),

where we have dropped numerical constants. The choice of
the inverseWishart is motivated by the fact that it is conju-
gate to themultivariate normal distribution, a property that
is key to the efficiency of the estimation strategy.

An alternative version of the model is obtained by en-
forcing all nondiagonal entries of the covariance matrix to
be equal to 0. This can be seen as an alternative prior onΣ,
with support restricted to the set of diagonal matrices. To
make this “diagonal” model as close as possible to the fully

732



Correlated Evolution of Substitution Rates and Phenotypes · doi:10.1093/molbev/msq244 MBE

“covariant” model introduced thus far, the prior on the en-
tries of the diagonal matrices can be chosen to be the same
as the marginal priors of those same entries in the inverse
Wishart. Technically, these are inverse gamma distributions
of shape parameter α = 2 and scale parameter β = κ/2
(Mardia et al. 1979).

Markov Chain Monte Carlo Sampling
Samples from the posterior distribution are obtained by
Markov chain Monte Carlo (MCMC). For divergence times,
internal nodes are taken oneby one (in an order defined by a
recursive traversal of the tree). For node j , a simple additive
move is applied to T j within the constraints defined by im-
mediately upstream and downstream nodes. The two vec-
tors ρ and π are updated using a simple move constrained
so as to keep the sum of all components equal to 1 (Lar-
tillot 2006). In the simplest version of this mechanism, we
randomly choose a pair of two entries of the vector to be
resampled (say, the two entries πa and πb of π), and set
x = π(a) + π(b ), and y = π(a). We then propose
y ′ = y + ε(U − 0.5). If y ′ falls outside of the interval
[0, x ], we reflect it back. Finally, we set π′(a) = y ′ and π′

(b ) = x − y ′ , thus preserving the total sum of the two
stationary probabilities. The Hastings ratio is 1. A general-
ized version of this sum-constrained mechanism randomly
draws d nonoverlapping pairs of entries of the vector to
be resampled, and simultaneously proposes a compensated
move independentlyon each pair.

Concerning the covariancematrixΣ and themultivariate
process X , we implemented two update schemes. The first is
a simple alternation betweenMetropolis–Hastings updates
of X conditional on Σ, and conversely, of Σ conditional on
X (and all other parameters). Specifically, for the multivari-
ate process, internalnodes of the tree are visited oneby one.
For node j , one among three types of moves are proposed,
eachwithprobability 1/3. According tomovenumber1, one
entry of X j is chosen uniformly at random, and, if this entry
is not clamped, an additive move is performed on it (oth-
erwise, nothing happens). According to move number 2, all
entries of X j (if not clamped) are moved by a same random
amount ε(U−0.5). According tomove number 3, all entries
that are not clamped are simultaneously moved, each by a
different random amount ε(Um − 0.5) form = 1, . . . ,M .
Concerning the covariance matrix Σ, an entry l ,m , such
that l ! m is chosen uniformly at random, an additive
move is proposed: Σ′lm = Σlm + ε(U − 0.5), and the
symmetry of the matrix is restored by settingΣ′ml equal to
Σ′lm . Themove is immediately refused if the resultingmatrix
is not positive definite. Otherwise, the Metropolis decision
rule is applied. Note that this is equivalent to setting a pos-
terior density of 0 on all symmetric but not definite positive
matrices.

However, this simple alternate update scheme is not effi-
cient due to potentially strong correlations between X and
Σ in their joint distribution. A much more efficient ap-
proach relies on the conjugate relation between the inverse
Wishart and themultinomial distributions to analytically in-
tegrate away the covariance matrixΣ.

To see this, we first make a change of variables so as
to define the branchwise independent contrasts Y =
(Y j )j=1,...,2P−2:

Y j =
X j − X jup
√
∆T j

.

These contrasts are i.i.d. from a multivariate normal
distribution:

Y j ∼ N (0,Σ).

With this change of variable, any density defined on X
corresponds to a density on Y according to

p(X) = p(Y)|J |,

where |J | is the Jacobian of the transformation:

|J | =
2P−2∏

j=1

(∆T j )−
M
2 .

Next, we rely on the fact that the inverse Wishart dis-
tribution is conjugate to the multivariate normal distribu-
tion.We can write, up to a normalization constant, the prior
onΣ:

p(Σ|Σ0) ∝ |Σ|−
q+M+1

2 e−
1
2 tr(Σ0Σ

−1), (3)

and the sampling probability of Y:

p(Y|Σ) ∝
2P−2∏

j=1

1√
|Σ|

e−
1
2Y
′jΣ−1Y j

, (4)

∝ |Σ|−(P−1) e− 1
2 tr(AΣ

−1), (5)

where we define the sample covariance matrix

A =
2P−2∑

j=1

Y jY ′j . (6)

By Bayes theorem, the posterior on Σ, conditional on a
particular realization of X (and thus Y ) is proportional to
the product of equations (3) and (5):

p(Σ|Y,Σ0) ∝ |Σ|−
q+M+2P−1

2 e−
1
2 tr((Σ0+A)Σ−1), (7)

from which we see that the posterior is also an inverse
Wishart, of parameter Σ0 + A and with q + 2P − 2
degrees of freedom.

By identification, the marginal probability density on Y
can be obtained

p(Y|Σ0, q) =
∫

p(Y|Σ)p(Σ|Σ0, q)dΣ, (8)

∝ |Σ0|
q
2

|Σ0 + A | q+2P−2
2

, (9)

where we have dropped unimportant numerical constants.
Finally, the marginal probability of X is obtained by multi-
plying equations (9) and (3):

p(X|Σ0, q) = p(Y|Σ0, q)|J |. (10)
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The two important results coming out from this mathe-
matical derivation are contained in equations (7) and (10).
Equation (10) tells us that we can compute the probability
of a particular configuration of the stochastic processX inte-
grated over all possible values ofΣ. This means that we can
devise aMCMC samplerworking on the reduced parameter
space (X, T,π, ρ), not includingΣ. The equilibriumdistribu-
tion of this sampler is the marginal posterior distribution:

p(X, T,π, ρ|D ,C ,Σ0, q) ∝ p(D ,C |X, ρ,π)
p(X | Σ0, q)p(T)p(π)p(ρ), (11)

where p (X|Σ0, q) is given by equation (10). This posterior
distribution is conditional on the multiple alignmentD , the
matrix of continuous charactersC , but also on the constants
of the model Σ0 and q .

