
Sarment ManualLaurent GuéguenOtober 13, 2006

Otober 13, 2006

2

Contents
0.1 Data lasses . 40.1.1 lass Sequene . 40.1.2 lass Matrie . 60.2 List of data lasses . 100.2.1 lass Lsequene . 100.3 Count lasses . 110.3.1 lass Compte . 110.3.2 lass Proportion . 140.3.3 lass Lompte . 160.3.4 lass Lproportion . 180.4 Partition lasses . 210.4.1 lass Segment . 210.4.2 lass Partition . 220.4.3 lass Lpartition . 250.4.4 lass Parti_simp . 260.5 Desripteur and Lexique lasses . 290.5.1 lass Desripteur . 290.5.2 lass Lexique . 310.5.3 Desriptors and Preditions 363

0.1 Data lasses0.1.1 lass Sequenemodule sequeneThe doumentation is here.This lass is used to store sequene data, suh as genomi or protei sequenes.It represents a suession of letters, suh asaagaggatagaaggataagatttta.Positions in a Sequene are numbered from 0 to length-1.A Sequene an have a name, whih is written on the �rst line in fasta format,after the ">".Constrution__init__ Optional keyword fi allows onstrution by reading a �le.Sequene is implemented as a tabular in C++. For onstrution, the memoryfor a Sequene must be alloated by:generate generates an empty Sequene with a given length;read_nf reads a �lename in spei� or FASTA format; to reognize the formats,a �lename in spei� format must end with .seq, and a �lename in FASTAformat must end with .fa or .fst;read_prop builds or hanges randomly from a Proportion; see Sequene genera-tion.Optional keywords:deb=d hanges only after position d (>=0) inluded;fin=f hanges only before position f (<len()) inluded;long=lg reates a new lg-length Sequene. In that ase, deb and �n are notread;read_Lprop builds randomly from Lproportion and returns the resulting Partition;see Sequene generation.Optional keywords:deb=d hanges only after position d (>=0) inluded;fin=f hanges only before position f (<len()) inluded;long=lg reates a new lg-length Sequene. In that ase, deb and �n are notread; 4

etat_init=e makes generation beginning with desriptor number e if it isvalid. Otherwise, starts with a random desriptor of the Lproportion;read_Part builds randomly from a Partition and a Lproportion; eah Segmentof the Partition must have desriptors numbers, and eah number mustbe the number of a Proportion of the Lproportion. At eah position, theProportion orresponding to the number is used to randomly generate aletter, as for a Sequene generation;opy opies deeply from another Sequene.Handling__len__ returns the length of the Sequene;__getitem__ and __getslie__ are implemented, to get respetively haratersand sub-sequenes.Beware: operator __getslie__ DOES NOT reate a new Sequene objet,but only a shallow opy, hene it must be used with are;__setitem__ is used to hange a letter in the Sequene.__setslie__ is used to hange a segment of the Sequene by the letters of astring or a Sequene. BEWARE: if the inluded part is of the same lengthas the replaed segment, the Sequene is modi�ed in plae, otherwise a newSequene is built. Hene di�erent behaviours an our if the replaementis made inside a subsequene. See the example below.For example:> import sequene> s=sequene.Sequene(fi="toto.fa")> len(s)10> b=s[3:5℄> print b3ACG> b[2℄='A'> print s[3:5℄3ACA> b[:2℄="TT"> print s[3:5℄ # b and s are still linked5

3TTA> b[:2℄="ACG"> print b4ACGA> print s[3:5℄ # b and s are no longer linked3TTAalpha returns the list of di�erent letters in the Sequene;shuffle randomly shu�es the Sequene by (len*(log(len)+1)/2) random trans-positions;g_name sets the name;name returns the name;Input-OutputSpei� format is:desriptionlength of the sequenesequene with any spaes andreturns as wanted example20ACGGGAAGCTAAAGCTGCG T__str__ outputs in spei� format;fasta outputs in fasta format. The name of the Sequene is written on �rst lineafter ">";seq outputs the mere sequene of letters as a string.0.1.2 lass Matriemodule matrieThe doumentation is here.This lass is used to store sequenes of vetors indexed by letters or haratersnumbers (ie numbers between 0 and 255 and pre�xed by a #). For example, suhvetors an be letters frequenies.Via asii ode, there is equivalene between harater numbers and letters.Positions in a Matrie are numbered from 0 to length-1.6

Constrution__init__ Optional keyword fi allows onstrution by reading a �le.Matrie is a two-dimension tabular in C++. The Matrie format is desribedin Input-Output.For onstrution, the memory for a Matrie must be alloated by either:generate generates an empty Matrie of given length and given a list of lettersand/or numbers (between 0 and 255);read_nf reads a �lename in spei� format;opy opies another Matrie into this new one;ompress ompresses a data either by summing or averaging the ourenes of theletters over non-overlapping windows of a spei�ed size. If unomplete, lastwindow is not stored;predition omputes at eah position of a data the preditions of desriptors ofa Lexique.The numbers of the desriptors of the Lexique are set between 0 and 255, ifneeded.derivate omputes from a data the di�erenes between suessive positions;integrate omputes from a data umulated sums from the �rst position;fb in HMM ontext, uses Forward-Bakward algorithm on a Sequene using aLexique.The numbers of the desriptors of the Lexique are set between 0 and 255, ifneeded.For eah desriptor, at eah position, the value set is the log-probability ofthe ourrene of this desriptor, given the HMM and the data.bakward in HMM ontext, uses Bakward algorithm on a Sequene using a Lex-ique.The numbers of the desriptors of the Lexique are set between 0 and 255, ifneeded.For eah desriptor, at eah position, the value is the log-probability of thepost-position part of the data, given the HMM and the desriptor at thisposition [Rab89℄; 7

