oddnet: Anomaly Detection in Temporal Networks

Anomaly detection in dynamic, temporal networks. The package 'oddnet' uses a feature-based method to identify anomalies. First, it computes many features for each network. Then it models the features using time series methods. Using time series residuals it detects anomalies. This way, the temporal dependencies are accounted for when identifying anomalies (Kandanaarachchi, Hyndman 2022) <doi:10.48550/arXiv.2210.07407>.

Version: 0.1.1
Imports: dplyr, fable, fabletools, igraph, lookout, pcaPP, rlang, tibble, tidyr, tsibble, utils
Suggests: DDoutlier, feasts, knitr, rmarkdown, rTensor, urca
Published: 2024-02-11
Author: Sevvandi Kandanaarachchi ORCID iD [aut, cre], Rob Hyndman ORCID iD [aut]
Maintainer: Sevvandi Kandanaarachchi <sevvandik at gmail.com>
License: GPL (≥ 3)
URL: https://sevvandi.github.io/oddnet/
NeedsCompilation: no
Materials: README
CRAN checks: oddnet results

Documentation:

Reference manual: oddnet.pdf
Vignettes: oddnet

Downloads:

Package source: oddnet_0.1.1.tar.gz
Windows binaries: r-devel: oddnet_0.1.1.zip, r-release: oddnet_0.1.1.zip, r-oldrel: oddnet_0.1.1.zip
macOS binaries: r-release (arm64): oddnet_0.1.1.tgz, r-oldrel (arm64): oddnet_0.1.1.tgz, r-release (x86_64): oddnet_0.1.1.tgz
Old sources: oddnet archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=oddnet to link to this page.