In a second step, for each value of X obtained from this
reduced MCMC (burn-in excluded), a scatter matrix A can
be computed (eq. 6), and a value of Σ can then be sam-
pled from the distribution given by equation (7). Because,
at equilibrium, the values of X sampled from the reduced
MCMC are from the posterior distribution:

X ∼ p(X|D , C ,Σ0, q), (12)

and becauseΣ is conditionally independent of the data (D
and C ) given X :

p(Σ,X|D , C ,Σ0, q) = p(Σ|X,Σ0, q)(X|D , C ,Σ0, q),
(13)

sampling Σ from equation (7) results in Σ and X being
sampled from their joint posterior distribution. In practice,
our sampler works on the reduced parameter vector, but
resamples Σ on the fly, each time before saving a new
parameter configuration.

Data Augmentation
In addition to the conjugate sampling method just de-
scribed, the overall MCMC framework relies on data
augmentation (Lartillot 2006; Mateiu and Rannala 2006;
de Koning et al. 2010). At any time, a complete substitu-
tion history (or mapping) is specified, for all sites and over
the whole tree, and all the update mechanisms described
above are performed conditional on the current mapping.
Periodically, themapping is refreshed, that is, it is resampled
conditionalon the current parameter values, using a combi-
nation of two algorithms described elsewhere (Nielsen 2002;
Rodrigue et al. 2008). This MCMC strategy allows for drastic
simplifications of the computations (Lartillot 2006; Mateiu
and Rannala 2006). First, it does not use the pruning algo-
rithm (Felsenstein1981) except for resampling the substitu-
tionmappings. This is a substantial advantage in the present
case, where the state space of the substitution process has
size 61. Second, the probability of the substitutionmapping
depends on fairly compact sufficient statistics (total waiting
time in each possible codon, number of transitionsbetween
eachpair of codons, and in the case of the root, total number
of occurrences of each codon), that have here to be com-
puted separately for each branch, but can be summed over

all sites of the alignment (Lartillot 2006;Mateiu andRannala
2006; de Koning et al. 2010). The cost of all update mecha-
nisms except the data augmentation step itself are therefore
virtually independent of the number of sites, which is a great
advantage for long sequences. Using fast-access associative-
array representationsof the 61 vectors and 61×61 arrays of
sufficient statistics, which are potentially sparse for smaller
alignments, makes the implementation efficient across the
whole range of sequence length.

The frequency at which the substitution mapping is
refreshed, now the limiting step, is tuned so that theMCMC
sampler spends between one-tenth and one-half of the
total computing time refreshingmappings, whereas the rest
of the time is distributed over all other update operators.
In practice, all parameters are each resampled several
hundred times between each update of the substitution
mapping, and one point is saved before each such update.
The burn-in is determined visually, and the chain is run for
approximately 1,000 points. Each analysis was run at least
twice independently.

The implementation was checked using three different
methods (Blanquart and Lartillot 2006): 1) the programwas
run using alternative sampling methods (using conjugate
or regular sampling for the covariance matrix, using suffi-
cient statistics ordirectly recomputing theprobability of the
substitution histories), andwe checked that the equilibrium
distributions obtained under the differentmethods were in-
distinguishable; 2) theMCMCwas run with no data to visu-
ally check whether themodel was indeed sampling from the
prior; and 3) 100 replicates were simulated from the prior,
using the (λS,ω) parameterization and assuming one con-
tinuous character, and reanalyzed under the model so as to
obtain for each replicate a sample of 1,000 points approxi-
mately from the posterior. For each replicate, and for a series
of eight summary statistics, the true value of the statisticwas
ranked against the sample from the posterior. The 100 ranks
thus obtained (expressed in percentiles) should follow auni-
form distribution (Huelsenbeck and Rannala 2004), which
we visually checked, and quantitatively assessed by the Kol-
mogorov uniformity test. The summary statistics were the
the total length of the tree, the mean value of omega along
the tree, and the six independent entries of the 3 × 3
covariance matrix.

Posttreatment
Once a sample approximately from the posterior is
obtained, marginal estimates of any parameter of the
model are readily computed. Concerning the reconstructed
chronology and phenotypic histories, we estimate, for each
node of the tree, a posterior mean and a 95% credibility in-
terval for its date and for each phenotypic character. The
same argument applies to substitution parameters.

Concerning the covariance matrix Σ, for each entry, we
simply report the posterior mean. For nondiagonal entries
k (= l , the correlation coefficient is defined as follows:

rkl =
Σkl√
ΣkkΣll

.
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The reported correlation coefficientsare obtainedby apply-
ing this formula separately for each point sampled approxi-
mately from the posterior distribution and then taking the
average. The posterior probability (pp) of a positive correla-
tion (rkl > 0) is also estimated based on the observed fre-
quency at which the rkl parameterwas found to be positive.

Finally, the slope of the linear regression between two
components k and l can be estimated. Here, we use the ma-
jor axis method, which estimates the slope of the major axis
of the bivariate ellipsoid formed by the joint distribution of
the two variables of interest (Harvey and Pagel 1991):

∂Xl
∂Xk
=
Σ2

ll − Σ2
kk +
√
(Σ2

ll − Σ2
kk )

2 + 2Σ2
kl

2Σkl
.

This slope is computed for each point sampled from the
posterior, thus giving a distribution from which an aver-
age and a 95% credibility interval are then immediately
obtained.

For multiple regressions, one is interested in knowing
the covariance between k and l , for constant m , which is
given by

Σkl ;m = Σkl −
ΣkmΣlm

Σmm
.

Again, the formula is applied for each point from the poste-
rior so as to obtain a distribution from which to compute a
mean and a pp for assessing significance.

The software program runs under the Linux or MacOS
operating system. It is freely available from our Web site
http://www.phylobayes.org.

