Sarment Manual

Laurent GUEGUEN

October 13, 2006

October 13, 2006

Contents

0.1

0.2

0.3

0.4

0.5

Dataclasses 4
0.1.1 «class Sequence 4
0.1.2 class Matriceo 6
List of data classes Lo 10
0.2.1 class Lsequence L. 10
Count classes 11
0.3.1 «class Compte 11
0.3.2 class Proportion 14
0.3.3 class Lecompte oL 16
0.3.4 class Lproportion 18
Partition classes 21
0.4.1 «class Segment Lo 21
0.4.2 class Partition L. 22
0.4.3 class Lpartition L. 25
044 classParti_ simp L. 26
Descripteur and Lexique classes 29
0.5.1 class Descripteur L. 29
0.5.2 class Lexique 31
0.5.3 Descriptors and Predictions 36

0.1 Data classes

0.1.1 class Sequence

module sequence

The documentation is here.

This class is used to store sequence data, such as genomic or proteic sequences.
It represents a succession of letters, such as

acagcaggcatagacaggatacagatttta.

Positions in a Sequence are numbered from 0 to length-1.

A Sequence can have a name, which is written on the first line in fasta format,
after the ">".

Construction

__init__ Optional keyword fic allows construction by reading a file.

Sequence is implemented as a tabular in C++. For construction, the memory
for a Sequence must be allocated by:

generate generates an empty Sequence with a given length;

read_nf reads a filename in specific or FASTA format; to recognize the formats,
a filename in specific format must end with .seq, and a filename in FASTA
format must end with .fa or .fst;

read_prop builds or changes randomly from a Proportion; see Sequence genera-
tion.

Optional keywords:

deb=d changes only after position d (>=0) included;
fin=f changes only before position f (<len()) included;
long=1g creates a new lg-length Sequence. In that case, deb and fin are not
read;
read_Lprop builds randomly from Lproportion and returns the resulting Partition;
see Sequence generation.

Optional keywords:

deb=d changes only after position d (>=0) included;
fin=f changes only before position f (<len()) included;

long=1g creates a new lg-length Sequence. In that case, deb and fin are not
read;

etat_init=e makes generation beginning with descriptor number e if it is
valid. Otherwise, starts with a random descriptor of the Lproportion;

read_Part builds randomly from a Partition and a Lproportion; each Segment
of the Partition must have descriptors numbers, and each number must
be the number of a Proportion of the Lproportion. At each position, the
Proportion corresponding to the number is used to randomly generate a
letter, as for a Sequence generation;

copy copies deeply from another Sequence.

Handling

__len__ returns the length of the Sequence;

__getitem__ and __getslice__ are implemented, to get respectively characters
and sub-sequences.
Beware: operator __getslice__ DOES NOT create a new Sequence object,
but only a shallow copy, hence it must be used with care;

__setitem__ is used to change a letter in the Sequence.

__setslice__ is used to change a segment of the Sequence by the letters of a
string or a Sequence. BEWARE: if the included part is of the same length
as the replaced segment, the Sequence is modified in place, otherwise a new
Sequence is built. Hence different behaviours can occur if the replacement
is made inside a subsequence. See the example below.

For example:

> import sequence

> s=sequence.Sequence(fic="toto.fa")
> len(s)

10

> b=s[3:5]

> print b

3

ACG

> b[2]=A"

> print s[3:5]

3

ACA

> b[:2]="TT"

> print s[3:5] # b and s are still linked

3

TTA

> b[:2]="ACG"

> print b

4

ACGA

> print s[3:5] # b and s are no longer linked
3

TTA

alpha returns the list of different letters in the Sequence;

shuffle randomly shuffles the Sequence by (len*(log(len)+1)/2) random trans-
positions;

g_name sets the name;

name returns the name;

Input-Output

Specific format is:

description example

length of the sequence 20

sequence with any spaces and ACGGGAAGCTAA
returns as wanted AGCTGCG T

str__ outputs in specific format;

fasta outputs in fasta format. The name of the Sequence is written on first line
after ">";

seq outputs the mere sequence of letters as a string.

0.1.2 class Matrice

module matrice

The documentation is here.

This class is used to store sequences of vectors indexed by letters or characters
numbers (ie numbers between 0 and 255 and prefixed by a #). For example, such
vectors can be letters frequencies.

Via ascii code, there is equivalence between character numbers and letters.

Positions in a Matrice are numbered from 0 to length-1.

Construction

__init__ Optional keyword fic allows construction by reading a file.

Matrice is a two-dimension tabular in C++. The Matrice format is described
in Input-Output.
For construction, the memory for a Matrice must be allocated by either:

generate generates an empty Matrice of given length and given a list of letters
and/or numbers (between 0 and 255);

read_nf reads a filename in specific format;
copy copies another Matrice into this new one;

compress compresses a data either by summing or averaging the occurences of the
letters over non-overlapping windows of a specified size. If uncomplete, last
window is not stored;

prediction computes at each position of a data the predictions of descriptors of
a Lexique.

