smcfcs: Multiple Imputation of Covariates by Substantive Model Compatible Fully Conditional Specification

Implements multiple imputation of missing covariates by Substantive Model Compatible Fully Conditional Specification. This is a modification of the popular FCS/chained equations multiple imputation approach, and allows imputation of missing covariate values from models which are compatible with the user specified substantive model.

Version: 1.8.0
Depends: R (≥ 3.1.2)
Imports: MASS, survival, VGAM, stats, rlang, checkmate, abind, brglm2
Suggests: knitr, rmarkdown, mitools, ggplot2, kmi
Published: 2024-06-04
DOI: 10.32614/CRAN.package.smcfcs
Author: Jonathan Bartlett [aut, cre], Ruth Keogh [aut], Edouard F. Bonneville [aut], Claus Thorn Ekstrøm [ctb]
Maintainer: Jonathan Bartlett <jonathan.bartlett1 at>
License: GPL-3
NeedsCompilation: no
Materials: README
In views: MissingData
CRAN checks: smcfcs results


Reference manual: smcfcs.pdf
Vignettes: smcfcs


Package source: smcfcs_1.8.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): smcfcs_1.8.0.tgz, r-oldrel (arm64): smcfcs_1.8.0.tgz, r-release (x86_64): smcfcs_1.8.0.tgz, r-oldrel (x86_64): smcfcs_1.8.0.tgz
Old sources: smcfcs archive

Reverse dependencies:

Reverse imports: bootImpute
Reverse suggests: Publish, riskRegression
Reverse enhances: mdmb


Please use the canonical form to link to this page.