Data Set
We analyzed an alignment of cytochrome b sequences of
410 therian species, 29marsupials, and 381 placentals(1,146
nucleotide positions, or equivalently,N = 382 codon posi-
tions) obtained fromNabholz et al. (2008). Three life-history
traits were investigated: age of female at maturity, taken
as a proxy for generation time; adult weight, as a proxy
for body mass; and maximum recorded lifespan, as a proxy
for longevity. The values of these three characters were ob-
tained from the AnAge database (de Magalhaes and Costa
2009). The 410 sequences correspond to all marsupials and
placentals of the initial data set of Nabholz et al. (2008) for
which the three life-history traits are documented in theAn-
Age database.We also extracted from this large alignment a
reduced data set restricted to carnivores (67 taxa).We used
the fossil calibrations reported in Nabholz et al. (2008) ex-
cept for the five involving taxa absent from our data set (i.e.,
Bradypus/Dasypus, Apodemus, Gerbillus, Bolomys/Acodon,
andNeofiber/Ondatra). The prior on the age of the root was
defined as an exponential of mean 150 My.

Simulations
Afirst series of simulationswas conducted to assesswhether
the method is able to recover reasonable estimates of the
covariance matrix in practical situations. To ensure realism,
the simulations were based on a tree, a set of divergence

times, and a mutation rate matrix estimated on the carni-
vore data set. In addition, and as an attempt to address the
problem of the discretization error induced by the finite-
time averages computed along each branch, the simula-
tions were performed using a more sophisticated version of
the model in which each branch is subdivided in 50 small
segments of equal length. The simulation proceeds step-
by-step successively along each segment, which results in
smaller discretization errors, and is therefore closer to the
ideal situation in which the codon substitution process is
supposed to change continuously along the branches.

For 50 replicates, random covariancematrices were sam-
pled from the prior (using κ = 1) and were used to simu-
late a complete history of themultivariate process along the
tree, and from this realization of the process, a codon align-
ment of 342 coding positions (1,146 aligned nucleotides)
and a data matrix for one continuous character, using the
(λS,ω) model with arithmetic averages as the simulation
model. To avoid numerical problems and unrealistic substi-
tution rates, the replicates for which one of the branches
had a length or a value of ω >5 were discarded. The simu-
lated data sets were then analyzed under the (λS,ω) model.
To test the effects of the approximations due to the finite-
time averages taken over branches, we analyzed the data us-
ing either the arithmetic or the geodesic averaging schemes.
For each replicate, and each covariance parameter of the
3×3 covariancematrix, the 95%credibility interval obtained
under each model was compared with the true value.

In theory, when the replicates have been simulated and
analyzed under the same model, and with the same prior,
the Bayesian credibility intervals have a simple frequentist
interpretation, namely, that 5% of the true values are ex-
pected to fall outside the 95% credibility intervals (Huelsen-
beck and Rannala 2004). In the present case, because the
simulation and estimationmodel are different, and because
we condition the simulations, but not the analysis, on a
fixed, predefined, chronogram and a fixedmutation matrix,
we do not expect this property to strictlyhold. On the other
hand, as long as the parameters that are fixed across simula-
tions are not too atypical a priori, the frequentistproperty is
expected to hold approximately. Another point of interest is
how far from the true value themean estimated covariances
will be, which can be checked visually.

In both cases, using either the arithmetic or the expo-
nential averagingmethod, a strong correlation between the
true and the estimated covariances is observed (fig. 1). The
choice between linear or geodesic averaging seems to have
a rather small influence on the estimation (compare fig.
1B ,D , F with A , C , E ), although the geodesic method ap-
pears to be slightlymore accurate. Specifically, the 95%cred-
ibility intervals encompass the true value except in 10% of
the cases (16 out of 150 estimated covariances) when using
the arithmetic average and 6% of the cases (9 out of 150)
when using the geodesic average.

A second series of simulationswas aimed at assessing the
rate of false positives of the method. When estimating a co-
variancematrix on a true data set, one naturally wants to as-
sess how confident to be about the fact that the covariance
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FIG. 1. Comparison between true value (x axis), posterior mean and 95% credibility interval (y axis) for the three covariance parameters of the
model (A , B : 〈λS,λN〉, C ,D : 〈λS, C1〉, E , F : 〈λN, C1〉). A , C , E : arithmetic averages, B ,D , F : geodesic averages (see text for details).

between two parameters of interest is indeed positive (or
negative). In a Bayesian framework, the pp that the covari-
ance between the two parameters of interest is positive is
supposed to measure exactly this confidence. Note that, by
symmetry, the prior probability of a positive covariance is
0.5, and therefore, the model does not a priori favor any
particular direction.

In principle, the pp is not to be interpreted in frequentist
terms, that is, 1− pp is not supposed to be an equivalent of
the P value of a frequentist test in which the null hypoth-
esis would be that the covariance is in fact equal to zero.
Nevertheless, it is natural to expect that the method does
not produce false positives too often, that is, does not often
give a high pp for a positive or a negative covariance, when
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Table 1. Rate of False Positives.a

ααα

Averaging Method 0.100 0.050 0.010 0.001 0.0001
Arithmetic 0.050 0.022 0.002 0.001 0.000
Geodesic 0.049 0.021 0.000 0.000 0.000

aFrequency, over 100 simulations under the diagonal model at which the
posterior probability of a positive covariance is less than α/2 or greater than
1 − α/2 (see text for details).

applied to data that have in fact been simulated under a null
covariance model.

To assess this on a more empirical ground, we first esti-
mated the parameters of the diagonal model (i.e., with all
covariances set to 0) on the carnivore data set and with
the three continuous life-history traits (generation time,
mass, and longevity). We then resimulated data under the
posterior predictive distribution, that is, we simulated 100
replicates of the data set, each replicate consisting of a
codon alignment of 342 coding positions (1,146 aligned nu-
cleotides) and a set of continuous phenotypic characters
always under the assumption of no correlation between
theM = 5 components of the process. Next, we applied the
fully covariant model on each replicate and measured the
pp of a positive covariance between eachM (M−1)/2= 10
pairs of entries of the multivariate process. In this way, we
can assess the frequency at which pps are more extreme
than a given threshold. Because we do not have any prior
expectation about the sign of the covariance, for a given
threshold α, we measure the frequency at which either
pp > 1− α/2 or pp < α/2.