The numbers of the descriptors of the Lexique are set between 0 and 255, if
needed.

derivate computes from a data the differences between successive positions;
integrate computes from a data cumulated sums from the first position;

fb in HMM context, uses Forward-Backward algorithm on a Sequence using a
Lexique.
The numbers of the descriptors of the Lexique are set between 0 and 255, if
needed.
For each descriptor, at each position, the value set is the log-probability of
the occurrence of this descriptor, given the HMM and the data.

backward in HMM context, uses Backward algorithm on a Sequence using a Lex-
ique.
The numbers of the descriptors of the Lexique are set between 0 and 255, if
needed.
For each descriptor, at each position, the value is the log-probability of the
post-position part of the data, given the HMM and the descriptor at this
position [Rab89];

forward in HMM context, uses Forward algorithm on a Sequence using a Lexique.
The numbers of the descriptors of the Lexique are set between 0 and 255, if
needed.
For each descriptor, at each position, the value is the log-probability of the
ante-position part of the data and of the descriptor at this position, given
the HMM |Rab89|;

set_proba normalizes each line so that the values are the logarithms of probabil-
ities. If the former values are (z;);, the new ones are: z; — log(}_, exp(x;));

exp replaces the values by their exponential;

shuffle randomly shuffles the Matrice by (len*(log(len)+1)/2) random transpo-
sitions;

Handling

__len__ returns the length of the Matrice;

n_desc returns the number of descriptors;

desc returns the list of the descriptors;

Beware: this operator does NOT create a new Matrice object, but only a
shallow copy, hence it must be used with care;

__getslice__ returns a sub-matrice.

val returns the value on a letter at a position. The first argument of this function
can be either a letter or a number. For example, val(’a’,1) is the same as
val(97,1) and val(°#97°,1);

g_val isused to change a value on a letter at a position in the Matrice. The second
argument of this function can be either a letter or a number. For example,
g_val(0.5,%a’,1) isthesameas g_val(0.5,97,1) and g_val(0.5,°#97,1);

max returns the maximum value at a given descriptor.

For example:

>>> import matrice
>>> m=matrice.Matrice(fic="es.mat")
>>> print m

5

#20

0 1
2 1

3 4

1 4

5 1
>>> len(m)

5

>>> m.desc()
[7#207, ’B’]
>>> m.max (20)
5

>>> n=m[1:4]
>>> print n

3

#20 B
2 1
3 4
1 4

>>> n.val(’#20°,1)
3.0

>>> n.g_val(7,20,1)
>>> print n

3

#20 B
2 1
7 4
1 4

>>> print m

5

#20 B
0 1
2 1
1 4
1 4
5 1

__add__ returns a NEW Matrice which is the sum of corresponding values in both

Matrice, if those Matrice have the same length and descriptors;

__iadd__ adds to the values of the first Matrice the corresponding values from
the second one, if both Matrice have the same length and descriptors;

sub__ returns a NEW Matrice which is the substraction of corresponding values
in both Matrice, if those Matrices have the same length and descriptors;

__isub__ substrates from the values of the first Matrice the corresponding values
from the second one, if both Matrice have the same length and descriptors.

line returns a dictionnary which keys are the descriptors of the Matrice and
corresponding items are the values at specified line;

Input-Output

Specific format is:

description example
length of the Matrice)
letters separated by spaces or tabulations A C B
arrays of values separated by spaces or tabulations 3.09453
200
100
1.19302 2 5
0 0.322 19.202

str__ outputs in specific format, in which columns are tabular separated.

0.2 List of data classes

0.2.1 class Lsequence

module 1sequence

The documentation is here.

A Lsequence is simply a list of Sequences, and used for calculation of Lparti-
tions.

As it inherits of list, it has all the methods of list.

Construction

__init__ Optional keyword fic allows construction by reading a file of Sequences
in FASTA format;

read_nf appends to the list the Sequences in the file of given name, in FASTA
format;

read_Lprop creates random Sequences from a Lproportion.
Optional keyword etat_init sets the descriptor number at first position of
the sequence.

10

Input-Output

str__ returns the string of all Sequences in FASTA format.

0.3 Count classes

0.3.1 class Compte

module compte

The documentation is here.

This class is used to compute counts on word-occurences, particularly inside
sequences.

The special character ~ is used to represent beginnings and ends of sequences.
Such a character is handy to build markovian models from a Compte (see Proportion).

Construction

_init__ Optional keyword fic allows construction by reading from a filename

in specific format;
add_seq adds to the count the words of a specified length that are in a sequence
of letters. This sequence must have the operator __getitem__.

Optional keywords:

deb=d counts only after position d (>=0) included;
fin=f counts only before position f (<len()) included;

alpha=a counts only words which letters are in string a. If a=" does not
consider alpha;

fact=f each word counts f (default: 1).

add_pseudo adds to the count the given word with optional count (default value:

1).

e If an element of the list is a string, it adds this string with count 1.

e If an element of the list is a list [s,c] with s a string and ¢ a number,
the word s in added with count c.

read_nf builds from a filename in specific format;

11

Handling

__getitem

for all letters, = excepted.

For example:

>>>
>>>
>>>
>>>
>>>

import compte
c=compte.Compte ()
c.add_seq("ABCBA",3)
c.add_seq("BCBAA",3)
c.add_seq("BABAB",3)

>>> print ¢

AA-
ABA
ABC
AB~
A~
CBA
BAA
BAB
BA~
BCB
B~~
~AB
~“BA
“BC

>>>
6
>>>
4
>>>
2
>>>
2
>>>
4
>>>
1

1

= o R R N R N R NN B e

cl’A’]

cl’A.’] # number of ’A’s followed by a letter
c[’BAB’]

c[’BCB’]

c[’B.B’]

cl’B~’] # number of ending ’B’s

__iadd__ adds to self the counts of a Compte;

copy returns a new Compte which is the copy of self;

12

returns the count of the specified word. Character .

is a wildcard

min returns a new Compte made of the minimum of the counts of self and another
Compte;

max returns a new Compte made of the maximum of the counts of self and another
Compte;

intersects returns a new Compte made of the counts of self that are counts of
another Compte;

__idiv__ divides all of the counts by a specified value;

restrict_to returns a new Compte which is self restricted to the letters of the
specified string. The end-character ~ is kept;

strip returns a new Compte from the words of self that do not have the end-
character

rstrip returns a new Compte from the words of self that do not end with char-
acter

lg_max returns the length of the longest word;
alph returns the list of the letters used in the counts;

prop returns the corresponding Proportion.