forward in HMM ontext, uses Forward algorithm on a Sequene using a Lexique.The numbers of the desriptors of the Lexique are set between 0 and 255, ifneeded.For eah desriptor, at eah position, the value is the log-probability of theante-position part of the data and of the desriptor at this position, giventhe HMM [Rab89℄;set_proba normalizes eah line so that the values are the logarithms of probabil-ities. If the former values are (xi)i, the new ones are: xi − log(
∑

i
exp(xi));exp replaes the values by their exponential;shuffle randomly shu�es the Matrie by (len*(log(len)+1)/2) random transpo-sitions;Handling__len__ returns the length of the Matrie;n_des returns the number of desriptors;des returns the list of the desriptors;__getslie__ returns a sub-matrie.Beware: this operator does NOT reate a new Matrie objet, but only ashallow opy, hene it must be used with are;val returns the value on a letter at a position. The �rst argument of this funtionan be either a letter or a number. For example, val('a',1) is the same asval(97,1) and val('#97',1);g_val is used to hange a value on a letter at a position in the Matrie. The seondargument of this funtion an be either a letter or a number. For example,g_val(0.5,'a',1) is the same as g_val(0.5,97,1) and g_val(0.5,'#97',1);max returns the maximum value at a given desriptor.For example:>>> import matrie>>> m=matrie.Matrie(fi="es.mat")>>> print m5#20 B0 12 1 8

3 41 45 1>>> len(m)5>>> m.des()['#20', 'B'℄>>> m.max(20)5>>> n=m[1:4℄>>> print n3#20 B2 13 41 4>>> n.val('#20',1)3.0>>> n.g_val(7,20,1)>>> print n3#20 B2 17 41 4>>> print m5#20 B0 12 11 41 45 1__add__ returns a NEW Matrie whih is the sum of orresponding values in bothMatrie, if those Matrie have the same length and desriptors;__iadd__ adds to the values of the �rst Matrie the orresponding values fromthe seond one, if both Matrie have the same length and desriptors;9

__sub__ returns a NEW Matrie whih is the substration of orresponding valuesin both Matrie, if those Matries have the same length and desriptors;__isub__ substrates from the values of the �rst Matrie the orresponding valuesfrom the seond one, if both Matrie have the same length and desriptors.line returns a ditionnary whih keys are the desriptors of the Matrie andorresponding items are the values at spei�ed line;Input-OutputSpei� format is:desriptionlength of the Matrieletters separated by spaes or tabulationsarrays of values separated by spaes or tabulations example5A C B3.09 4.5 32 0 01 0 01.19302 2 50 0.322 19.202__str__ outputs in spei� format, in whih olumns are tabular separated.0.2 List of data lasses0.2.1 lass Lsequenemodule lsequeneThe doumentation is here.A Lsequene is simply a list of Sequenes, and used for alulation of Lparti-tions.As it inherits of list, it has all the methods of list.Constrution__init__ Optional keyword fi allows onstrution by reading a �le of Sequenesin FASTA format;read_nf appends to the list the Sequenes in the �le of given name, in FASTAformat;read_Lprop reates random Sequenes from a Lproportion.Optional keyword etat_init sets the desriptor number at �rst position ofthe sequene. 10

Input-Output__str__ returns the string of all Sequenes in FASTA format.0.3 Count lasses0.3.1 lass Comptemodule ompteThe doumentation is here.This lass is used to ompute ounts on word-ourenes, partiularly insidesequenes.The speial harater ^ is used to represent beginnings and ends of sequenes.Suh a harater is handy to build markovian models from a Compte (see Proportion).Constrution__init__ Optional keyword fi allows onstrution by reading from a �lenamein spei� format;add_seq adds to the ount the words of a spei�ed length that are in a sequeneof letters. This sequene must have the operator __getitem__.Optional keywords:deb=d ounts only after position d (>=0) inluded;fin=f ounts only before position f (<len()) inluded;alpha=a ounts only words whih letters are in string a. If a=�, does notonsider alpha;fat=f eah word ounts f (default: 1).add_pseudo adds to the ount the given word with optional ount (default value:1).
• If an element of the list is a string, it adds this string with ount 1.
• If an element of the list is a list [s,℄ with s a string and a number,the word s in added with ount .read_nf builds from a �lename in spei� format;11

Handling__getitem__ returns the ount of the spei�ed word. Charater . is a wildardfor all letters, ^ exepted.For example:>>> import ompte>>> =ompte.Compte()>>> .add_seq("ABCBA",3)>>> .add_seq("BCBAA",3)>>> .add_seq("BABAB",3)>>> print AA^ 1ABA 1ABC 1AB^ 1A^^ 2CBA 2BAA 1BAB 2BA^ 1BCB 2B^^ 1^AB 1^BA 1^BC 1>>> ['A'℄6>>> ['A.'℄ # number of 'A's followed by a letter4>>> ['BAB'℄2>>> ['BCB'℄2>>> ['B.B'℄4>>> ['B^'℄ # number of ending 'B's1__iadd__ adds to self the ounts of a Compte;opy returns a new Compte whih is the opy of self;12