The results are presented in table 1 for several values of
α. Whether the data are simulated and tested under the
same model or whether different approximation schemes
are used for simulation and analysis, the test, as seen in a
frequentist perspective, seems slightly conservative (i.e., the

Table 2. Covariance Analysis for Carnivores (left) and for Therians (right) under the (λS,ω) Parameterization.a

Carnivores Therians

Covariance λλλS ωωω Maturity Mass Longevity λλλS ωωω Maturity Mass Longevity
λλλS 0.93 −0.25 −0.01 0.08 −0.06 0.59 −0.15 −0.03 −0.30* −0.07*
ωωω — 1.09 0.28 0.90* 0.13 — 1.02 −0.03 0.58* 0.13*
Maturity — — 0.98 0.95* 0.18* — — 0.81 0.77* 0.19*
Mass — — — 4.31 0.38* — — — 4.54 0.61*
Longevity — — — — 0.31 — — — — 0.34

Correlation λλλS ωωω Maturity Mass Longevity λλλS ωωω Maturity Mass Longevity
λλλS — −0.24 −0.01 0.04 −0.11 — −0.19 −0.04 −0.18* −0.16*
ωωω — — 0.24 0.41* 0.23 — — −0.03 0.27* 0.22*
Maturity — — — 0.46* 0.33* — — — 0.40* 0.37*
Mass — — — — 0.33* — — — — 0.49*

Posterior Prob.b λλλS ωωω Maturity Mass Longevity λλλS ωωω Maturity Mass Longevity
λλλS — 0.11 0.47 0.60 0.21 — 0.02 0.30 <<<0.01* 0.01*
ωωω — — 0.93 0.99* 0.94 — — 0.35 >>>0.99* 0.99*
Maturity — — — >>>0.99* >>>0.99* — — — >>>0.99* >>>0.99*
mass — — — — >>>0.99* — — — — >>>0.99*

aCovariances estimated using the geodesic averaging procedure, and κ = 10. Asterisks indicate a posterior probability of a positive covariance smaller than 0.025 or
greater than 0.975.
bPosterior probability of a positive covariance.
*Posterior probability>0.975 or<0.025.

rate of false positives at the α level appears to be less than
α). The specific approximation scheme does not seem to
have a strong impact on the behavior of the test. A point of
great practical importance is that, for a very low threshold
(α = 0.0001), no false positives were seen among the 100
replicates, thus for all 1,000 covariances tested. This means
that, if anything, the method does not seem to result in
apparently strongly significant, albeit in fact spurious, cor-
relations. Altogether, although more extensive simulations
and more definitive theoretical results would probably be
needed to add furtherweight to this conclusion, the present
empirical analysis suggests that we can be confident in the
pps associated with the observed correlations.

Results
To illustrate the method, we applied it to two alignments
of cytochrome b sequences of 67 carnivores and 410 the-
rian mammals (Nabholz et al. 2008). The phenotypic or
life-history characters were generation time, mass, and
longevity, and the substitution parameters were the rates
of synonymous substitutionλS and the ratio of nonsynony-
mous over synonymous substitutionω.

Covariance Analysis
The estimated covariance matrix is reported in table 2 to-
gether with the correlation coefficients and the pp for each
nondiagonal entry to be positive.

In therians, mass, generation time, and longevity are
strongly and positively correlated with each other (pp >
0.99). The rate of synonymous substitution λS is negatively
correlated with mass (pp < 0.01) and with longevity
(pp = 0.01). No correlation is observed with generation
time (pp = 0.30). Similarly, ω is positively correlated with
mass (pp > 0.99), with longevity (pp = 0.99), but again
not with generation time (pp = 0.35).
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Table 3. Covariance Analysis for Therians, under the (λS,ω)
Parameterization and using Fossil Calibrations.a

Therians

Covariance λλλS ωωω Maturity Mass Longevity
λλλS 0.77 −−−0.21* −−−0.04 −−−0.40* −−−0.09*
ωωω — 1.07 −−−0.04 0.66* 0.16*
Maturity — — 0.99 0.90* 0.22*
Mass — — — 5.23 0.69*
Longevity — — — — 0.39

Correlation λλλS ωωω Maturity Mass Longevity

λλλS — −−−0.24* −−−0.05 −−−0.20* −−−0.16*
ωωω — — −0.04 0.28* 0.25*
Maturity — — — 0.40* 0.36*
Mass — — — — 0.48*

Posterior Prob.b λλλS ωωω Maturity Mass Longevity
λλλS — 0.01* 0.27 <<<0.01* 0.01*
ωωω — — 0.33 >>>0.99* 0.99*
Maturity — — — >>>0.99* >>>0.99*
Mass — — — — >>>0.99*

aCovariances estimated using the geodesic averaging procedure, and κ = 10.
Asterisks indicate a posterior probability of a positive covariance smaller than
0.025 or greater than 0.975.
bPosterior probability of a positive covariance.
*Posterior probability>0.975 or<0.025.

In carnivoresω is also correlated with mass (pp > 0.99),
marginally with longevity (pp = 0.94) and, unlike in theri-
ans, marginally also with generation time (pp = 0.93). On
the other hand, in carnivores,λS does not seem to correlate
with any of the three life-history traits (table 2). Using either
the geodesic or the arithmetic averaging procedure or using
κ = 1 orκ = 10 for the inverseWishart prior did not seem
to have any influence on the inference (not shown).

