node2vec: Algorithmic Framework for Representational Learning on Graphs

Given any graph, the 'node2vec' algorithm can learn continuous feature representations for the nodes, which can then be used for various downstream machine learning tasks.The techniques are detailed in the paper "node2vec: Scalable Feature Learning for Networks" by Aditya Grover, Jure Leskovec(2016),available at <doi:10.48550/arXiv.1607.00653>.

Version: 0.1.0
Depends: R (≥ 2.10)
Imports: data.table, igraph, word2vec, rlist, dplyr, vctrs, vegan
Published: 2021-01-14
DOI: 10.32614/CRAN.package.node2vec
Author: Yang Tian [aut, cre], Xu Li [aut], Jing Ren [aut]
Maintainer: Yang Tian <tianyang1211 at>
License: GPL (≥ 3)
NeedsCompilation: no
CRAN checks: node2vec results


Reference manual: node2vec.pdf


Package source: node2vec_0.1.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): node2vec_0.1.0.tgz, r-oldrel (arm64): node2vec_0.1.0.tgz, r-release (x86_64): node2vec_0.1.0.tgz, r-oldrel (x86_64): node2vec_0.1.0.tgz


Please use the canonical form to link to this page.