min returns a new Compte made of the minimum of the ounts of self and anotherCompte;max returns a new Comptemade of the maximum of the ounts of self and anotherCompte;intersets returns a new Compte made of the ounts of self that are ounts ofanother Compte;__idiv__ divides all of the ounts by a spei�ed value;restrit_to returns a new Compte whih is self restrited to the letters of thespei�ed string. The end-harater ^ is kept;strip returns a new Compte from the words of self that do not have the end-harater ^;rstrip returns a new Compte from the words of self that do not end with har-ater ^;lg_max returns the length of the longest word;alph returns the list of the letters used in the ounts;prop returns the orresponding Proportion.Optional keywords:lpost=l spei�es the length of the posterior words, ie the words whih fre-quenies are omputed. Default: the maximum length of the words;lprior=l spei�es the length of the prior words, ie the words on whih theomputed words depend, in a markovian ontext. Default: 0;As speial harater "^" stands for the limits of the sequene, the wordsterminating with this symbol are ounted as " same length or longerthan given length "-words;next returns a list of [letter,ount℄ of letters following the spei�ed word;has_prefix returns True i� the spei�ed word is a strit pre�x of a word in theCompte. 13

Input-OutputSpei� format is:desriptionlines ofword and ount separated by a spae or a tabulation exampleAB 3B^ 5^BBC 1pref returns the string of the Compte of words of spei�ed length in same formatas __str__;__str__ outputs in spei� format.0.3.2 lass Proportionmodule ompteThe doumentation is here.This lass is used for proportions of words that follow given words. For ex-ample, it an store the fat that the proportions of letters following word AC are:A 0.34C 0.15G 0.23T 0.28Then a distintion is made between prior words (suh as AC here), and posteriorwords (suh as A,C,G and T here).The speial harater ^ is used to represent beginnings and ends of sequenes.Constrution__init__ Optional keywords:fi allows onstrution by reading from a �lename in spei� format;str allows onstrution by reading from a string in spei� format;read_nf builds from a �lename in spei� format;read_str builds from a string in spei� format;read_Compte Builds from a Compte.Optional keywords:lpost=l spei�es the length of the posterior words, ie the words whih fre-quenies are omputed. Default: the maximum length of the words;14

lprior=l spei�es the length of the prior words, ie the words on whih theomputed words depend, in a markovian ontext. Default: 0;As speial harater "^" stands for the limits of the sequene, the wordsterminating with this symbol are ounted as " same length or longerthan given length "-words;Handling__getitem__ returns the string, in format of Compte of the posterior orrespondingto the given prior;__iadd__ adds to self the proportions of another Proportion;KL_MC omputes Kullbak-Leibler distane to a Proportion, by Monte Carlo sim-ulation on several (default:100) Sequene of a given length (default:1000)generated by method read_prop of Sequene. See Sequene generation;lg_max returns the length of the longest word, prior or posterior (prior+posterior);lg_max_prior returns the length of the longest prior;lg_max_posterior returns the length of the longest posterior;alph returns the list of the letters used in the ounts;next returns a list of [posterior,proportion℄ for the spei�ed prior;rand_next returns a posterior given a spedi�ed prior, randomly hosen amongfollowing the proportions of the prior;has_prefix returns True if the spei�ed word is a valid prior. Remember thatharater ^ stands for begin or end of sequene.Input-OutputSpei� format is:desriptionlines ofprior|posterior and ount separatedby a whitespae exampleA|B 0.3A|A 0.7B|B 0.5B|A 0.5|A 0.1|B 0.9^|A 0.5^|B 0.515

In this example, following an A, proportion of B is 0.3, and proportion of A is0.7. Overall proportion of A is 0.1, and of B is 0.9. Proportion of beginning A is0.5, as well as proportion of beginning B.__str__ outputs in spei� format;loglex returns the orresponding Desripteur. See read_prop in that lass;Sequene generationFrom a Proportion, a (part of a) Sequene an be generated randomly, by themethod read_prop.The proess is:
• for all inreasing positions i:� get the longest word w ending in i-1 that is a valid prior (using methodhas_prefix);� if there is a posterior orresponding to w, let lp be the list of orrespond-ing ouples [posterior,proportion℄ (using method next); otherwise, lp isthe list of the uniform distribution of all letters of the Proportion;� randomly hoose a posterior p aording to the fators in list lp (seeunder);� if the �rst letter of p is a terminating harater (^), put harater null('\0') at that position, and exit;otherwise put that letter at position i on the Sequene.Atually, the random hoie of the posterior is made with probabilities propor-tional to their respetive proportions, even if the sum of the proportions is di�erentfrom 1. Then sequene generation is possible even with non-orthodox proportions.0.3.3 lass Lomptemodule lompteThe doumentation is here.This lass is like a ditionnary in whih the keys are the desriptor numbers,and the items the orresponding Compte.Moreover, the number of transitions between suh desriptors are stored. Ifnot spei�ed, this number of transitions is null.The aim of this lass is to build easily hidden Markov hains.16