Using fossil calibrations, in the case of therians, led to
a global enhancement of the estimated covariance matrix
(table 3). In particular, the variance per unit of time of
λS is larger by nearly 50%, which clearly indicates that the

Table 4. Covariance Analysis for Carnivores and Therians under the (λS ,λN) Parameterization.a

Carnivores Therians

Covariance λλλS λN Maturity Mass Longevity λλλS λN Maturity Mass Longevity
λλλS 1.04 0.29 −0.03 0.07 −−−0.07 0.62 0.30* −−−0.02 −−−0.32* −−−0.08*
λN — 1.13 0.26 0.91* 0.08 — 1.18 −−−0.05 0.28 0.06
Maturity — — 0.98 0.94* 0.18* — — 0.82 0.78* 0.20*
Mass — — — 4.31 0.38* — — — 4.56 0.61*
Longevity — — — — 0.31 — — — — 0.34

Correlation λλλS λN Maturity Mass Longevity λλλS λN Maturity Mass Longevity
λλλS — 0.27 −−−0.03 0.03 −−−0.13 — 0.35 −−−0.03 −−−0.19* −−−0.17*
λN — — 0.25 0.41* 0.13 — — −0.05 0.12 0.09
Maturity — — — 0.46* 0.33* — — — 0.40* 0.37*
Mass — — — — 0.33* — — — — 0.49*

Posterior Prob.b λλλS λN Maturity Mass Longevity λλλS λN Maturity Mass Longevity
λλλS — 0.92 0.44 0.58 0.17 — 0.99* 0.34 <<<0.01* <<<0.01*
λN — — 0.93 0.99* 0.81 — — 0.29 0.95 0.88
Maturity — — — >>>0.99* 0.99* — — — >>>0.99* >>>0.99*
Mass — — — — >>>0.99* — — — — >>>0.99*

aCovariances estimated using the geodesic averaging procedure, and κ = 10. Asterisks indicate a posterior probability of a positive covariance smaller than 0.025 or
greater than 0.975.
bPosterior probability of a positive covariance.
*Posterior probability>0.975 or<0.025.

variations of the mutation rate in mitochondrial DNA are
underestimatedwhendivergencedates are not properly cal-
ibrated as previously suggested (Nabholz et al. 2008). Inter-
estingly, the calibratedanalysis also yields a significantlyneg-
ative correlation betweenλS andω, whichwas not observed
in the analysis without calibrations. All other estimates are
very similar, whether or not calibrations are used (table 3).

An analysis was also conducted under the (λS, λN) pa-
rameterization (table 4). The results are concordant with
those obtained under the (λS,ω) parameterization, that is,
λS does not correlate with life-history traits and λN cor-
relates with mass and marginally with longevity and gen-
eration time in carnivores. In therians, a negative correla-
tion betweenλS andmass and longevity is recovered. As for
λN, it shows a marginal positive correlation with mass and
longevity. Of interest, λS and λN are found to be positively
correlated in therians (pp = 0.99) and marginally in carni-
vores (pp = 0.92).

Some of the methods of standard linear regression and
analysis of variance have a direct equivalent in the present
case. In particular, the slope of the pairwise relation between
two variables can be estimated (see Methods). For instance,
in the case of therians, the slope of the logarithmic varia-
tions of generation time versus mass is estimated at 0.20,
with a 95% credibility interval (95% CI) at [0.16,0.25]. In
the case of longevity as a function of mass, we obtain 0.14
(95% CI [0.11,0.17]). The estimated slopes were very similar,
with or without calibrations, under κ = 1 or 10, and us-
ing the arithmetic or the geodesic averaging method. They
are smaller than the coefficients of 0.25 and 0.20 often re-
ported for these allometric scaling relations (Calder 1984).
On the other hand, a direct linear regression on the life-
history traits of the 410 therian taxa yields a slope of 0.22 for
generation time versus mass and of 0.17 for longevity versus
mass, which suggests that the discrepancy may come from
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FIG. 2.Reconstruction of the evolution of bodymass in carnivores. Disk area is proportional to bodymass. Boundaries of the 95% credibility interval
at each node are represented by the dark- and light-shaded disks.

the particular taxonomic level or sampling presently consid-
ered and not from the model.

Another quantity of interest is the square of the corre-
lation coefficient between two components r 2kl , which ex-
presses how much of the total variation of l is explained by
k and vice versa. Here, the squared correlation coefficient is
(−0.18)2 = 0.032 between λS and mass, and (−0.27)2 =
0.073 between ω and mass (table 2). In other words, the
variations of body weight explain 3% of the variations of
the rate of substitution and 7% of the variations of ω. Mass
and longevity are the most strongly correlated characters,
explaining 25% of the variation. In therians, the correlation
coefficient between λS and λN (table 4) is 0.35, that is, the
rate of synonymous substitution explains (0.35)2 = 12% of
the variations in the rate of nonsynonymous substitutions.

Multiple regression analysis can also be used (see Meth-
ods), for instance, to attempt to discriminate betweenmass

and longevity as the primary factor correlating with λS
(table 4). Under constantmass, no residual correlation is ob-
served between longevity and λS (pp = 0.16). In contrast,
under constant longevity, the covariance between λS and
mass is still significantlynegative (pp = 0.02). Thus, accord-
ing to the present analysis, mass, and not longevity, seems
to be the main explanatory variable for substitution rate
variations in therians.

Phylogenetic Reconstruction of the Phenotypes
The divergence times and the variations in body mass along
the phylogeny were reconstructed under the fully covariant
model for carnivores (fig. 2) and for therians (not shown).
Overall, the 95% credibility intervals are large. Specifically,
the common ancestor of carnivores is inferred to have an
adult body mass between 1.8 and 24.7 kg. From there,
the evolutionary trends are very different, depending on
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FIG. 3. Comparison between inferred ancestral masses under the co-
variant (x axis) and the diagonal (y axis) model for the therian data
set. Error bars correspond to the marginal 95% credibility intervals at
each node.

the suborders considered: mass progressively increases in
the lineage leading to Ursidae and Pinnipedia, being esti-
mated at 46 (95% credibility interval [11,8,210]) kg in their
common ancestor, and decreases to <1 kg in Herpestidae
(mongooses).