Optional keywords:

lpost=1 specifies the length of the posterior words, ie the words which fre-
quencies are computed. Default: the maximum length of the words;

lprior=1 specifies the length of the prior words, ie the words on which the
computed words depend, in a markovian context. Default: 0;
As special character "~" stands for the limits of the sequence, the words
terminating with this symbol are counted as "
than given length "-words;

same length or longer

next returns a list of |letter,count| of letters following the specified word;

has_prefix returns True iff the specified word is a strict prefix of a word in the
Compte.

13

Input-Output

Specific format is:

description example
lines of AB 3
word and count separated by a space or a tabulation B- 5
“BBC 1

pref returns the string of the Compte of words of specified length in same format
as __str

str__ outputs in specific format.

0.3.2 class Proportion

module compte
The documentation is here.
This class is used for proportions of words that follow given words. For ex-
ample, it can store the fact that the proportions of letters following word AC are:
A 0.34
C 0.15
G 0.23
T 0.28
Then a distinction is made between prior words (such as AC here), and posterior
words (such as A,C,G and T here).

The special character ~ is used to represent beginnings and ends of sequences.

Construction

__init__ Optional keywords:

fic allows construction by reading from a filename in specific format;

str allows construction by reading from a string in specific format;
read_nf builds from a filename in specific format;
read_str builds from a string in specific format;

read_Compte Builds from a Compte.

Optional keywords:

lpost=1 specifies the length of the posterior words, ie the words which fre-
quencies are computed. Default: the maximum length of the words;

14

lprior=1 specifies the length of the prior words, ie the words on which the
computed words depend, in a markovian context. Default: 0;

As special character "~" stands for the limits of the sequence, the words
terminating with this symbol are counted as " same length or longer
than given length "-words;

Handling

__getitem__ returns the string, in format of Compte of the posterior corresponding
to the given prior;

__iadd__ adds to self the proportions of another Proportion;

KL_MC computes Kullback-Leibler distance to a Proportion, by Monte Carlo sim-
ulation on several (default:100) Sequence of a given length (default:1000)
generated by method read_prop of Sequence. See Sequence generation;

1lg_max returns the length of the longest word, prior or posterior (prior+posterior);
lg_max_prior returns the length of the longest prior;

lg_max_posterior returns the length of the longest posterior;

alph returns the list of the letters used in the counts;

next returns a list of [posterior,proportion| for the specified prior;

rand_next returns a posterior given a spedified prior, randomly chosen among
following the proportions of the prior;

has_prefix returns True if the specified word is a valid prior. Remember that
stands for begin or end of sequence.

~

character

Input-Output

Specific format is:

description example
lines of AB 0.3
prior|posterior and count separated AJA 0.7
by a whitespace B|B 0.5
B|A 0.5
A 0.1
B 0.9
~|A 0.5
~|B 0.5

15

In this example, following an A, proportion of B is 0.3, and proportion of A is
0.7. Overall proportion of A is 0.1, and of B is 0.9. Proportion of beginning A is
0.5, as well as proportion of beginning B.

_str__ outputs in specific format;

loglex returns the corresponding Descripteur. See read_prop in that class;

Sequence generation

From a Proportion, a (part of a) Sequence can be generated randomly, by the
method read_prop.
The process is:

e for all increasing positions i:

— get the longest word w ending in i-1 that is a valid prior (using method
has_prefix);

— if there is a posterior corresponding to w, let Ip be the list of correspond-
ing couples [posterior,proportion| (using method next); otherwise, Ip is
the list of the uniform distribution of all letters of the Proportion;

— randomly choose a posterior p according to the factors in list Ip (see
under);

— if the first letter of p is a terminating character (~), put character null
(’\0’) at that position, and exit;
otherwise put that letter at position i on the Sequence.

Actually, the random choice of the posterior is made with probabilities propor-
tional to their respective proportions, even if the sum of the proportions is different
from 1. Then sequence generation is possible even with non-orthodox proportions.

0.3.3 class Lcompte

module 1lcompte

The documentation is here.

This class is like a dictionnary in which the keys are the descriptor numbers,
and the items the corresponding Compte.

Moreover, the number of transitions between such descriptors are stored. If
not specified, this number of transitions is null.

The aim of this class is to build easily hidden Markov chains.

16

Construction

__init__ Optional keyword fic allows construction by reading from a filename
in specific format;

read_nf builds from a filename in specific format;

read_nf_seq counts specified-length words from a list of filenames. In each file are
the counted sequences, and descriptor number (n-1) is related to file number
n. Between-descriptors transitions are uniformly distributed.

Optional keyword:

alpha=st Compte are restricted to letters in string st. If st=", behaves as if
no option alpha.

read_Lpart counts the words of a specified length from a Lpartition. The Compte
affected to the descriptor numbers are computed from the descriptors of the
Partitions on the positions of the corresponding Sequences.

Optional keyword:

alpha=st Compte are restricted to letters in string st. If st=", behaves as if
not option alpha.