Constrution__init__ Optional keyword fi allows onstrution by reading from a �lenamein spei� format;read_nf builds from a �lename in spei� format;read_nf_seq ounts spei�ed-length words from a list of �lenames. In eah �le arethe ounted sequenes, and desriptor number (n-1) is related to �le numbern. Between-desriptors transitions are uniformly distributed.Optional keyword:alpha=st Compte are restrited to letters in string st. If st=�, behaves as ifno option alpha.read_Lpart ounts the words of a spei�ed length from a Lpartition. The Comptea�eted to the desriptor numbers are omputed from the desriptors of thePartitions on the positions of the orresponding Sequenes.Optional keyword:alpha=st Compte are restrited to letters in string st. If st=�, behaves as ifnot option alpha.Handlingstrip returns a new Lompte from the words of self that do not have the end-harater ^, using strip method;rstrip returns a new Lompte from the words of self that do not end withharater ^, using rstrip method;__getitem__ returns the Compte of spei�ed desriptor number;__setitem__ gets the spei�ed Compte to the spei�ed desriptor number;num returns the list of desriptors numbers;lg_max returns the length of the longest word;inter returns the ount of transitions between two desriptor numbers;g_inter gets the ount of transitions between two valid desriptor numbers;alph returns the list of used letters; 17

add_Partition adds ounts of words of spei�ed length on the positions of aSequene, on the basis of a Compte per desriptor number of a Partition;Optional keyword:alpha=a ounts only words whih letters are in string a. If a=�, as if notoption alpha;fat=f eah word ounts f (default: 1).Input-OutputSpei� format is:desriptionsetions ofderiptor number:lines of word whitespae ountlines of ounts of transitionsbetween desriptors numbers in format:num1ber, number2 whitespae ount
example1:AB 35AA 71BB 55BA 245A^ 1B^ 92:ABB 45ABA 5AAA 24AAB 64AB 19A 11,2 2421,1 8542,2 9642,1 610__str__ outputs in spei� format.0.3.4 lass Lproportionmodule lompteThe doumentation is here.This lass is like a ditionnary in whih the keys are the desriptor numbers, andthe item the orresponding Proportions. Moreover, the probabilities of transitionsbetween suh desriptors are stored.The aim of this lass is to build easily hidden Markov hains.18

Constrution__init__ Optional keyword fi allows onstrution by reading from a �lenamein spei� format;read_nf builds from a �lename in spei� format;read_Lompte Builds from a Lompte.Optional keywords:lpost=l spei�es the maximum length of the posterior words, ie the wordswhih frequenies are omputed. Default: the maximum length of thewords;lprior=l spei�es the length of the prior words, ie the words on whih theomputed words depend, in a markovian ontext. Default: 0;Handling__getitem__ returns the Proportion of spei�ed desriptor number;__setitem__ gets the spei�ed Proportion to the spei�ed desriptor number;num returns the list of desriptors numbers;lg_max returns the length of the longest word (prior+posterior);lg_max_prior returns the length of the longest prior;lg_max_posterior returns the length of the longest posterior;inter returns the proportion of transitions between two desriptor numbers;g_inter gets the proportion of transitions between two valid desriptor numbers;alph returns the list of used letters;KL_MC omputes Kullbak-Leibler divergene to a Lproportion, by Monte Carlosimulation on several (default:100) Sequene of a given length (default:1000)generated by method read_Lprop of Sequene . See Sequene generation;Input-OutputSpei� format is: 19

desriptionsetions ofderiptor number:lines of prior|posterior whitespae ountlines of probability transitionsbetween desriptors numbers in format:number1, number2 whitespae proportion
example1:A|B 0.3A|A 0.7B|B 0.5B|A 0.5|A 0.1|B 0.92:AB|B 0.5AB|A 0.5AA|A 0.4AA|B 0.6A|B 0.9A| 0.11,2 0.21,1 0.82,2 0.42,1 0.6__str__ outputs in spei� format;loglex returns the orresponding Lexique. See read_Lprop in that lass;Sequene generationFrom a LProportion, a (part of a) Sequene an be generated randomly, by themethod read_Lprop.The proess is:

• for the �rst position, selet a desriptor number for the initial state, eitherrandomly or by the hoie of the user. With that desriptor, selet a letter atthis position using the same proess as read_prop, see Sequene generation.
• for all inreasing positions i:� selet a desriptor number given the former one, proportionnaly tobetween-desriptors transition probabilities;� with that desriptor, selet a letter at this position using the sameproess as read_prop, see Sequene generation.20

0.4 Partition lasses0.4.1 lass Segmentmodule segmentThe doumentation is here.Instanes of this lass are used for Partition lass, but it may be useful tohandle them.A Segment is made of
• two positions (begin and end), inluded in the segment;
• a list of desriptors numbers (optionaly empty);
• a �oat for the value of the segment (optionaly zero).
• a string orresponding to a desriptor pattern (optionaly this string is empty);Constrution__init__ Optional keywords:beg=d begin position is d (default: 0);end=f end position is f (default: 0);val=v value is v (default:0).num=l desriptor numbers are a opy of list l (default: [℄);str=s desriptor is string s (default: "");read_str builds from a string in spei� format; returns True if parsing is ok,False otherwise;opy returns a opy of this Segment.Handlingg_beg gets the �rst position;g_end gets the last position;g_num gets the list of desriptors numbers;g_str gets the string of the pattern;g_val gets the value;deb returns the �rst position; 21

fin returns the last position;num returns the list of desriptors numbers;word returns the string of the pattern;val returns the value;__len__ returns the length of the Segment, ie fin-deb+1.Input-OutputSpei� format is:desription<begin-end>sequene_of_desriptors_numbers:value:desriptor_patternif sequene_of_desriptors_numbers is empty, it is not outputif value is zero, it is not outputif desriptor_pattern is empty, it is not outputexamples<0-123>1,2:-5.0:+{A(-1)CG}T<5-3922>:0.45:<87-332>1::__str__ outputs in spei� format;abr outputs in spei� format, without the desriptor pattern.0.4.2 lass Partitionmodule partitionThe doumentation is here.Instanes of this lass are sets of Segment that part a data in several segments.A n-partition is a partition with n segments.A Partition is made of
• a list of Segment;
• a value, as muh as possible the preditive value of the Partition;
• a name (the empty string if it does not have).In all omputations on data, if not spei�ed, the �rst position of the partitionis 0 and the last len(data)-1. 22