Tomeasure the impact of potential interactions between
molecular and phenotypic reconstructions through the co-
variancematrix, an inferencewas also conducted under the
diagonal model, obtained by constraining the nondiagonal
entries of the matrix to be equal to zero. To quantify the dif-
ferences between the two reconstructions, we computed,
for each node, a deviation index as follows:

z j =
2(Ecov[lnC j ]− Ediag[lnC j ])√
Vcov[lnC j ] +

√
Vdiag[lnC j ]

, (14)

where E [·]cov and E [·]diag are the samplemeans,V [·]cov and
V [·]diag the sample variances, under the covariant and the
diagonal models, and C j is the value reconstructed at node
j for the character of interest. This deviation is loosely anal-
ogous to a z -score, although it is not meant as a measure of
significance, but only as a heuristicmeasure of the difference
between the estimates obtained under the two models.

The differences between the reconstructions inferred un-
der the covariant and the diagonal models are small (fig. 3).
In therians, the first ten highest deviation indices are all pos-
itive, between 0.9 and 1, and all of them fall in the group of
Cricetidae. Thus, there is a signal in the multiple sequence
alignment indicating that early Cricetidae may have been
larger than what is inferred just based on the phenotypic
data and the phylogenetic tree. For instance, the ances-
tor of Cricetidae is inferred to have a mass of 151 (95% CI
[58,376]) grams under the covariant model instead of 97
(95% CI [32,279]) grams under the diagonal model. An op-
posite trend is observed in carnivores, with a maximum de-
viation index of−0.5 for the ancestor of Ursidae, suggesting
that, in this case, covariance between substitution rates and
body mass results in a downward correction of body mass
for the ancestor of Ursidae. Likewise, the most recent com-
mon ancestor of Ursidae and Pinnipedia,which comes third
(z = −0.4), is inferred with a mass of 46 (95% CI [11,8210])
kg under the covariant model instead of the 73 (95% CI
[18,317]) kg found under the diagonal model. In all cases,

however, the differences between the covariant and the di-
agonal model are small compared with the credibility inter-
vals, and may just as well be a stochastic fluctuation, or a
consequence of inaccurate divergence time reconstruction.

Discussion
Comparative analyses of molecular and phenotypic charac-
ters are a key aspect of molecular evolutionary studies. In
this direction, what we propose here is the first fully inte-
gratedmethod dealingwith the nuisances caused by phylo-
genetic dependences and by the various sources of uncer-
tainty about the phenotypic and molecular history.

Probably, the most immediate advantage of the method
developed here is its practical simplicity. Essentially, the en-
tire procedure reduces to a one-step analysis inwhich all the
available evidence is given as an input and estimates of all
potentially interesting aspects of the problem (covariances,
divergence times, phenotypic histories) are obtained as the
output. The pps offer a simple and natural method for eval-
uating the significance of the observed correlations.

Joint estimation of all parameters in a Bayesian frame-
work has another important advantage. When estimating
a parameter of interest, in particular the covariance ma-
trix, the uncertainty about all other parameters (e.g., on re-
constructed rates of substitution or on divergence times)
is automatically accounted for (Huelsenbeck et al. 2000;
Huelsenbeck and Rannala 2003; Gelman et al. 2004). This is
particularly important in analyses of single genes such as cy-
tochrome b for which the sampling error associated with
the estimation of substitution rates is potentially large. In-
tegrating over divergence times may also be important, as
errors on branch lengths have been shown to result in in-
flated type I errors (Diaz-Uriarte and Garland 1998).

On the other hand, accounting for the uncertainty about
the nuisance parameters by integratingover the prior raises
the issue of prior sensitivity. In the present case, one can
point out at least two components of the model for which
prior sensitivity may be an issue. First, divergence times are
potentially more sensitive to the prior (Inoue et al. 2010)
than previously suggested (Lepage et al. 2007), indicating
that the present framework should be extended to accom-
modate alternative priors on divergence dates, in particular
the birth–deathprior (YangandRannala 2006), and that the
robustness of the analysis to the choice of the prior should
be thoroughly assessed.

Another point concerning prior sensitivity is the choice
of κ, the prior mean variance parameter for each compo-
nent of the multivariate process. Defining a sensible value
for κ is particularly difficult because we have absolutely no
relevant prior information about the scale of the rate of
change of the substitution parameters nor of the pheno-
typic characters. In the present case, we just checked that
the analysis was robust with respect to the choice of κ = 1
or 10, which is probably good enough given that the pos-
terior mean values obtained for the variance parameters
are within this range (table 2, diagonal coefficients). How-
ever, this approach is not totally satisfactory, conceptually
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Table 5.Multiple Regression Analysis in Therians.a

Constant Mass Constant Longevity

Covariance λλλS ωωω Maturity Mass Longevity λλλS ωωω Maturity Mass Longevity
λλλS 0.74 −0.17 0.03 — −0.04 0.75 −0.18* 0.01 −0.24* —
ωωω — 0.98 −0.15 — 0.07 — 0.99 −0.13 0.37* —
Maturity — — 0.83 — 0.10* — — 0.86 0.51* —
Mass — — — — — — — — 4.00 —
Longevity — — — — 0.30 — — — — —

Posterior Prob.b λλλS ωωω Maturity Mass Longevity λλλS ωωω Maturity Mass Longevity
λλλS — 0.04 0.67 — 0.16 — 0.02* 0.56 0.02* —
ωωω — — 0.04 — 0.94 — — 0.07 0.99* —
Maturity — — — — >0.99* — — — >0.99* —

aCovariances estimated using the geodesic averaging procedure, fossil calibrations, and κ = 10. Asterisks indicate a posterior probability of a positive covariance smaller
than 0.025 or greater than 0.975.
bPosterior probability of a positive covariance.
*Posterior probability>0.975 or<0.025.

speaking. An alternative would be to work in a hierarchical
Bayes framework, and use an uninformative prior, such as
Jeffreys’ prior (Jeffreys 1961), possibly accommodating dif-
ferent values κm for each componentm = 1, . . . ,M of the
process. Another approach, more in the spirit of empirical
Bayes, would consist in optimizing the marginal likelihood
of the overall model according to the hyperparameterκ (or
the hyperparameters κm ).