Handling

strip returns a new Lcompte from the words of self that do not have the end-

character =, using strip method;

rstrip returns a new Lcompte from the words of self that do not end with
character

, using rstrip method;

__getitem__ returns the Compte of specified descriptor number;

__setitem__ gets the specified Compte to the specified descriptor number;
num returns the list of descriptors numbers;

lg_max returns the length of the longest word;

inter returns the count of transitions between two descriptor numbers;

g_inter gets the count of transitions between two valid descriptor numbers;

alph returns the list of used letters;

17

add_Partition adds counts of words of specified length on the positions of a
Sequence, on the basis of a Compte per descriptor number of a Partition;

Optional keyword:

alpha=a counts only words which letters are in string a. If a=—”, as if not

option alpha;
fact=f each word counts f (default: 1).

Input-Output

Specific format is:

description example
sections of 1:
decriptor number: AB 35
lines of word whitespace count AA 71
BB 55
lines of counts of transitions BA 245
between descriptors numbers in format: A- 1
B~ 9
numlber, number2 whitespace count
2:
ABB 45
ABA 5
AAA 24
AAB 64
AB 19
A 1
1,2 242
1,1 854
2.2 964
2,1 610

str__ outputs in specific format.

0.3.4 class Lproportion

module 1lcompte
The documentation is here.

This class is like a dictionnary in which the keys are the descriptor numbers, and
the item the corresponding Proportions. Moreover, the probabilities of transitions

between such descriptors are stored.

The aim of this class is to build easily hidden Markov chains.

18

Construction

__init__ Optional keyword fic allows construction by reading from a filename
in specific format;

read_nf builds from a filename in specific format;

read_Lcompte Builds from a Lcompte.

Optional keywords:

lpost=1 specifies the maximum length of the posterior words, ie the words
which frequencies are computed. Default: the maximum length of the
words;

lprior=1 specifies the length of the prior words, ie the words on which the
computed words depend, in a markovian context. Default: 0;

Handling

__getitem__ returns the Proportion of specified descriptor number;
__setitem__ gets the specified Proportion to the specified descriptor number;
num returns the list of descriptors numbers;

lg_max returns the length of the longest word (prior-+posterior);

lg_max_prior returns the length of the longest prior;

lg_max_posterior returns the length of the longest posterior;

inter returns the proportion of transitions between two descriptor numbers;
g_inter gets the proportion of transitions between two valid descriptor numbers;

alph returns the list of used letters;

KL_MC computes Kullback-Leibler divergence to a Lproportion, by Monte Carlo
simulation on several (default:100) Sequence of a given length (default:1000)
generated by method read_Lprop of Sequence . See Sequence generation;

Input-Output

Specific format is:

19

description
- example
sections of T
decriptor number: '
lines of prior|posterior whitespace count AlB 03
AlA 0.7
lines of probability transitions EE 82
between descriptors numbers in format: A 0'1
. . B 0.9
numberl, number2 whitespace proportion
2:
AB|B 0.5
ABJA 0.5
AAA 0.4
AAB 0.6
AB 0.9
Al 0.1
1,2 0.2
1,1 0.8
2.2 0.4
2,1 0.6

_str__ outputs in specific format;

loglex returns the corresponding Lexique. See read_Lprop in that class;

Sequence generation

From a LProportion, a (part of a) Sequence can be generated randomly, by the
method read_Lprop.
The process is:

e for the first position, select a descriptor number for the initial state, either
randomly or by the choice of the user. With that descriptor, select a letter at
this position using the same process as read_prop, see Sequence generation.

e for all increasing positions i:

— select a descriptor number given the former one, proportionnaly to
between-descriptors transition probabilities;

— with that descriptor, select a letter at this position using the same
process as read_prop, see Sequence generation.

20

0.4 Partition classes

0.4.1 class Segment

module segment

The documentation is here.

Instances of this class are used for Partition class, but it may be useful to
handle them.

A Segment is made of

e two positions (begin and end), included in the segment;

a list of descriptors numbers (optionaly empty);

a float for the value of the segment (optionaly zero).

a string corresponding to a descriptor pattern (optionaly this string is empty);

Construction

__init__ Optional keywords:

beg=d begin position is d (default: 0);

end=f end position is f (default: 0);

val=v value is v (default:0).

num=1 descriptor numbers are a copy of list 1 (default: []);

str=s descriptor is string s (default: "");

read_str builds from a string in specific format; returns True if parsing is ok,
False otherwise;

copy returns a copy of this Segment.

Handling

g_beg gets the first position;

g_end gets the last position;

g_num gets the list of descriptors numbers;
g_str gets the string of the pattern;
g_val gets the value;

deb returns the first position;

21

fin returns the last position;

num returns the list of descriptors numbers;
word returns the string of the pattern;

val returns the value;

len__ returns the length of the Segment, ie fin-deb+1.

Input-Output

Specific format is:
description
<begin-end>sequence of descriptors numbers:value:descriptor pattern

if sequence of descriptors numbers is empty, it is not output
if value is zero, it is not output
if descriptor _pattern is empty, it is not output

examples
<0-123>1,2:-5.0:+{A(-1)CG}T
<5-3922>:0.45:

<87-332>1::

_str__ outputs in specific format;

abr outputs in specific format, without the descriptor pattern.

0.4.2 class Partition

module partition
The documentation is here.
Instances of this class are sets of Segment that part a data in several segments.
A n-partition is a partition with n segments.
A Partition is made of

e a list of Segment;
e a value, as much as possible the predictive value of the Partition;

e a name (the empty string if it does not have).

In all computations on data, if not specified, the first position of the partition
is 0 and the last len(data)-1.