Constrution__init__ Optional keyword fi allows onstrution by reading from a �lenamein spei� format;s_name sets the name from a given string;read_nf builds from a �lename in spei� format;read_str builds from a string in spei� format;read_Matrie builds from a Matrie, keeping at eah position the desriptor num-ber that is seleted by a funtion. A segment is made for eah run of identialdesriptors numbers, and its value is the sum on its positions of the valuesreturned by the funtion.Optional keyword:fun=f uses funtion f for seleting the desriptor number. Funtion f hastwo arguments, a Matrie and a position, and returns a tuple desriptornumber, �oating point value (default: returns the tuple best desrip-tor,best value (the �rst of the bests desriptors is returned if there areseveral bests)).opy builds a new Partition by opying this one;build_random builds a random Partition on a given length with a given numberof segments. Positions of the segments are uniformly distributed;Optional keyword:e=e sets the minimum length of the segments. It must be lower than thelength of the sequene divided by (the number of segments +1) (default:0).viterbi using Viterbi algorithm (see [Rab89℄), omputes the most likely predi-tion Partition of a Lexique on a Sequene;Optional keyword:maxseg=m limits to m the maximum number of segments allowed in the om-puted partition (default: 10000). If m equals 0, there is no limit to thisnumber.mpp omputes the maximum-predition partition of a given number of segmentsby a Lexique on a data. 23

Handling__iadd__ appends a Segment after the highest position of the Partition;val returns the value;name returns the name;len_don returns the data length;__len__ returns the number of Segment;num returns the list of desriptors numbers;__getitem__ returns the Segment of a given number;Other methods:group returns a new Partition by lustering the Segment given their desriptorsnumbers. The argument is a list of numbers lists, eah list being a set oflustered desriptors numbers. In the new Partition, the resulting Segmenthave no desriptors numbers.Following the inreasing positions order, the Segment are grouped as long asthe set of the desriptors numbers of the group is inluded in a list of theargument; if this set is not inluded in suh a list, a new Segment is built,and the new set is the desriptors numbers of the onsidered Segment;predition omputes the predition on a data by a Lexique, omputing one bestdesriptor per lass, without between desriptors transitions;pts_omm on a Partition, it returns the number of positions where the desriptorsnumbers are the same in both Partition.If the data-lengths are di�erent, returns -1;Input-OutputSpei� format is:desriptionoutputs of Segment separated by ' XXX ' �> valueexamples<0-123>1,2:-5.0:+{A(-1)CG}T XXX <124-341>3:-7.0: ---> -12.0<0-4>0:1.25: XXX <5-3922>:0.45: XXX <3923-4000>:0.31: ---> 2.01<0-86>:: XXX <87-332>1:: ---> 0__str__ outputs in spei� format;abr outputs in spei� format, without the desriptors patterns.24

Graphial output

0 10000.0 20000.0 30000.0 36737

25

9089

1000.0

2000.0

3000.0

4000.0

5000.0

6000.0

7000.0

8000.0

9000.0

Horizontal axis represents the data, and eah segment is drawn by an ar. Theheight of eah ar is omputed by a given funtion on the segments (here theirlengths).draw_nf outputs in postsript language in �le of given name;Optional keywords:seg=l draws only segments whih numbers are in list l;num=n if equals 1, numbers of the desriptors are written;fun=f the height of eah ar is proportional to value of funtion f omputedon the orresponding Segment.0.4.3 lass Lpartitionmodule lpartitionThe doumentation is here.A Lpartition is simply a list of ouples [data, Partition℄, in whih ouplespartition and data �t when the Partition exists.As it inherits of list, it has all the methods of list.Constrution__init__ 25

add_Lseq appends to the data-list the list of Lsequene;add_don appends to the data-list several opies of a data;build_random reates random Partition on the data-list, using build_random;viterbi omputes the Partition on the stored Sequene with a Lexique usingviterbi algorithm;fb omputes the Partition on the stored Sequene with a Lexique using forward-bakwardalgorithm and read_Matrie method;mpp omputes a maximum-predition Partition on the stored data with a Lexiqueusing mpp;Input-Outputstr_part returns the string of the suessive Partition, in their format.0.4.4 lass Parti_simpmodule parti_simpThe doumentation is here.This lass represents maximal preditive partitionings [Gué00, Gué01℄, ie alist of Partition of inreasing number of segments, omputed on a data using aLexique.A partitioning in n segments, or n-partitioning, is a list of partitions from 1 upto n segments lasses.A Parti_simp is made of
• a list of Partition;
• the value of the maximum predition from a Lexique on a data; if this valueis not de�ned, default value is 0;
• the miminum number of lasses neessary to get the maximum predition; ifthis maximum predition value is not de�ned, default value is 0.Constrution__init__ Optional keyword fi allows onstrution by reading from a �lenamein spei� format;read_nf builds from a �lename in spei� format; if a Partition in the �le hasno name, its new name is the string of its index in the list;26

build_random builds a random partitioning in a given number of lasses on a givendata-length, using build_random;mpp omputes the maximal preditive partitioning of a given number of lasseswith Lexique on a data; the names of the Partitions are their numbers ofsegments;Handlinglen_don returns the length of the data of the �rst Partition;__len__ returns the number of Partition;__getitem__ returns the Partition of a given number;__delitem__ removes the Partition of a given number;__getslie__ returns a Parti_simp made of the seleted partitions;__delslie__ removes the Partition of indexes between given numbers;append appends a Partition to the end of self. Data length of this Partitionmust be equal to the one of self; if this new Partition has no name, it getsthe length of the Parti_simp as name, using method s_name.insert inserts a Partition before given index. Data length of this Partitionmust be equal to the one of self; if this new Partition has no name, it getsthe length of the Parti_simp as name, using method s_name.filter returns a Parti_simp made of the partitions on whih a given funtionreturns True;group returns a new Parti_simp by lustering the Segment of its Partition giventheir desriptors numbers, using group.ls_val returns the list of the values of the Partition, using val;predition omputes the list of preditions of the partitions on a data by aLexique, using predition;pts_omm returns, for eah number n of segments, the number of same-desriptorpositions between the n-partitions of both Parti_simp, using pts_omm;27

