geocmeans: Implementing Methods for Spatial Fuzzy Unsupervised Classification

Provides functions to apply spatial fuzzy unsupervised classification, visualize and interpret results. This method is well suited when the user wants to analyze data with a fuzzy clustering algorithm and to account for the spatial dimension of the dataset. In addition, indexes for estimating the spatial consistency and classification quality are proposed. The methods were originally proposed in the field of brain imagery (seed Cai and al. 2007 <doi:10.1016/j.patcog.2006.07.011> and Zaho and al. 2013 <doi:10.1016/j.dsp.2012.09.016>) and recently applied in geography (see Gelb and Apparicio <doi:10.4000/cybergeo.36414>).

Version: 0.2.0
Depends: R (≥ 3.5)
Imports: ggplot2 (≥ 3.2.1), spdep (≥ 1.1.2), reldist (≥ 1.6.6), dplyr (≥ 0.8.3), fclust (≥ 2.1.1), fmsb (≥ 0.7.0), future.apply (≥ 1.4.0), progressr (≥ 0.4.0), reshape2 (≥ 1.4.4), sp (≥ 1.4-4), stats (≥ 3.5), rgeos (≥ 0.5-5), grDevices (≥ 3.5), shiny (≥ 1.6.0), leaflet (≥ 2.0.4.1), plotly (≥ 4.9.3), Rdpack (≥ 2.1.1), matrixStats (≥ 0.58.0), raster (≥ 3.4-10), rgdal (≥ 1.5-23), methods (≥ 3.5), Rcpp (≥ 1.0.6)
LinkingTo: Rcpp, RcppArmadillo
Suggests: knitr (≥ 1.28), rmarkdown (≥ 2.1), markdown (≥ 1.1), maptools (≥ 0.9-5), future (≥ 1.16.0), ppclust (≥ 1.1.0), ClustGeo (≥ 2.0), car (≥ 3.0-7), rgl (≥ 0.100), ggpubr (≥ 0.2.5), RColorBrewer (≥ 1.1-2), kableExtra (≥ 1.1.0), viridis (≥ 0.5.1), testthat (≥ 3.0.0), sf (≥ 0.9-8), bslib (≥ 0.2.5), shinyWidgets (≥ 0.6), shinyhelper (≥ 0.3.2), tmap (≥ 3.3-1), waiter (≥ 0.2.2)
Published: 2021-08-23
Author: Jeremy Gelb [aut, cre], Philippe Apparicio [ctb]
Maintainer: Jeremy Gelb <jeremy.gelb at ucs.inrs.ca>
BugReports: https://github.com/JeremyGelb/geocmeans/issues
License: GPL-2
URL: https://github.com/JeremyGelb/geocmeans
NeedsCompilation: yes
SystemRequirements: C++11
Language: en-CA
Citation: geocmeans citation info
Materials: README NEWS
CRAN checks: geocmeans results

Downloads:

Reference manual: geocmeans.pdf
Vignettes: FCMres
adjustinconsistency
Introduction
rasters
Package source: geocmeans_0.2.0.tar.gz
Windows binaries: r-devel: geocmeans_0.2.0.zip, r-devel-UCRT: geocmeans_0.2.0.zip, r-release: geocmeans_0.2.0.zip, r-oldrel: geocmeans_0.2.0.zip
macOS binaries: r-release (arm64): geocmeans_0.2.0.tgz, r-release (x86_64): geocmeans_0.2.0.tgz, r-oldrel: geocmeans_0.2.0.tgz
Old sources: geocmeans archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=geocmeans to link to this page.