22

Construction

__init__ Optional keyword fic allows construction by reading from a filename
in specific format;

s_name sets the name from a given string;
read_nf builds from a filename in specific format;
read_str builds from a string in specific format;

read_Matrice builds from a Matrice, keeping at each position the descriptor num-
ber that is selected by a function. A segment is made for each run of identical
descriptors numbers, and its value is the sum on its positions of the values
returned by the function.

Optional keyword:

func=f uses function f for selecting the descriptor number. Function f has
two arguments, a Matrice and a position, and returns a tuple descriptor
number, floating point value (default: returns the tuple best descrip-

tor,best value (the first of the bests descriptors is returned if there are
several bests)).

copy builds a new Partition by copying this one;

build_random builds a random Partition on a given length with a given number
of segments. Positions of the segments are uniformly distributed;
Optional keyword:
ec=ec sets the minimum length of the segments. It must be lower than the

length of the sequence divided by (the number of segments +1) (default:
0).

viterbi using VITERBI algorithm (see |[Rab89|), computes the most likely predic-
tion Partition of a Lexique on a Sequence;
Optional keyword:
maxseg=m limits to m the maximum number of segments allowed in the com-

puted partition (default: 10000). If m equals 0, there is no limit to this
number.

mpp computes the maximum-prediction partition of a given number of segments
by a Lexique on a data.

23

Handling

_iadd__ appends a Segment after the highest position of the Partition;

val returns the value;
name returns the name;
len_don returns the data length;

len__ returns the number of Segment;

num returns the list of descriptors numbers;

__getitem__ returns the Segment of a given number;

Other methods:

group returns a new Partition by clustering the Segment given their descriptors
numbers. The argument is a list of numbers lists, each list being a set of
clustered descriptors numbers. In the new Partition, the resulting Segment
have no descriptors numbers.

Following the increasing positions order, the Segment are grouped as long as
the set of the descriptors numbers of the group is included in a list of the
argument; if this set is not included in such a list, a new Segment is built,
and the new set is the descriptors numbers of the considered Segment;

prediction computes the prediction on a data by a Lexique, computing one best
descriptor per class, without between descriptors transitions;

pts_comm on a Partition, it returns the number of positions where the descriptors
numbers are the same in both Partition.

If the data-lengths are different, returns -1;

Input-Output

Specific format is:
description
outputs of Segment separated by > XXX’ > value

examples

<0-123>1,2:-5.0:+{A(-1)CG}T XXX <124-341>3:-7.0: ---> -12.0
<0-4>0:1.25: XXX <5-3922>:0.45: XXX <3923-4000>:0.31: ---> 2.01
<0-86>:: XXX <87-332>1:: ---> 0

str__ outputs in specific format;

abr outputs in specific format, without the descriptors patterns.

24

Graphical output

908
9000.0 4

80000 T

70000 1

6000.0 3

50000

4000.0 3

3000.0 3

20000 3

10000 3

10000.0 200000 300000 36737

Horizontal axis represents the data, and each segment is drawn by an arc. The
height of each arc is computed by a given function on the segments (here their
lengths).

draw_nf outputs in postscript language in file of given name;
Optional keywords:
seg=1 draws only segments which numbers are in list 1;

num=n if equals 1, numbers of the descriptors are written;

func=f the height of each arc is proportional to value of function £ computed
on the corresponding Segment.

0.4.3 class Lpartition

module lpartition

The documentation is here.

A Lpartition is simply a list of couples [data, Partition|, in which couples
partition and data fit when the Partition exists.

As it inherits of 1list, it has all the methods of 1list.

Construction

__init__

25

add_Lseq appends to the data-list the list of Lsequence;
add_don appends to the data-list several copies of a data;
build_random creates random Partition on the data-list, using build_random;

viterbi computes the Partition on the stored Sequence with a Lexique using
viterbi algorithm;

fb computes the Partition on the stored Sequence with a Lexique using forward-backward
algorithm and read_Matrice method;

mpp computes a maximum-prediction Partition on the stored data with a Lexique

using mpp;

Input-Output

str_part returns the string of the successive Partition, in their format.

0.4.4 class Parti simp

module parti_simp

The documentation is here.

This class represents maximal predictive partitionings [Gué00, Guéll], ie a
list of Partition of increasing number of segments, computed on a data using a
Lexique.

A partitioning in n segments, or n-partitioning, is a list of partitions from 1 up
to n segments classes.

A Parti_simp is made of

e a list of Partition;

e the value of the maximum prediction from a Lexique on a data; if this value
is not defined, default value is 0;

e the miminum number of classes necessary to get the maximum prediction; if
this maximum prediction value is not defined, default value is 0.
Construction

__init__ Optional keyword fic allows construction by reading from a filename
in specific format;

read_nf builds from a filename in specific format; if a Partition in the file has
no name, its new name is the string of its index in the list;

26

build_random builds a random partitioning in a given number of classes on a given
data-length, using build_random;

mpp computes the maximal predictive partitioning of a given number of classes
with Lexique on a data; the names of the Partitions are their numbers of
segments;

Handling

len_don returns the length of the data of the first Partition;

len__ returns the number of Partition;

__getitem__ returns the Partition of a given number;

__delitem_

removes the Partition of a given number;

__getslice__ returns a Parti_simp made of the selected partitions;

__delslice__ removes the Partition of indexes between given numbers;

append appends a Partition to the end of self. Data length of this Partition
must be equal to the one of self; if this new Partition has no name, it gets
the length of the Parti_simp as name, using method s_name.

insert inserts a Partition before given index. Data length of this Partition
must be equal to the one of self; if this new Partition has no name, it gets

the length of the Parti_simp as name, using method s_name.

filter returns a Parti_simp made of the partitions on which a given function
returns True;

group returns a new Parti_simp by clustering the Segment of its Partition given
their descriptors numbers, using group.