Input-OutputSpei� format is:desriptionlines of outputs of Partition in spei� formatMAX(min-max number of lasses) �> maximum valueexample<0-3637>6:-9127: ---> -9127<0-2845>7:-6194: XXX <2846-3637>3:-2920: ---> -9114<0-2505>7:-6234: XXX <25006-3349>1:-2139: XXX <3350-3637>51:-721: ---> -9094MAX(366) ---> -8685__str__ outputs in spei� format;abr outputs in spei� format, without the desriptors patterns (see abr).Graphial output

Horizontal axis represents the data. On eah line is the number of segmentsand the graphial output of the orresponding Partition, where eah segment isdrawn by an ar. The height of eah ar is optionaly omputed by a given funtionon the segments (here their lengths). 28

Here, only the segments whih desriptors numbers are between 30 and 44 aredrawn, and their desriptors numbers are written above them.draw_nf draws in postsript language in �le of given name;Optional keywords:seg=l draws only segments whih numbers are in list l;num=n if equals 1, the numbers of the desriptors are written;fun=f the height of eah ar is proportional to value of funtion f omputedon the orresponding Segment.0.5 Desripteur and Lexique lasses0.5.1 lass Desripteurmodule desripteurThe doumentation is here.Instanes of this lass orrespond to simple desriptors to whih numbers areset.Constrution__init__ builds a Desripteur with a given number.Optional keyword: 29

str=s builds from string s, using read_str;prop=p builds from Proportion p, using read_prop;fi=f builds from �lename f, using read_nf;fprop=f builds from �lename f of Proportion, using read_prop;read_str builds from a string, in format of simple desriptors;read_nf builds from a �lename;read_prop builds from a Proportion, using loglex. For e�ieny onsiderations,the proportions priors and posteriors are translated di�erently (see desrip-tors):
• priors are lustered in a tree from the last letters to the �rst ones, andeah leaf of this tree will be the output of the orresponding posterior.Afterwards, these labels are output with bakward-or (|{}) operatoralong the edges of the tree, and the posteriors are output in their spei�format. The order in bakward-or operator is not related with any orderin the proportions. Priority is given to the most spei� prior. The
−100000 labels are for no-mathing priors.Example: The output of the posteriors are replaed by the `'.

ACGTT|
AGT|

TGT|
AGC|

T

C

C AT G

G

G

A

A

T

|{C|{G|{A‘’!!(−100000)}!!(−100000)}T|{T|{G|{C|{A‘’!!(−100000)}!!(−100000)}!!(−100000)}G|{A‘’T‘’!!(−100000)}!!(−100000)}!!(−100000)}

• posteriors are lustered in a tree from the �rst letters to the last ones,and eah leaf of this tree is the logarithm of the orresponding pro-portion. Afterwards, the labels are output with the here-or (|()) andforward-or (|`') operators. −100000 labels are for not-mathing pos-teriors.
C

A

C

T

G

A

−100000

−0.693

−1.204

−2.303

−100000

−2.303

−100000

‘|(A|‘C|‘G!(−0.69314718056)!!(−1.20397280433)’T!(−2.30258509299)!!(−100000)’C|‘A!(−2.30258509299)!!(−100000)’!!(−100000))’

|ACG 0.5

|AC 0.3
|CA 0.1

|AT 0.1

30

opy returns itself deeply opied Desripteur, with a given number;equals opies from another Desripteur.Handlingnum returns the number of the Desripteur.predition omputes the predition on a data, at a given position.Input-OutputDesripteur instanes have a spei� format that is desribed in Simple desrip-tors setion.__str__ outputs in spei� format.0.5.2 lass Lexiquemodule lexiqueThis lass is used for all of the omputations of partitions, partitionings andHMM analysis.A lexique is a set of desriptors. The predition funtions, used for all theomputations, are de�ned by the desriptors.Optionaly, some values an be put for the transitions between the desriptors:these values are used for HMM omputations.Constrution__init__ Optional keywords:str=s builds from string s, using read_str;alpha=a uses the letters of string a, in use with option str (see input);Lprop=l builds from Lproportion l, using read_Lprop;fi=f builds from �lename f, using read_nf;fprop=f builds from �lename f of Lproportion, using read_Lprop;read_nf builds from a �lename and optionaly a string of letters (see input);read_str builds from a string and optionaly another string of letters (see input).read_Lprop builds from a Lproportion, eah Proportion being translated as inread_prop, and the transitions between desriptors are valued by the loga-rithms of the transitions proportions.31