More fundamentally, the choice of an inverse Wishart
distribution as our prior on the covariancematrix wasmoti-
vated exclusively by computational arguments. The inverse
Wishart is conjugate to the multivariate normal distribu-
tion, thus allowing us to integrate away the covariance ma-
trix from theMCMC sampler (seeMethods). In practice, the
improvement brought by the conjugate sampling method
seems to be essentially dependent on the dimension M of
the multivariate process, which is expected, given that the
number of independent parameters represented by the co-
variance matrix increases as M 2. Thus, the improvement is
minor for M = 3 (i.e., two substitution parameters com-
bined with one continuous character), significant forM =
5,witha burn-in three times as longunder thenonconjugate
samplingmethod than under the conjugate one, and essen-
tial for larger values of M : for M > 10, we were unable to
obtain convergence using the nonconjugatemethod. This is
also true if we increase the dimension of the process by hav-
ingmore substitution parameters allowed to vary along the
lineages (not shown).

On the other hand, alternative priors could be imag-
ined. In particular, conditional independence between cer-
tain pairs of variables could be modeled more directly, and
perhaps more adequately, by allowing the corresponding
nondiagonal entries of Σ−1 to be equal to zero with posi-
tive prior probability. This can be seen as a reformulation,
in a comparative context, of covariance selection models
(Dempster 1972; Dobra et al. 2004). Reversible jumpMonte
Carlo methods might have to be developed in order to
sample from such models. Alternatively, under certain con-
ditions, it might be possible to develop covariance selec-
tion priors while preserving conjugacy (Dawid and Lauritzen
1993; Roverato 2002; Letac andMassam2007). In both cases,

the model would offer a direct estimate of the marginal pp
of conditional independence between each pair of variables,
andmay also have a better fit, thanks to its smaller effective
number of parameters.

Apart from the question of the prior, our method makes
several assumptions and approximations, all of which may
deserve further discussion. First, we approximate the con-
tinuously changing substitution process by a piecewise
constant process, using average substitution matrices, one
for each branch. We have proposed two alternative approx-
imations for these average matrices and checked by sim-
ulations that these approximations did not result in large
estimation errors. On the other hand, our checks do not of-
fer any guarantee that the approximationwill be acceptable
in all circumstances. A possibility would be to use less ex-
treme discretization schemes, for instance, by sampling the
values of the multivariate process at intermediate points
along the branches and not only at their extremities. An
acceptable compromise between granularity and computa-
tional cost may then be found empirically on a case-by-case
basis.

Second, we have assumed that logarithmic transforma-
tions would be adequate to reduce the problem to one
of estimating linear correlations between variables. In the
present case, a logarithmic transformation is probably the
most obvious choice to make in the case of life-history
traits for which known allometric relations are equivalent
to log-linear correlations between variables (Calder 1984).
Concerning substitution rates, the case is less obvious, al-
though the fact that rates can display variations on several
orders of magnitude (Nabholz et al. 2008) strongly argues
in favor of a change of variable akin to a logarithmic trans-
formation. In principle, alternative transformations of the
variables could be proposed and compared by computing
Bayes factors, or alternatively, could be averaged over us-
ing a hierarchical model. An even more advanced approach
would consist in developing nonparametric methods able
to estimate the transformation directly from the data.

Finally, the assumptions implied by the use of a Brownian
diffusion process, namely a constant rate of change, and an
absence of trend in the direction of the changes could be
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relaxed by implementing alternative stochastic processes,
such as the Ornstein–Uhlenbeck process (Butler and King
2004), or burst models, allowing for a varying rate of pheno-
typic evolution in different regions of the tree (Cooper and
Purvis 2010).

Insights intoMolecular Evolutionary Mechanisms
We have introduced two alternative parameterizations of
the covariance model in terms of either λS and ω or λS
and λN. Ideally, because the process is multivariate normal,
and because lnω = lnλN − lnλS is a log-linear relation
preserving the normality of the process, the two represen-
tations should be equivalent, the two covariance matrices
being related by the following change of variables:

〈C ,ω〉 = 〈C ,λN〉 − 〈C ,λS〉,
〈λS,ω〉 = 〈λS,λN〉 − 〈λS,λS〉,
〈ω,ω〉 = 〈λS,λS〉+ 〈λN,λN〉 − 2〈λS,λN〉,

where C is any phenotypic character. On the other hand,
because the prior on Σ is not invariant by this change of
variable, for finite data, the result of the estimation will de-
pend on the chosen representation.Which representation is
more convenientdepends on the question being addressed.
The prior is centered on the diagonalmodel and thus is neu-
tral with respect to positive or negative covariance among
the substitution parameters and the phenotypic characters.
Therefore, the choice should mainly depend on which vari-
ables we consider as a priori independent.

The justificationof the (λS,ω) parameterization ismech-
anistic. Assuming that selection on synonymous substitu-
tions is negligible, variations ofλS will mostly be due to vari-
ations of the mutation rate λ and will be independent of
population size. On the other hand, if the mutation rate
is not too high, so that interferences between nonneutral
polymorphisms are negligible,ω will be independent of the
mutation rate λ and will be equal to the fraction of effec-
tively neutral nonsynonymous mutations. This fraction is
expected to be a decreasing function of effective popula-
tion size as slightly deleterious mutations that would oth-
erwise be nearly neutral in species with a small effective size
may find themselves purified away in species with a larger
effective size (Ohta 1973, 1974; Kimura 1979, 1983; Welch,
Eyre-Walker, et al. 2008). Using the (λS,ω) parameterization
therefore amounts to assuming that such a nearly neutral
model applies to the data at hand.

On the other hand, if we are more suspicious about the
validity of the nearly neutral model, in particular if we sus-
pect that nonsynonymous substitutions may not be lim-
ited by themutation rate, but instead by ecological adaptive
opportunities (Gillespie 1991), then considering λS and λN
as the two a priori independent variables may turn out to
be more adequate. Using the (λS,λN) parameterization can
also be seen as awayof testingwhetherλS andλN are indeed
positivelycorrelated, as would be expectedunder the nearly
neutral model, or more generally if the mutation rate is lim-
iting. For those reasons, we think it is important to propose
a software program in which the two alternative parameter-
izations are available.