1s_val returns the list of the values of the Partition, using val;

prediction computes the list of predictions of the partitions on a data by a
Lexique, using prediction;

pts_comm returns, for each number n of segments, the number of same-descriptor
positions between the n-partitions of both Parti_simp, using pts_comm;

27

Input-Output

Specific format is:

description
lines of outputs of Partition in specific format
MAX(min-max number of classes) —> maximum value

example

<0-3637>6:-9127: ---> -9127

<0-2845>7:-6194: XXX <2846-3637>3:-2920: ---> -9114

<0-2505>7:-6234: XXX <25006-3349>1:-2139: XXX <3350-3637>51:-721: ---> -9094

MAX(366) ---> -8685

str__ outputs in specific format;

abr outputs in specific format, without the descriptors patterns (see abr).

Graphical output

0 10000.0 200000 30000.0 36737

Horizontal axis represents the data. On each line is the number of segments
and the graphical output of the corresponding Partition, where each segment is
drawn by an arc. The height of each arc is optionaly computed by a given function
on the segments (here their lengths).

28

e
| S—

——(
r—r o
r—r o
e

0 10000.0 20000.0
Here, only the segments which descriptors numbers

30000.0

drawn, and their descriptors numbers are written above them.

draw_nf draws in postscript language in file of given name;

Optional keywords:

seg=1 draws only segments which numbers are in list 1;

are betwee

a16;3730 and 44 are

num=n if equals 1, the numbers of the descriptors are written;

func=f the height of each arc is proportional to value of function £ computed
on the corresponding Segment.

0.5 Descripteur and Lexique classes

0.5.1 class Descripteur

module descripteur
The documentation is here.

Instances of this class correspond to simple descriptors to which numbers are

set.

Construction

__init__ builds a Descripteur with a given number.

Optional keyword:

29

str=s builds from string s, using read_str;
prop=p builds from Proportion p, using read_prop;
fic=f builds from filename f, using read_nf;

fprop=f builds from filename f of Proportion, using read_prop;
read_str builds from a string, in format of simple descriptors;
read_nf builds from a filename;

read_prop builds from a Proportion, using loglex. For efficiency considerations,
the proportions priors and posteriors are translated differently (see descrip-
tors):

e priors are clustered in a tree from the last letters to the first ones, and
each leaf of this tree will be the output of the corresponding posterior.
Afterwards, these labels are output with backward-or (1{}) operator
along the edges of the tree, and the posteriors are output in their specific
format. The order in backward-or operator is not related with any order
in the proportions. Priority is given to the most specific prior. The
—100000 labels are for no-matching priors.

Example: The output of the posteriors are replaced by the ¢°.

A
ACGTT| G <
AGT| T < T

_— =
AGC| <

TGT| T—G—C—A

C—G——-A

/

KCHGKA"11(-100000)}!/(-100000)} T TKG {CI{A"11(~100000)}!(~100000)}!(-100000)}G {A"T"11(~100000)}!!(~100000)}!!(~100000)}

e posteriors are clustered in a tree from the first letters to the last ones,
and each leaf of this tree is the logarithm of the corresponding pro-
portion. Afterwards, the labels are output with the here-or (| ()) and
forward-or (|¢?) operators. —100000 labels are for not-matching pos-

teriors.
G—— -0.693
|ACG 0.5 CL -1.204
ICA 01 A T— -2.303
IAC 0.3 -100000
IAT 0.1 -100000 100000
/
c— A7 2303
|(A'C|'G!(~0.69314718056)!/(—1.20397280433) T!(-2.30258509299)!/(~100000)'C|'Al(—2.30258509299)!!(~100000)'!(~100000))’

30

copy returns itself deeply copied Descripteur, with a given number;

equals copies from another Descripteur.

Handling
num returns the number of the Descripteur.

prediction computes the prediction on a data, at a given position.

Input-Output

Descripteur instances have a specific format that is described in Simple descrip-
tors section.

str__ outputs in specific format.

0.5.2 class Lexique

module lexique

This class is used for all of the computations of partitions, partitionings and
HMM analysis.

A lexique is a set of descriptors. The prediction functions, used for all the
computations, are defined by the descriptors.

Optionaly, some values can be put for the transitions between the descriptors:
these values are used for HMM computations.

Construction

__init__ Optional keywords:

str=s builds from string s, using read_str;

alpha=a uses the letters of string a, in use with option str (see input);
Lprop=1 builds from Lproportion |, using read_Lprop;

fic=f builds from filename f, using read_nf;

fprop=f builds from filename f of Lproportion, using read_Lprop;
read_nf builds from a filename and optionaly a string of letters (see input);
read_str builds from a string and optionaly another string of letters (see input).

read_Lprop builds from a Lproportion, each Proportion being translated as in
read_prop, and the transitions between descriptors are valued by the loga-
rithms of the transitions proportions.

31

Handling

is_empty returns True if there is no descriptor, False otherwise;
__len__ returns the number of descriptors;

1s_num returns the list of the numbers of the descriptors;

met_au_net removes repetitions in patterns of descriptors (like ACAC cleaned in

AC) and repetitions of descriptors (like A A cleaned in A);

__iter__ iterates over the descriptors, using for d in 1x;

__delitem__ removes the Descripteur of given number;

__getitem__ gets the Descripteur of given number by COPYING it;

__setitem

e cither sets the Descripteur of given number to given Descripteur

by COPYING it (if the number is already used in the Lexique, the cor-
responding descriptor is replaced by the new one);

e or builds a descriptor pattern given a tuple of numbers (numbers that
must not have been alreadyy used in the Lexique), and a tuple or a list
of Descripteurs.