Handlingis_empty returns True if there is no desriptor, False otherwise;__len__ returns the number of desriptors;ls_num returns the list of the numbers of the desriptors;met_au_net removes repetitions in patterns of desriptors (like ACAC leaned inAC) and repetitions of desriptors (like A A leaned in A);__iter__ iterates over the desriptors, using for d in lx;__delitem__ removes the Desripteur of given number;__getitem__ gets the Desripteur of given number by COPYING it;__setitem__ • either sets the Desripteur of given number to given Desripteurby COPYING it (if the number is already used in the Lexique, the or-responding desriptor is replaed by the new one);
• or builds a desriptor pattern given a tuple of numbers (numbers thatmust not have been alreadyy used in the Lexique), and a tuple or a listof Desripteurs.For example:>>> import lexique>>> l=lexique.Lexique(str="1:A 2,3:BC")>>> print l3,2:CB 1:A>>> import desripteur>>> d=desripteur.Desripteur(3,str="Z")>>> print dZ>>> l[2℄=d>>> print l3,2:CZ 1:A>>> d.read_str("P")>>> print l3,2:CZ 1:A>>> e=desripteur.Desripteur(3,str="Y")>>> l[5℄=e 32

5:Y>>> print l5:Y 3,2:CZ 1:A>>> l[4,3℄=e,dBad desriptor number 3 already used>>> l[4,6℄=e,d4,6:YP>>> print l6,4:PY 5:Y 3,2:CZ 1:A>>> del l[3℄>>> del l[2℄>>> print l6,4:PY 5:Y 1:A>>> l[3,2℄="X",e3,2:XY>>> print l2,3:YX 6,4:PY 5:Y 1:Apredition omputes the maximum predition on a data, without using between-desriptors transitions;Optional keywords:deb=d sets the �rst position of the segment on whih the predition is om-puted (default: 0);fin=f sets the last position of the segment on whih the predition is om-puted (default: last position-1);If deb>fin, it returns 0.val_max omputes the maximum sum of preditions on a data, without usingbetween-desriptors transitions; in that ase, the maximal predition is om-puted on eah position, and the sum of these is returned;Optional keywords:deb=d sets the �rst position of the segment on whih the predition is om-puted (default: 0);fin=f sets the last position of the segment on whih the predition is om-puted (default: last position-1);If deb>fin, it returns 0. 33

llh omputes the best log-likelihood on a Sequene.Optional keywords:deb=d sets the �rst position of the segment on whih the log-likelihood isomputed (default: 0);fin=f sets the last position of the segment on whih the log-likelihood isomputed (default: last position-1);If deb>fin, it returns 0.ls_evalue returns the ditionnary of tuple of (the pattern of) numbers of desrip-tors, predition of this (pattern of) desriptor on the data, for all desriptors,on a given data.Optional keywords:deb=d sets the �rst position of the segment on whih the preditions areomputed (default: 0);fin=f sets the last position of the segment on whih the preditions areomputed (default: last position -1);If deb>fin, it returns 0.windows omputes the list of the best preditions on the data in a sliding windowof a given size and with steps of a given length;probability omputes the list of the segmentation probabilities on the data, upto a given number of segments.Input-Output
• OutputSpei� format is: 34

desriptionnumbers_of_desriptors_separated_by_ommas:outputs_of_the_desriptors_in_the_pattern_separated by spaes.optional lines of transitions osts between the desriptors, in format:number_of_desriptor,number_of_desriptor ostexamples1,2:+{A(-1)CG}T 3:C1:A 2:C 3:G 4:T1,2,3:A|`C(0.3)GT(0.2)A'{C(0.5)A(-1.5)} 5:+(CG) 10:`T(-0.23)!(0.1)'1:A 2:T1,1 -2.31,2 -4.12,2 7.22,1 0__str__ outputs in spei� format.
• InputInput is in the same format as the output, plus:� there is no need to give numbers to the desriptors. In that ase, theywill be automatially numbered;� harater $ is a wildard, and annot be used as a standard letter. Itis used in method read_str, and is set suessively on all of the lettersof the seond string argument of this method. For example:

∗ lit_str("$", "ACG") builds Lexique: A C G
∗ lit_str("A$A", "TG") builds Lexique: ATA AGA
∗ lit_str("`A$$'", "CGT") builds Lexique:`ACC' `ACG' `ACT' `AGC' `AGG' `AGT' `ATC' `ATG' `ATT'Here are the syntax and the omputation methods of desriptors.35

0.5.3 Desriptors and PreditionsSimple desriptorsA simple desriptor an be seen as a funtion applied to a position in a data andits viinity, and returning a �oating-point value.In a data, on a position, a letter has a value:
• in a Sequene, the value of the existing letter is 1, the value of other lettersis 0;
• in a Matrie, the value of an existing letter is the value in the data, the valueof the other letters is 0.A �oating-value written between parentheses after a desriptor multiplies thepredition of this desriptor by that value. For example, on a Sequene, desriptorA returns 1 on A, and 0 elsewhere, whereas desriptor A(0.7) returns 0.7 on A, and0 elsewhere.For operators, notation is a pre�x one.The aepted desriptors are:letters for letters between a and z and between A and Z, returns the value of theorresponding letter in the data.letter ::= "a"..."z"|"A"..."Z"speial haraters! returns 1 in any position (even if out of bounds);^ returns 1 if the position is out of bounds, 0 otherwise.speial ::= "^" | "!"harater odes for numbers between 0 and 255 inluded. Charater odes ofletters are output as letters.Beware: As the odes of speial haraters ! and ^ are 33 and 94, these odesmust be used very autiously.harater ::= #0..255here-plus returns the sum of the preditions of the desriptors between the paren-theses, at this position ; for example +(ABC).here-plus ::= +(desriptors)here-mult returns the produt of the preditions of the desriptors between theparentheses, at this position ; for example *(ABC).here-mult ::= *(desriptors) 36