The positive correlation observed between λS and λN
in our analyses (table 4) is consistent with the nearly neu-
tral model. The correlation is significant, albeit perhaps a
bit weak, with the variations of λS explaining only 12% of
those of λN in therians. This may simply be due to a lack
of power, owing to the small size of the alignment (small
number of positions). Alternatively, it could be the con-
sequence of adaptive phenomena partially decoupling λN
from λS. More extensive analyses, in particular using longer
sequences, would be needed here.

Also in favor of the nearly neutral model, we see a posi-
tive correlation between ω and mass and longevity, both at
the level of one single order (carnivores) and at the more
global scale of therians (table 2). This correlation can be
interpreted as an indirect effect of variations of effective
population size, itself negatively correlated with mass and
longevity, in agreement with previous observations (Wein-
reich 2001; Popadin et al. 2007). What may appear more
intriguing is that population size is known to also be cor-
related with generation time in mammals (Chao and Carr
1993). Yet, in the present case, we do not observe any cor-
relation betweenω and generation time in therians, and we
see it onlymarginally in carnivores (table 2).

We also observe a negative correlation between λS and
mass and longevity, which is consistent with a previous
analysis (Nabholz et al. 2008). Two alternative explana-
tions can be proposed for this correlation. First, it could
be an indirect effect of metabolism, larger animals having a
lowermetabolism (Martins and Palumbi 1993; Gillooly et al.
2005). However, several analyses have already questioned
the metabolic rate hypothesis, suggesting that the corre-
lation with metabolic rate was at best indirect, being me-
diated by a body size effect (Bromham et al. 1996; Lanfear
et al. 2007). Alternatively, the mutation rate could be under
adaptive regulation, linked to the necessity of restrict-
ing mitochondrial somatic mutations in large and long-
livingmammals (Speakman 2005; Nabholz et al. 2008). The
question could be further investigated under the present
framework, and using multiple regression, to discriminate
betweenmass andmetabolic rate.

Finally, we do not observe any correlation between λS
and generation time, neither in carnivores nor in therians,
andwhether or not fossil calibrations are used. A strong gen-
eration time effect has often been reported previously, but
mostly for nuclear sequences (Li andTanimura 1987; Li et al.
1996). In contrast, the generation time effect was found to
beweaker inmitochondrial sequences (Nabholz et al. 2008).
Nevertheless, the fact that we could not observe any corre-
lation between either λS or ω and generation time, despite
the fact that such correlations would be plausible, should
probably be further investigated.

Reconstructing Phenotypic Evolution
Reconstructing phenotypic evolution based on a joint anal-
ysis of phenotypic and molecular data is one of the most
exciting perspectives opened by the present method. Joint
estimation implies that potentially relevant information is
shared across the different components of the parameter

742



Correlated Evolution of Substitution Rates and Phenotypes · doi:10.1093/molbev/msq244 MBE

vector. Via the covariance matrix, a potentially interesting
cross talk may therefore occur between substitution rates
and divergence times (Welch and Waxman 2008) or be-
tween rates and the reconstructed phenotypic history.

In the present case, however, we have not seen much in-
fluence of the covariance structure of the model on diver-
gence times nor on phenotypic reconstructions. This could
be due to several factors, although a likely explanation in
the present case is indicated by the squared correlation co-
efficients estimated for this data set (tables 2 and 3). Be-
cause λS explains only around 3%, and ω about 7%, of the
variations of mass and longevity, we should not expect λS
and ω to have a strong influence on the phenotypic re-
construction. Such a weak coupling between rates and life-
history traits could be an intrinsic property of the evolution
of mammalian mitochondrial sequences, that is, rates may
have other hidden determinants that happen to dominate
their overall fluctuations. Alternatively, it could be a con-
sequence of the large uncertainty associated with the es-
timation of substitution rates, itself a consequence of the
small number of aligned positionsused in the present study.
In the latter case, a comparative analysis conducted with
the entire proteome ofmammalianmitochondrial genomes
should lead to higher correlations and may therefore help
reveal significant interactionbetween rates andphenotypes.

Perspectives
Our observations concerning the pattern of molecular and
phenotypic evolution in mammals are very preliminary.
Their aimwasmerely to introduce themethod, and it is clear
that, in order to drawmore definitive conclusions about the
several points of biological interest raised above,muchmore
ambitious analyses need to be conducted.

First, not only are the variations of λS and of ω for cy-
tochrome b subject to large stochastic errors, due to the
small number of aligned positions, but theymay also express
specific adaptations of cytochrome b in particular lineages.
Because variations of life-history traits are expected to have
genome-wide consequences on the pattern of molecular
evolution, one possible approach would consist in integrat-
ing the signal over several genes, so as to average out gene-
specific idiosyncrasies and recover only the global trends.
The power of comparative analyses also crucially depends
on a dense taxonomic sampling, and therefore the two cri-
teria, many genes and many taxa, should ideally be met
simultaneously.

Second, mitochondrial sequences are particularly satu-
rated (Brown et al. 1979), owing to a very highmutation rate
in mammals, and more generally in metazoans. Saturation
has probably eroded a significantproportion of themolecu-
lar evolutionary signal in the deeper part of the mammalian
tree. Using the less saturated nuclear sequences, and more
generally, analyzing several genetic units subject to differ-
ent evolutionary regimes should significantly increase the
power of the comparative approach.

Finally, themethod could be extended tomany other po-
tentially interesting substitution parameters. For instance,
investigating the correlation between the transition–

transversion ratio, the equilibrium GC content, and pheno-
typic characters may help discriminate between alternative
hypotheses about the determinants of the mutation
pressure or the population genetic mechanisms underlying
the substitution process. More generally, the method
developed here could in principle be used for investigating
a wide diversity of potential correlations between pheno-
types and sequences, thereby providing many stimulating
empirical observations helping us to better understand the
mechanisms of molecular evolution and to reconstruct the
evolution of phenotypic and life-history traits.
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