For example:

>>> import lexique

>>> 1=lexique.Lexique(str="1:4 2,3:BC")
>>> print 1

3,2:CB 1:A

>>> import descripteur
>>> d=descripteur.Descripteur(3,str="2")
>>> print d

>>> 1[2]=d
>>> print 1
3,2:CZ 1:A

>>> d.read_str("P")
>>> print 1
3,2:CZ 1:A

>>> e=descripteur.Descripteur(3,str="Y")
>>> 1[56]=e

32

5:Y
>>> print 1
5:Y 3,2:CZ 1:A

>>> 1[4,3]=e,d
Bad descriptor number 3 already used
>>> 1[4,6]=e,d

4,6:YP
>>> print 1
6,4:PY b5:Y 3,2:CZ 1:A

>>> del 1[3]
>>> del 1[2]
>>> print 1
6,4:PY 5:Y 1:A

>>> 1[3,2]="X",e

3,2:XY
>>> print 1
2,3:YX 6,4:PY 5:Y 1:A

prediction computes the maximum prediction on a data, without using between-
descriptors transitions;

Optional keywords:

deb=d sets the first position of the segment on which the prediction is com-
puted (default: 0);

fin=f sets the last position of the segment on which the prediction is com-
puted (default: last position-1);
If deb>fin, it returns 0.

val_max computes the maximum sum of predictions on a data, without using
between-descriptors transitions; in that case, the maximal prediction is com-
puted on each position, and the sum of these is returned;

Optional keywords:
deb=d sets the first position of the segment on which the prediction is com-
puted (default: 0);

fin=f sets the last position of the segment on which the prediction is com-
puted (default: last position-1);

If deb>fin, it returns O.

33

11h computes the best log-likelihood on a Sequence.
Optional keywords:
deb=d sets the first position of the segment on which the log-likelihood is
computed (default: 0);

fin=f sets the last position of the segment on which the log-likelihood is
computed (default: last position-1);

If deb>fin, it returns 0.

1s_evalue returns the dictionnary of tuple of (the pattern of) numbers of descrip-
tors, prediction of this (pattern of) descriptor on the data, for all descriptors,
on a given data.

Optional keywords:
deb=d sets the first position of the segment on which the predictions are
computed (default: 0);

fin=f sets the last position of the segment on which the predictions are
computed (default: last position -1);

If deb>fin, it returns 0.

windows computes the list of the best predictions on the data in a sliding window
of a given size and with steps of a given length;

probability computes the list of the segmentation probabilities on the data, up
to a given number of segments.

Input-Output

e Output

Specific format is:

34

description
numbers of descriptors separated by commas:
outputs of the descriptors in the pattern separated by spaces.

optional lines of transitions costs between the descriptors, in format:
number of descriptor,number of descriptor cost

examples

1,2:+{A(-1)CG}T 3:C

1:A 2:C 3:G 4:T

1,2,3:A1¢C(0.3)GT(0.2)A°{C(0.5)A(-1.5)} 5:+(CG) 10:T(-0.23)!1(0.1)°

1:4 2:T
1,1 -2.3
1,2 -4.1
2,2 7.2
2,1 0

str__ outputs in specific format.

e Input

Input is in the same format as the output, plus:

— there is no need to give numbers to the descriptors. In that case, they
will be automatically numbered;

— character $ is a wildcard, and cannot be used as a standard letter. It
is used in method read_str, and is set successively on all of the letters
of the second string argument of this method. For example:

* lit_str("$", "ACG") builds Lexique: A C G
% lit_str("A$A", "TG") builds Lexique: ATA AGA

* lit_str("“A$$°", "CGT") builds Lexique:
“ACC’> ‘ACG’> “ACT’> ‘AGC’> “AGG’> ‘AGT> ‘ATC’ °‘ATG> ‘ATT’

Here are the syntax and the computation methods of descriptors.

35

0.5.3 Descriptors and Predictions

Simple descriptors

A simple descriptor can be seen as a function applied to a position in a data and
its vicinity, and returning a floating-point value.
In a data, on a position, a letter has a value:

e in a Sequence, the value of the existing letter is 1, the value of other letters
is 0;

e in a Matrice, the value of an existing letter is the value in the data, the value
of the other letters is 0.

A floating-value written between parentheses after a descriptor multiplies the
prediction of this descriptor by that value. For example, on a Sequence, descriptor
A returns 1 on A, and 0 elsewhere, whereas descriptor A(0.7) returns 0.7 on A, and
0 elsewhere.

For operators, notation is a prefix one.

The accepted descriptors are:

letters for letters between a and z and between A and Z, returns the value of the
corresponding letter in the data.

letter ::= "a"..."z"|"A".. . "Z"

special characters

! returns 1 in any position (even if out of bounds);
- returns 1 if the position is out of bounds, 0 otherwise.

special ::= "~" | v
character codes for numbers between 0 and 255 included. Character codes of
letters are output as letters.