here-or returns the predition on the urrent position of a desriptor (the omput-ing desriptor) hosen by the positivity of the predition of another desriptor(the testing desriptor) on this position. Eah ouple testing desriptor-omputing desriptor is written in this order. Between the brakets, thetests are made from left to right in the odd desriptors, and stop at the �rstpositive test.For example, on position 0 of Sequene ABC, predition of|(`AB'A(0.1)`AC'A(0.2)`AA'A(0.3)) returns 0.1.For example, on position 0 of Sequene ABC, predition of|(`AB'A(0.1)`AB'A(0.2)) returns 0.1.here-or ::= |(desriptorsdesriptors)forward returns the predition at the urrent position of the �rst desriptor be-tween the quotes if the preditions of the next desriptors on the followingpositions are all positive.For example, on position 0 of Sequene ACBS, predition of`A(0.5)CB(0.3)' returns 0.5.forward ::= `desriptors'forward-or returns the predition on the urrent position of a desriptor (theomputing desriptor) hosen by the positivity of the predition of anotherdesriptor (the testing desriptor) on the next position. Eah ouple testingdesriptor-omputing desriptor is written in this order. Between the brak-ets, the tests are made from left to right in the odd desriptors, and stop atthe �rst positive test.For example, on position 2 of Sequene ACB, predition of|`BC(0.1)CC(0.2)AC(0.3)' returns 0.1.For example, on position 2 of Sequene ACB, predition of|`BC(-0.1)BC(0.2)' returns −0.1.When the omputing desriptor is an "or"-operator (here-or, bakward-or,or forward-or), the urrent position for the tests inside this omputing de-sriptor is the preeding preeding. Yet, their joined omputing desriptorsare used on the atual urrent position.For example, on position 1 of Sequene CAB, predition of|`B|`BC(0.1)CC(0.2)AC(0.3)'C|`BC(0.4)CC(0.5)AC(0.6)'A|`BC(0.7)CC(0.8)AC(0.9)''returns 0.7.forward-or ::= |`desriptorsdesriptors'bakward returns the predition at the urrent position of the last desriptorbetween the brakets if the preditions of the previous desriptors on thepreeding positions are all positive.37

For example, on position 3 of Sequene ACBS, predition of{A(0.5)CB(0.3)} returns 0.3.bakward ::= {desriptors}bakward-plus returns the sum of the preditions of the desriptors betweenthe brakets, the last desriptor being applied on the urrent position, thepreeding one on the position before, and so on.For example, on position 4 of Sequene DABC predition of+{A(0.5)B(-0.2)C(1.8)} returns 2.1.bakward-plus ::= +{desriptors}bakward-or returns the predition on the urrent position of a desriptor (theomputing desriptor) hosen by the positivity of the predition of anotherdesriptor (the testing desriptor) on the preeding position. Eah oupletesting desriptor-omputing desriptor is written in this order. Between thebrakets, the tests are made from left to right in the odd desriptors, andstop at the �rst positive test.For example, on position 3 of Sequene ABC, predition of|{BC(0.1)CC(0.2)AC(0.3)} returns 0.1.For example, on position 3 of Sequene ABC, predition of|{BC(-0.1)BC(0.2)} returns −0.1.When the omputing desriptor is an "or"-operator (here-or, bakward-or,or forward-or), the urrent position for the tests inside this omputing de-sriptor is the preeding preeding. Yet, their joined omputing desriptorsare used on the atual urrent position.For example, on position 3 of Sequene ABC, predition of|{B|{BC(0.1)CC(0.2)AC(0.3)}C|{BC(0.4)CC(0.5)AC(0.6)}A|{BC(0.7)CC(0.8)AC(0.9)}}returns 0.3.bakward-or ::= |{desriptorsdesriptors}Nb: these desriptors have been built for spei� needs (suh as tradution ofmarkovian transition probabilities) but, owing to the C++ implementation, it isvery easy to oneive new ones if neessary.Desriptors patternsA pattern of desriptors is used in the ontext of maximum preditive partition-ning. It is a word of suessive simple desriptors, used periodially to omputepreditions on data. The period starts with the �rst desriptor on the �rst position.For example, as the predition on a data is the sum of the preditions on allthe positions of the data, the predition on sequene ACBCAB of desriptor patternAC is 4, 38

and predition of desriptor patternCA is 0.PreditionOn a position, the predition value is the value of the used desriptor.On a data, the predition of a simple desriptor is the sum of the preditionson all of the positions of the data.In the ase of a desriptor pattern, the desriptors are used periodially, startingwith the �rst desriptor of the pattern at the �rst position.For example, on sequene ACBCAB the predition of desriptor patternAC is 4,and predition of desriptor patternCA is 0.Inside a Lexique, when there are transition-osts between desriptors, theseosts are used in HMM ontext, ie in methods fb, bakward, forward, and viterbi.In that ase, these osts are added to the predition at eah transition betweenthe desriptors.

39

Bibliography[Gué00℄ L. Guéguen. Partitionnement maximalement préditif sous ontrainted'ordre total. Appliations aux séquenes génétiques. Thèse, UniversitéPierre et Marie Curie - Paris VI, janvier 2000.[Gué01℄ L. Guéguen. Segmentation by maximal preditive partitioning aordingto omposition biases. In O. Gasuel and M.F. Sagot, editors, Compu-tational Biology, volume 2066 of LNCS, pages 32�45. JOBIM, May 20002001.[Rab89℄ L.R. Rabiner. A tutorial on hidden Markov models and seleted appli-ations in speeh reognition. In Pro. IEEE, volume 77, pages 257�285,1989.

40

