veesa: Pipeline for Explainable Machine Learning with Functional Data

Implements the Variable importance Explainable Elastic Shape Analysis pipeline for explainable machine learning with functional data inputs. Converts training and testing data functional inputs to elastic shape analysis principal components that account for vertical and/or horizontal variability. Computes feature importance to identify important principal components and visualizes variability captured by functional principal components. See Goode et al. (2025) <doi:10.48550/arXiv.2501.07602> for technical details about the methodology.

Version: 0.1.6
Depends: R (≥ 3.5.0)
Imports: dplyr, fdasrvf, forcats, ggplot2, purrr, stats, stringr, tidyr
Suggests: randomForest, testthat (≥ 3.0.0)
Published: 2025-01-17
Author: Katherine Goode [cre, aut], J. Derek Tucker [aut], Sandia National Laboratories [cph, fnd]
Maintainer: Katherine Goode <kjgoode at sandia.gov>
License: MIT + file LICENSE
NeedsCompilation: no
Materials: README NEWS
CRAN checks: veesa results

Documentation:

Reference manual: veesa.pdf

Downloads:

Package source: veesa_0.1.6.tar.gz
Windows binaries: r-devel: not available, r-release: not available, r-oldrel: not available
macOS binaries: r-release (arm64): not available, r-oldrel (arm64): not available, r-release (x86_64): not available, r-oldrel (x86_64): not available

Linking:

Please use the canonical form https://CRAN.R-project.org/package=veesa to link to this page.