geosimilarity: Geographically Optimal Similarity

Understanding spatial association is essential for spatial statistical inference, including factor exploration and spatial prediction. Geographically optimal similarity (GOS) model is an effective method for spatial prediction, as described in Yongze Song (2022) <doi:10.1007/s11004-022-10036-8>. GOS was developed based on the geographical similarity principle, as described in Axing Zhu (2018) <doi:10.1080/19475683.2018.1534890>. GOS has advantages in more accurate spatial prediction using fewer samples and critically reduced prediction uncertainty.

Version: 3.2
Depends: R (≥ 4.1.0)
Imports: stats, parallel, tibble, dplyr (≥ 1.1.0), purrr, ggplot2, magrittr, ggrepel
Suggests: knitr, tidyverse, cowplot, viridis, car, DescTools, PerformanceAnalytics, testthat (≥ 3.0.0)
Published: 2024-09-08
DOI: 10.32614/CRAN.package.geosimilarity
Author: Yongze Song ORCID iD [aut, cph], Wenbo Lv ORCID iD [aut, cre]
Maintainer: Wenbo Lv <lyu.geosocial at gmail.com>
BugReports: https://github.com/ausgis/geosimilarity/issues
License: GPL-3
URL: https://github.com/ausgis/geosimilarity, https://ausgis.github.io/geosimilarity/
NeedsCompilation: no
Citation: geosimilarity citation info
Materials: README NEWS
CRAN checks: geosimilarity results

Documentation:

Reference manual: geosimilarity.pdf
Vignettes: GOS (source)

Downloads:

Package source: geosimilarity_3.2.tar.gz
Windows binaries: r-devel: geosimilarity_3.2.zip, r-release: geosimilarity_3.2.zip, r-oldrel: geosimilarity_3.2.zip
macOS binaries: r-release (arm64): geosimilarity_3.2.tgz, r-oldrel (arm64): geosimilarity_3.2.tgz, r-release (x86_64): geosimilarity_3.2.tgz, r-oldrel (x86_64): geosimilarity_3.1.tgz
Old sources: geosimilarity archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=geosimilarity to link to this page.