Beware: As the codes of special characters | and ~ are 33 and 94, these codes
must be used very cautiously.

character ::= #0..255

here-plus returns the sum of the predictions of the descriptors between the paren-
theses, at this position ; for example +(ABC).
here-plus ::= +(descriptors)

here-mult returns the product of the predictions of the descriptors between the
parentheses, at this position ; for example * (ABC).

here-mult ::= *(descriptors)

36

here-or returns the prediction on the current position of a descriptor (the comput-

ing descriptor) chosen by the positivity of the prediction of another descriptor
(the testing descriptor) on this position. Each couple testing descriptor-
computing descriptor is written in this order. Between the brackets, the
tests are made from left to right in the odd descriptors, and stop at the first
positive test.
For example, on position 0 of Sequence ABC, prediction of

| (“AB°A(0.1)¢AC’A(0.2)“AA°A(0.3)) returns 0.1.
For example, on position 0 of Sequence ABC, prediction of

| (“AB’A(0.1) “AB’A(0.2)) returns 0.1.

here-or ::= |(descriptorsdescriptors)

forward returns the prediction at the current position of the first descriptor be-
tween the quotes if the predictions of the next descriptors on the following
positions are all positive.
For example, on position 0 of Sequence ACBS, prediction of
“A(0.5)CB(0.3)’ returns 0.5.

forward ::= ‘descriptors’

forward-or returns the prediction on the current position of a descriptor (the

computing descriptor) chosen by the positivity of the prediction of another
descriptor (the testing descriptor) on the next position. Each couple testing
descriptor-computing descriptor is written in this order. Between the brack-
ets, the tests are made from left to right in the odd descriptors, and stop at
the first positive test.
For example, on position 2 of Sequence ACB, prediction of

| “BC(0.1)CC(0.2)AC(0.3)’ returns 0.1.
For example, on position 2 of Sequence ACB, prediction of

| “BC(-0.1)BC(0.2)’ returns —0.1.

When the computing descriptor is an "or"-operator (here-or, backward-or,
or forward-or), the current position for the tests inside this computing de-
scriptor is the preceding preceding. Yet, their joined computing descriptors
are used on the actual current position.
For example, on position 1 of Sequence CAB, prediction of

| “B|“BC(0.1)CC(0.2)AC(0.3)°C|“BC(0.4)CC(0.5)AC(0.6)’A]“BC(0.7)CC(0.8)AC(0.9)?°
returns 0.7.

forward-or ::= |‘descriptorsdescriptors’

backward returns the prediction at the current position of the last descriptor
between the brackets if the predictions of the previous descriptors on the
preceding positions are all positive.

37

For example, on position 3 of Sequence ACBS, prediction of
{A(0.5)CB(0.3)} returns 0.3.

backward ::= {descriptors}

backward-plus returns the sum of the predictions of the descriptors between
the brackets, the last descriptor being applied on the current position, the
preceding one on the position before, and so on.
For example, on position 4 of Sequence DABC prediction of
+{A(0.5)B(-0.2)C(1.8)} returns 2.1.

backward-plus ::= +{descriptors}

backward-or returns the prediction on the current position of a descriptor (the

computing descriptor) chosen by the positivity of the prediction of another

descriptor (the testing descriptor) on the preceding position. Each couple

testing descriptor-computing descriptor is written in this order. Between the

brackets, the tests are made from left to right in the odd descriptors, and

stop at the first positive test.

For example, on position 3 of Sequence ABC, prediction of
[{BC(0.1)CC(0.2)AC(0.3)} returns 0.1.

For example, on position 3 of Sequence ABC, prediction of
[{BC(-0.1)BC(0.2)} returns —0.1.

When the computing descriptor is an "or"-operator (here-or, backward-or,

or forward-or), the current position for the tests inside this computing de-

scriptor is the preceding preceding. Yet, their joined computing descriptors

are used on the actual current position.

For example, on position 3 of Sequence ABC, prediction of
|{BI{BC(0.1)CC(0.2)AC(0.3)}CI{BC(0.4)CC(0.5)AC(0.6)}A|{BC(0.7)CC(0.8)AC(0.9)}}

returns 0.3.

backward-or ::= |{descriptorsdescriptors}

Nb: these descriptors have been built for specific needs (such as traduction of
markovian transition probabilities) but, owing to the C++ implementation, it is
very easy to conceive new ones if necessary.

Descriptors patterns

A pattern of descriptors is used in the context of maximum predictive partition-

ning. It is a word of successive simple descriptors, used periodically to compute

predictions on data. The period starts with the first descriptor on the first position.

For example, as the prediction on a data is the sum of the predictions on all

the positions of the data, the prediction on sequence ACBCAB of descriptor pattern
AC is 4,

38

and prediction of descriptor pattern
CA is 0.

Prediction

On a position, the prediction value is the value of the used descriptor.

On a data, the prediction of a simple descriptor is the sum of the predictions
on all of the positions of the data.
In the case of a descriptor pattern, the descriptors are used periodically, starting
with the first descriptor of the pattern at the first position.
For example, on sequence ACBCAB the prediction of descriptor pattern
AC is 4,
and prediction of descriptor pattern
CA is 0.

Inside a Lexique, when there are transition-costs between descriptors, these
costs are used in HMM context, ie in methods b, backward, forward, and viterbi.
In that case, these costs are added to the prediction at each transition between
the descriptors.

39

Bibliography

[Gue00] L. Guéguen. Partitionnement mazimalement prédictif sous contrainte
d’ordre total. Applications aux séquences génétiques. Theése, Université
Pierre et Marie CURIE - Paris VI, janvier 2000.

|Gué0l] L. Guéguen. Segmentation by maximal predictive partitioning according
to composition biases. In O. Gascuel and M.F. Sagot, editors, Compu-
tational Biology, volume 2066 of LNCS, pages 32-45. JOBIM, May 2000
2001.

[Rab89] L.R. Rabiner. A tutorial on hidden Markov models and selected appli-
cations in speech recognition. In Proc. IEEE, volume 77, pages 257285,
1989.

40

